The Role of Neuroinflammation in Shaping Neuroplasticity and Recovery Outcomes Following Traumatic Brain Injury: A Systematic Review
Abstract
:1. Introduction
2. Methods
2.1. Search Strategy
2.2. PICO Evaluation
2.3. Inclusion Criteria
2.4. Exclusion Criteria
3. Results and Discussion
3.1. Quality of Included Studies—Risk of Bias
3.2. Synthesis of Evidence
3.3. Neuroinflammation and Recovery Mechanisms in TBI: Insights from Recent Animal Studies
3.4. Advances in Neurorehabilitation: The Role of Biomarkers in Predicting Injury Severity and Recovery
3.5. Discussion
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Menon, D.K.; Schwab, K.; Wright, D.W.; Maas, A.I. Position Statement: Definition of Traumatic Brain Injury. Arch. Phys. Med. Rehabil. 2010, 91, 1637–1640. [Google Scholar] [CrossRef] [PubMed]
- Savitsky, B.; Givon, A.; Rozenfeld, M.; Radomislensky, I.; Peleg, K. Traumatic Brain Injury: It Is All About Definition. Brain Inj. 2016, 30, 1194–1200. [Google Scholar] [CrossRef] [PubMed]
- Lefevre-Dognin, C.; Cogné, M.; Perdrieau, V.; Granger, A.; Heslot, C.; Azouvi, P. Definition and Epidemiology of Mild Traumatic Brain Injury. Neurochirurgie 2021, 67, 218–221. [Google Scholar] [CrossRef] [PubMed]
- Baalen, B.V.; Odding, E.; Maas, A.I.; Ribbers, G.M.; Bergen, M.P.; Stam, H.J. Traumatic Brain Injury: Classification of Initial Severity and Determination of Functional Outcome. Disabil. Rehabil. 2003, 25, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Saatman, K.E.; Duhaime, A.C.; Bullock, R.; Maas, A.I.; Valadka, A.; Manley, G.T. Classification of Traumatic Brain Injury for Targeted Therapies. J. Neurotrauma 2008, 25, 719–738. [Google Scholar] [CrossRef]
- Zumstein, M.A.; Moser, M.; Mottini, M.; Ott, S.R.; Sadowski-Cron, C.; Radanov, B.P.; Exadaktylos, A. Long-Term Outcome in Patients with Mild Traumatic Brain Injury: A Prospective Observational Study. J. Trauma Acute Care Surg. 2011, 71, 120–127. [Google Scholar] [CrossRef]
- Gardner, A.J.; Zafonte, R. Neuroepidemiology of Traumatic Brain Injury. In Handbook of Clinical Neurology; Elsevier: Amsterdam, The Netherlands, 2016; Volume 138, pp. 207–223. [Google Scholar]
- Najem, D.; Rennie, K.; Ribecco-Lutkiewicz, M.; Ly, D.; Haukenfrers, J.; Liu, Q.; Bani-Yaghoub, M. Traumatic Brain Injury: Classification, Models, and Markers. Biochem. Cell Biol. 2018, 96, 391–406. [Google Scholar] [CrossRef]
- Wright, D.W.; Kellermann, A.; McGuire, L.C.; Chen, B.; Popovic, T. CDC Grand Rounds: Reducing Severe Traumatic Brain Injury in the United States. Morb. Mortal. Wkly. Rep. 2013, 62, 549. [Google Scholar]
- Peterson, A.B.; Zhou, H.; Thomas, K.E. Disparities in Traumatic Brain Injury-Related Deaths—United States. J. Saf. Res. 2022, 83, 419–426. [Google Scholar] [CrossRef]
- Iaccarino, C.; Gerosa, A.; Viaroli, E. Epidemiology of Traumatic Brain Injury. In Traumatic Brain Injury: Science, Practice, Evidence and Ethics; Springer: Berlin/Heidelberg, Germany, 2021; pp. 3–11. [Google Scholar]
- Ashina, H.; Eigenbrodt, A.K.; Seifert, T.; Sinclair, A.J.; Scher, A.I.; Schytz, H.W.; Ashina, M. Post-Traumatic Headache Attributed to Traumatic Brain Injury: Classification, Clinical Characteristics, and Treatment. Lancet Neurol. 2021, 20, 460–469. [Google Scholar] [CrossRef]
- Montenigro, P.H.; Bernick, C.; Cantu, R.C. Clinical Features of Repetitive Traumatic Brain Injury and Chronic Traumatic Encephalopathy. Brain Pathol. 2015, 25, 304–317. [Google Scholar] [CrossRef] [PubMed]
- Gao, G.; Wu, X.; Feng, J.; Hui, J.; Mao, Q.; Lecky, F.; Jiang, J. Clinical Characteristics and Outcomes in Patients with Traumatic Brain Injury in China: A Prospective, Multicentre, Longitudinal, Observational Study. Lancet Neurol. 2020, 19, 670–677. [Google Scholar] [CrossRef] [PubMed]
- Mamatkulovich, M.A.; Abdukholikovich, A.M. Correlation of Clinical Signs with the Outcome of Traumatic Brain Injury and Their Prognostic Value. Eur. Sci. Rev. 2019, 11–12, 29–34. [Google Scholar]
- Grote, S.; Böcker, W.; Mutschler, W.; Bouillon, B.; Lefering, R. Diagnostic Value of the Glasgow Coma Scale for Traumatic Brain Injury in 18,002 Patients with Severe Multiple Injuries. J. Neurotrauma 2011, 28, 527–534. [Google Scholar] [CrossRef] [PubMed]
- Gill, M.; Windemuth, R.; Steele, R.; Green, S.M. A Comparison of the Glasgow Coma Scale Score to Simplified Alternative Scores for the Prediction of Traumatic Brain Injury Outcomes. Ann. Emerg. Med. 2005, 45, 37–42. [Google Scholar] [CrossRef]
- Hudak, A.M.; Caesar, R.R.; Frol, A.B.; Krueger, K.; Harper, C.R.; Temkin, N.R.; Diaz-Arrastia, R. Functional Outcome Scales in Traumatic Brain Injury: A Comparison of the Glasgow Outcome Scale (Extended) and the Functional Status Examination. J. Neurotrauma 2005, 22, 1319–1326. [Google Scholar] [CrossRef]
- Tenovuo, O.; Diaz-Arrastia, R.; Goldstein, L.E.; Sharp, D.J.; Van Der Naalt, J.; Zasler, N.D. Assessing the Severity of Traumatic Brain Injury—Time for a Change? J. Clin. Med. 2021, 10, 148. [Google Scholar] [CrossRef]
- Levin, H.S. Neuroplasticity Following Non-Penetrating Traumatic Brain Injury. Brain Inj. 2003, 17, 665–674. [Google Scholar] [CrossRef]
- Wallace, R.; Olson, D.E.; Hooker, J.M. Neuroplasticity: The Continuum of Change. ACS Chem. Neurosci. 2023, 14, 3288–3290. [Google Scholar] [CrossRef]
- Galetto, V.; Sacco, K. Neuroplastic Changes Induced by Cognitive Rehabilitation in Traumatic Brain Injury: A Review. Neurorehabilit. Neural Repair 2017, 31, 800–813. [Google Scholar] [CrossRef]
- Tomaszczyk, J.C.; Green, N.L.; Frasca, D.; Colella, B.; Turner, G.R.; Christensen, B.K.; Green, R.E. Negative Neuroplasticity in Chronic Traumatic Brain Injury and Implications for Neurorehabilitation. Neuropsychol. Rev. 2014, 24, 409–427. [Google Scholar] [CrossRef] [PubMed]
- Han, K.; Chapman, S.B.; Krawczyk, D.C. Neuroplasticity of Cognitive Control Networks Following Cognitive Training for Chronic Traumatic Brain Injury. Neuroimage Clin. 2018, 18, 262–278. [Google Scholar] [CrossRef] [PubMed]
- Lozano, D.; Gonzales-Portillo, G.S.; Acosta, S.; de la Pena, I.; Tajiri, N.; Kaneko, Y.; Borlongan, C.V. Neuroinflammatory Responses to Traumatic Brain Injury: Etiology, Clinical Consequences, and Therapeutic Opportunities. Neuropsychiatr. Dis. Treat. 2015, 11, 97–106. [Google Scholar] [PubMed]
- Navabi, S.P.; Badreh, F.; Shooshtari, M.K.; Hajipour, S.; Vastegani, S.M.; Khoshnam, S.E. Microglia-induced neuroinflammation in hippocampal neurogenesis following traumatic brain injury. Heliyon 2024, 10, e35869. [Google Scholar] [CrossRef]
- Freire, M.A.M.; Rocha, G.S.; Bittencourt, L.O.; Falcao, D.; Lima, R.R.; Cavalcanti, J.R.L.P. Cellular and molecular pathophysiology of traumatic brain injury: What have we learned so far? Biology 2023, 12, 1139. [Google Scholar] [CrossRef]
- Marzola, P.; Melzer, T.; Pavesi, E.; Gil-Mohapel, J.; Brocardo, P.S. Exploring the role of neuroplasticity in development, aging, and neurodegeneration. Brain Sci. 2023, 13, 1610. [Google Scholar] [CrossRef]
- Bohlson, S.S.; Tenner, A.J. Complement in the brain: Contributions to neuroprotection, neuronal plasticity, and neuroinflammation. Annu. Rev. Immunol. 2023, 41, 431–452. [Google Scholar] [CrossRef]
- Naro, A.; Calabrò, R.S. Brain Injury, Neural Plasticity, and Neuromodulation. In Translational Neurorehabilitation: Brain, Behavior and Technology; Springer International Publishing: Cham, Switzerland, 2024; pp. 5–18. [Google Scholar]
- Xiong, Y.; Mahmood, A.; Chopp, M. Current Understanding of Neuroinflammation after Traumatic Brain Injury and Cell-Based Therapeutic Opportunities. Chin. J. Traumatol. 2018, 21, 137–151. [Google Scholar] [CrossRef]
- Lin, C.L.; Dumont, A.S.; Zhang, J.H.; Zuccarello, M.; Chen, C.S. Improving and Predicting Outcomes of Traumatic Brain Injury: Neuroplasticity, Imaging Modalities, and Perspective Therapy. Neural Plast. 2017, 2017, 4752546. [Google Scholar] [CrossRef]
- Taupin, P. Adult Neurogenesis and Neuroplasticity. Restor. Neurol. Neurosci. 2006, 24, 9–15. [Google Scholar]
- Maino, D.M. Neuroplasticity: Teaching an Old Brain New Tricks. Rev. Optom. 2009, 46, 62–64. [Google Scholar]
- Simon, D.W.; McGeachy, M.J.; Bayır, H.; Clark, R.S.; Loane, D.J.; Kochanek, P.M. The Far-Reaching Scope of Neuroinflammation after Traumatic Brain Injury. Nat. Rev. Neurol. 2017, 13, 171–191. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Loane, D.J. Neuroinflammation after Traumatic Brain Injury: Opportunities for Therapeutic Intervention. Brain Behav. Immun. 2012, 26, 1191–1201. [Google Scholar] [CrossRef] [PubMed]
- Dinet, V.; Petry, K.G.; Badaut, J. Brain–Immune Interactions and Neuroinflammation after Traumatic Brain Injury. Front. Neurosci. 2019, 13, 1178. [Google Scholar] [CrossRef] [PubMed]
- Woodcock, T.; Morganti-Kossmann, M.C. The Role of Markers of Inflammation in Traumatic Brain Injury. Front. Neurol. 2013, 4, 18. [Google Scholar] [CrossRef]
- Delage, C.; Taib, T.; Mamma, C.; Lerouet, D.; Besson, V.C. Traumatic Brain Injury: An Age-Dependent View of Post-Traumatic Neuroinflammation and Its Treatment. Pharmaceutics 2021, 13, 1624. [Google Scholar] [CrossRef]
- Postolache, T.T.; Wadhawan, A.; Can, A.; Lowry, C.A.; Woodbury, M.; Makkar, H.; Stiller, J.W. Inflammation in Traumatic Brain Injury. J. Alzheimer’s Dis. 2020, 74, 1–28. [Google Scholar] [CrossRef]
- van Vliet, E.A.; Ndode-Ekane, X.E.; Lehto, L.J.; Gorter, J.A.; Andrade, P.; Aronica, E.; Pitkänen, A. Long-Lasting Blood-Brain Barrier Dysfunction and Neuroinflammation after Traumatic Brain Injury. Neurobiol. Dis. 2020, 145, 105080. [Google Scholar] [CrossRef]
- Finnie, J.W. Neuroinflammation: Beneficial and Detrimental Effects after Traumatic Brain Injury. Inflammopharmacology 2013, 21, 309–320. [Google Scholar] [CrossRef]
- Mele, C.; Pingue, V.; Caputo, M.; Zavattaro, M.; Pagano, L.; Prodam, F.; Marzullo, P. Neuroinflammation and Hypothalamo-Pituitary Dysfunction: Focus on Traumatic Brain Injury. Int. J. Mol. Sci. 2021, 22, 2686. [Google Scholar] [CrossRef]
- Corps, K.N.; Roth, T.L.; McGavern, D.B. Inflammation and Neuroprotection in Traumatic Brain Injury. JAMA Neurol. 2015, 72, 355–362. [Google Scholar] [CrossRef] [PubMed]
- Ramlackhansingh, A.F.; Brooks, D.J.; Greenwood, R.J.; Bose, S.K.; Turkheimer, F.E.; Kinnunen, K.M.; Sharp, D.J. Inflammation after Trauma: Microglial Activation and Traumatic Brain Injury. Ann. Neurol. 2011, 70, 374–383. [Google Scholar] [CrossRef] [PubMed]
- Braun, M.; Vaibhav, K.; Saad, N.M.; Fatima, S.; Vender, J.R.; Baban, B.; Dhandapani, K.M. White Matter Damage after Traumatic Brain Injury: A Role for Damage Associated Molecular Patterns. Biochim. Biophys. Acta Mol. Basis Dis. 2017, 1863, 2614–2626. [Google Scholar] [CrossRef] [PubMed]
- Glushakova, O.Y.; Johnson, D.; Hayes, R.L. Delayed Increases in Microvascular Pathology after Experimental Traumatic Brain Injury Are Associated with Prolonged Inflammation, Blood–Brain Barrier Disruption, and Progressive White Matter Damage. J. Neurotrauma 2014, 31, 1180–1193. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, J.; Hu, X.; Zhang, L.; Mao, L.; Jiang, X.; Chen, J. Microglia/Macrophage Polarization Dynamics in White Matter after Traumatic Brain Injury. J. Cereb. Blood Flow Metab. 2013, 33, 1864–1874. [Google Scholar] [CrossRef]
- Doganyigit, Z.; Erbakan, K.; Akyuz, E.; Polat, A.K.; Arulsamy, A.; Shaikh, M.F. The Role of Neuroinflammatory Mediators in the Pathogenesis of Traumatic Brain Injury: A Narrative Review. ACS Chem. Neurosci. 2022, 13, 1835–1848. [Google Scholar] [CrossRef]
- Hang, C.H.; Shi, J.X.; Li, J.S.; Li, W.Q.; Wu, W. Expressions of Intestinal NF-κB, TNF-α, and IL-6 Following Traumatic Brain Injury in Rats. J. Surg. Res. 2005, 123, 188–193. [Google Scholar] [CrossRef]
- Rodney, T.; Osier, N.; Gill, J. Pro- and Anti-Inflammatory Biomarkers and Traumatic Brain Injury Outcomes: A Review. Cytokine 2018, 110, 248–256. [Google Scholar] [CrossRef]
- Carlson, N.G.; Wieggel, W.A.; Chen, J.; Bacchi, A.; Rogers, S.W.; Gahring, L.C. Inflammatory Cytokines IL-1α, IL-1β, IL-6, and TNF-α Impart Neuroprotection to an Excitotoxin Through Distinct Pathways. J. Immunol. 1999, 163, 3963–3968. [Google Scholar] [CrossRef]
- Arvin, B.; Neville, L.F.; Barone, F.C.; Feuerstein, G.Z. The Role of Inflammation and Cytokines in Brain Injury. Neurosci. Biobehav. Rev. 1996, 20, 445–452. [Google Scholar] [CrossRef]
- Lecca, D.; Jung, Y.J.; Scerba, M.T.; Hwang, I.; Kim, Y.K.; Kim, S.; Greig, N.H. Role of Chronic Neuroinflammation in Neuroplasticity and Cognitive Function: A Hypothesis. Alzheimers Dement. 2022, 18, 2327–2340. [Google Scholar] [CrossRef] [PubMed]
- Schimmel, S.J.; Acosta, S.; Lozano, D. Neuroinflammation in Traumatic Brain Injury: A Chronic Response to an Acute Injury. Brain Circ. 2017, 3, 135–142. [Google Scholar] [PubMed]
- Bjorklund, G.R.; Anderson, T.R.; Stabenfeldt, S.E. Recent Advances in Stem Cell Therapies to Address Neuroinflammation, Stem Cell Survival, and the Need for Rehabilitative Therapies to Treat Traumatic Brain Injuries. Int. J. Mol. Sci. 2021, 22, 1978. [Google Scholar] [CrossRef] [PubMed]
- Cozene, B.; Sadanandan, N.; Farooq, J.; Kingsbury, C.; Park, Y.J.; Wang, Z.J.; Borlongan, C.V. Mesenchymal Stem Cell-Induced Anti-Neuroinflammation against Traumatic Brain Injury. Cell Transplant. 2021, 30, 09636897211035715. [Google Scholar] [CrossRef] [PubMed]
- Kalra, S.; Malik, R.; Singh, G.; Bhatia, S.; Al-Harrasi, A.; Mohan, S.; Tambuwala, M.M. Pathogenesis and Management of Traumatic Brain Injury (TBI): Role of Neuroinflammation and Anti-Inflammatory Drugs. Inflammopharmacology 2022, 30, 1153–1166. [Google Scholar] [CrossRef]
- van Erp, I.A.; Michailidou, I.; van Essen, T.A.; van der Jagt, M.; Moojen, W.; Peul, W.C.; Fluiter, K. Tackling Neuroinflammation After Traumatic Brain Injury: Complement Inhibition as a Therapy for Secondary Injury. Neurotherapeutics 2023, 20, 284–303. [Google Scholar] [CrossRef]
- Mashkouri, S.; Crowley, M.G.; Liska, M.G.; Corey, S.; Borlongan, C.V. Utilizing Pharmacotherapy and Mesenchymal Stem Cell Therapy to Reduce Inflammation Following Traumatic Brain Injury. Neural Regen. Res. 2016, 11, 1379–1384. [Google Scholar]
- Peña, I.D.; Sanberg, P.R.; Acosta, S.; Tajiri, N.; Lin, S.Z.; Borlongan, C.V. Stem Cells and G-CSF for Treating Neuroinflammation in Traumatic Brain Injury: Aging as a Comorbidity Factor. J. Neurosurg. Sci. 2014, 58, 145. [Google Scholar]
- Xu, C.; Diao, Y.F.; Wang, J.; Liang, J.; Xu, H.H.; Zhao, M.L.; Li, X.H. Intravenously Infusing the Secretome of Adipose-Derived Mesenchymal Stem Cells Ameliorates Neuroinflammation and Neurological Functioning after Traumatic Brain Injury. Stem Cells Dev. 2020, 29, 222–234. [Google Scholar] [CrossRef]
- Schmidt, O.I.; Infanger, M.; Heyde, C.E.; Ertel, W.; Stahel, P.F. The Role of Neuroinflammation in Traumatic Brain Injury. Eur. J. Trauma 2004, 30, 135–149. [Google Scholar] [CrossRef]
- Wofford, K.L.; Loane, D.J.; Cullen, D.K. Acute Drivers of Neuroinflammation in Traumatic Brain Injury. Neural Regen. Res. 2019, 14, 1481–1489. [Google Scholar] [PubMed]
- Tuttolomondo, A.; Pecoraro, R.; Pinto, A. Studies of Selective TNF Inhibitors in the Treatment of Brain Injury from Stroke and Trauma: A Review of the Evidence to Date. Drug Des. Dev. Ther. 2014, 8, 2221–2239. [Google Scholar] [CrossRef] [PubMed]
- Chiu, C.C.; Liao, Y.E.; Yang, L.Y.; Wang, J.Y.; Tweedie, D.; Karnati, H.K.; Wang, J.Y. Neuroinflammation in Animal Models of Traumatic Brain Injury. J. Neurosci. Methods 2016, 272, 38–49. [Google Scholar] [CrossRef] [PubMed]
- Morganti-Kossmann, M.C.; Semple, B.D.; Hellewell, S.C.; Bye, N.; Ziebell, J.M. The Complexity of Neuroinflammation Consequent to Traumatic Brain Injury: From Research Evidence to Potential Treatments. Acta Neuropathol. 2019, 137, 731–755. [Google Scholar] [CrossRef]
- Gustafsson, D.; Klang, A.; Thams, S.; Rostami, E. The Role of BDNF in Experimental and Clinical Traumatic Brain Injury. Int. J. Mol. Sci. 2021, 22, 3582. [Google Scholar] [CrossRef]
- Yin, R.; Zhao, S.; Qiu, C. Brain-Derived Neurotrophic Factor Fused with a Collagen-Binding Domain Inhibits Neuroinflammation and Promotes Neurological Recovery of Traumatic Brain Injury Mice via TrkB Signalling. J. Pharm. Pharmacol. 2020, 72, 539–550. [Google Scholar] [CrossRef]
- Wurzelmann, M.; Romeika, J.; Sun, D. Therapeutic Potential of Brain-Derived Neurotrophic Factor (BDNF) and a Small Molecular Mimics of BDNF for Traumatic Brain Injury. Neural Regen. Res. 2017, 12, 7–12. [Google Scholar]
- Lesniak, A.; Poznański, P.; Religa, P.; Nawrocka, A.; Bujalska-Zadrozny, M.; Sacharczuk, M. Loss of Brain-Derived Neurotrophic Factor (BDNF) Resulting from Congenital- or Mild Traumatic Brain Injury-Induced Blood–Brain Barrier Disruption Correlates with Depressive-Like Behaviour. Neuroscience 2021, 458, 1–10. [Google Scholar] [CrossRef]
- Wen, L.; Wang, Y.D.; Shen, D.F.; Zheng, P.D.; Tu, M.D.; You, W.D.; Yang, X.F. Exosomes Derived from Bone Marrow Mesenchymal Stem Cells Inhibit Neuroinflammation after Traumatic Brain Injury. Neural Regen. Res. 2022, 17, 2717–2724. [Google Scholar]
- Visser, K.; Koggel, M.; Blaauw, J.; van der Horn, H.J.; Jacobs, B.; van der Naalt, J. Blood-Based Biomarkers of Inflammation in Mild Traumatic Brain Injury: A Systematic Review. Neurosci. Biobehav. Rev. 2022, 132, 154–168. [Google Scholar] [CrossRef]
- Piskunov, A.K. Neuroinflammation Biomarkers. Neurochem. J. 2010, 4, 55–63. [Google Scholar] [CrossRef]
- Ghaith, H.S.; Nawar, A.A.; Gabra, M.D.; Abdelrahman, M.E.; Nafady, M.H.; Bahbah, E.I.; Barreto, G.E. A Literature Review of Traumatic Brain Injury Biomarkers. Mol. Neurobiol. 2022, 59, 4141–4158. [Google Scholar] [CrossRef] [PubMed]
- Yue, J.K.; Kobeissy, F.H.; Jain, S.; Sun, X.; Phelps, R.R.; Korley, F.K.; TRACK-TBI Investigators. Neuroinflammatory Biomarkers for Traumatic Brain Injury Diagnosis and Prognosis: A TRACK-TBI Pilot Study. Neurotrauma Rep. 2023, 4, 171–183. [Google Scholar] [CrossRef] [PubMed]
- Okonkwo, D.O.; Puffer, R.C.; Puccio, A.M.; Yuh, E.L.; Yue, J.K.; Diaz-Arrastia, R.; TRACK-TBI Investigators. Point-of-Care Platform Blood Biomarker Testing of Glial Fibrillary Acidic Protein versus S100 Calcium-Binding Protein B for Prediction of Traumatic Brain Injuries: A TRACK-TBI Study. J. Neurotrauma 2020, 37, 2460–2467. [Google Scholar] [CrossRef]
- Mafuika, S.N.; Naicker, T.; Harrichandparsad, R.; Lazarus, L. The Potential of Serum S100 Calcium-Binding Protein B and Glial Fibrillary Acidic Protein as Biomarkers for Traumatic Brain Injury. Transl. Res. Anat. 2022, 29, 100228. [Google Scholar] [CrossRef]
- Helmy, A.; De Simoni, M.G.; Guilfoyle, M.R.; Carpenter, K.L.; Hutchinson, P.J. Cytokines and Innate Inflammation in the Pathogenesis of Human Traumatic Brain Injury. Prog. Neurobiol. 2011, 95, 352–372. [Google Scholar] [CrossRef]
- Bigler, E.D. Neuroimaging Biomarkers in Mild Traumatic Brain Injury (mTBI). Neuropsychol. Rev. 2013, 23, 169–209. [Google Scholar] [CrossRef]
- Missault, S.; Anckaerts, C.; Blockx, I.; Deleye, S.; Van Dam, D.; Barriche, N.; Dedeurwaerdere, S. Neuroimaging of Subacute Brain Inflammation and Microstructural Changes Predicts Long-Term Functional Outcome after Experimental Traumatic Brain Injury. J. Neurotrauma 2019, 36, 768–788. [Google Scholar] [CrossRef]
- Irimia, A.; Van Horn, J.D. Functional Neuroimaging of Traumatic Brain Injury: Advances and Clinical Utility. Neuropsychiatr. Dis. Treat. 2015, 11, 2355–2365. [Google Scholar] [CrossRef]
- Wang, K.W.; Yue, J.K.; Winkler, E.A.; Puccio, A.M.; Lingsma, H.F.; Yuh, E.L.; Vassar, M.J. Plasma Anti-Glial Fibrillary Acidic Protein Autoantibody Levels During the Acute and Chronic Phases of Traumatic Brain Injury: A Transforming Research and Clinical Knowledge in Traumatic Brain Injury Pilot Study. J. Neurotrauma 2016, 33, 1266–1275. [Google Scholar] [CrossRef]
- Slavoaca, D.; Muresanu, D.; Birle, C.; Rosu, O.V.; Chirila, I.; Dobra, I.; Vos, P. Biomarkers in Traumatic Brain Injury: New Concepts. Neurol. Sci. 2020, 41, 2033–2044. [Google Scholar] [CrossRef] [PubMed]
- Edwards, K.A.; Pattinson, C.L.; Guedes, V.A.; Peyer, J.; Moore, C.; Davis, T.; Gill, J.M. Inflammatory Cytokines Associate with Neuroimaging After Acute Mild Traumatic Brain Injury. Front. Neurol. 2020, 11, 348. [Google Scholar] [CrossRef] [PubMed]
- Immonen, R.; Harris, N.G.; Wright, D.; Johnston, L.; Manninen, E.; Smith, G.; Grohn, O. Imaging Biomarkers of Epileptogenicity After Traumatic Brain Injury—Preclinical Frontiers. Neurobiol. Dis. 2019, 123, 75–85. [Google Scholar] [CrossRef] [PubMed]
- Koivikko, P.; Posti, J.P.; Mohammadian, M.; Lagerstedt, L.; Azurmendi, L.; Hossain, I.; Takala, R.S. Potential of Heart Fatty-Acid Binding Protein, Neurofilament Light, Interleukin-10 and S100 Calcium-Binding Protein B in the Acute Diagnostics and Severity Assessment of Traumatic Brain Injury. Emerg. Med. J. 2022, 39, 206–212. [Google Scholar] [CrossRef] [PubMed]
- Qiu, X.; Ping, S.; Kyle, M.; Longo, J.; Chin, L.; Zhao, L.R. S100 Calcium-Binding Protein A9 Knockout Contributes to Neuroprotection and Functional Improvement After Traumatic Brain Injury. J. Neurotrauma 2020, 37, 950–965. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Rodriguez, A.B.; Decouty-Perez, C.; Farré-Alins, V.; Palomino-Antolín, A.; Narros-Fernández, P.; Egea, J. Activation of NLRP3 Is Required for a Functional and Beneficial Microglia Response After Brain Trauma. Pharmaceutics 2022, 14, 1550. [Google Scholar] [CrossRef]
- Corser-Jensen, C.E.; Goodell, D.J.; Freund, R.K.; Serbedzija, P.; Murphy, R.C.; Farias, S.E.; Dell’Acqua, M.L.; Frey, L.C.; Serkova, N.; Heidenreich, K.A. Blocking Leukotriene Synthesis Attenuates the Pathophysiology of Traumatic Brain Injury and Associated Cognitive Deficits. Exp. Neurol. 2014, 256, 7–16. [Google Scholar] [CrossRef]
- Bray, C.E.; Witcher, K.G.; Adekunle-Adegbite, D.; Ouvina, M.; Witzel, M.; Hans, E.; Tapp, Z.M.; Packer, J.; Goodman, E.; Zhao, F.; et al. Chronic Cortical Inflammation, Cognitive Impairment, and Immune Reactivity Associated with Diffuse Brain Injury Are Ameliorated by Forced Turnover of Microglia. J. Neurosci. 2022, 42, 4215–4228. [Google Scholar] [CrossRef]
- Aungst, S.L.; Kabadi, S.V.; Thompson, S.M.; Stoica, B.A.; Faden, A.I. Repeated Mild Traumatic Brain Injury Causes Chronic Neuroinflammation, Changes in Hippocampal Synaptic Plasticity, and Associated Cognitive Deficits. J. Cereb. Blood Flow Metab. 2014, 34, 1223–1232. [Google Scholar] [CrossRef]
- Tapp, Z.M.; Cornelius, S.; Oberster, A.; Kumar, J.E.; Atluri, R.; Witcher, K.G.; Oliver, B.; Bray, C.; Velasquez, J.; Zhao, F.; et al. Sleep Fragmentation Engages Stress-Responsive Circuitry, Enhances Inflammation and Compromises Hippocampal Function Following Traumatic Brain Injury. Exp. Neurol. 2022, 353, 114058. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Y.; Chopp, M.; Pang, H.; Chen, L.; Zhang, Z.G.; Mahmood, A.; Xiong, Y. Therapeutic Role of MicroRNAs of Small Extracellular Vesicles from Human Mesenchymal Stromal/Stem Cells in Treatment of Experimental Traumatic Brain Injury. J. Neurotrauma 2023, 40, 758–771. [Google Scholar] [CrossRef] [PubMed]
- Witcher, K.G.; Bray, C.E.; Chunchai, T.; Zhao, F.; O’Neil, S.M.; Gordillo, A.J.; Campbell, W.A.; McKim, D.B.; Liu, X.; Dziabis, J.E.; et al. Traumatic Brain Injury Causes Chronic Cortical Inflammation and Neuronal Dysfunction Mediated by Microglia. J. Neurosci. 2021, 41, 1597–1616. [Google Scholar] [CrossRef] [PubMed]
- Carabias, C.S.; Gomez, P.A.; Panero, I.; Eiriz, C.; Castaño-León, A.M.; Egea, J.; Lagares, A.; i+12 Neurotraumatology Group Collaborators. Chitinase-3-Like Protein 1, Serum Amyloid A1, C-Reactive Protein, and Procalcitonin Are Promising Biomarkers for Intracranial Severity Assessment of Traumatic Brain Injury: Relationship with Glasgow Coma Scale and Computed Tomography Volumetry. World Neurosurg. 2020, 134, e120–e143. [Google Scholar] [CrossRef] [PubMed]
- Dall’Acqua, P.; Johannes, S.; Mica, L.; Simmen, H.P.; Glaab, R.; Fandino, J.; Schwendinger, M.; Meier, C.; Ulbrich, E.J.; Müller, A.; et al. Prefrontal Cortical Thickening After Mild Traumatic Brain Injury: A One-Year Magnetic Resonance Imaging Study. J. Neurotrauma 2017, 34, 3270–3279. [Google Scholar] [CrossRef] [PubMed]
- Carabias, C.S.; Castaño-León, A.M.; Blanca Navarro, B.; Panero, I.; Eiriz, C.; Gómez, P.A.; Egea, J.; Lagares, A. Serum Amyloid A1 as a Potential Intracranial and Extracranial Clinical Severity Biomarker in Traumatic Brain Injury. J. Intensive Care Med. 2020, 35, 1180–1195. [Google Scholar] [CrossRef]
- Farré-Alins, V.; Palomino-Antolín, A.; Narros-Fernández, P.; Lopez-Rodriguez, A.B.; Decouty-Perez, C.; Muñoz-Montero, A.; Zamorano-Fernández, J.; Mansilla-Fernández, B.; Giner-García, J.; García-Feijoo, P.; et al. Serum Amyloid A1/Toll-Like Receptor-4 Axis, an Important Link Between Inflammation and Outcome of TBI Patients. Biomedicines 2021, 9, 599. [Google Scholar] [CrossRef]
- Sterne, J.A.C.; Hernán, M.A.; Reeves, B.C.; Savović, J.; Berkman, N.D.; Viswanathan, M.; Henry, D.; Altman, D.G.; Ansari, M.T.; Boutron, I.; et al. ROBINS-I: A Tool for Assessing Risk of Bias in Non-Randomized Studies of Interventions. BMJ 2016, 355, i4919. [Google Scholar] [CrossRef]
- Calderone, A.; Cardile, D.; Gangemi, A.; De Luca, R.; Quartarone, A.; Corallo, F.; Calabrò, R.S. Traumatic Brain Injury and Neuromodulation Techniques in Rehabilitation: A Scoping Review. Biomedicines 2024, 12, 438. [Google Scholar] [CrossRef]
- Buhagiar, F.; Fitzgerald, M.; Bell, J.; Allanson, F.; Pestell, C. Neuromodulation for Mild Traumatic Brain Injury Rehabilitation: A Systematic Review. Front. Hum. Neurosci. 2020, 14, 598208. [Google Scholar] [CrossRef]
- Clayton, E.; Kinley-Cooper, S.K.; Weber, R.A.; Adkins, D.L. Brain Stimulation: Neuromodulation as a Potential Treatment for Motor Recovery Following Traumatic Brain Injury. Brain Res. 2016, 1640, 130–138. [Google Scholar] [CrossRef]
- Surendrakumar, S.; Rabelo, T.K.; Campos, A.C.P.; Mollica, A.; Abrahao, A.; Lipsman, N.; Hamani, C. Neuromodulation Therapies in Pre-Clinical Models of Traumatic Brain Injury: Systematic Review and Translational Applications. J. Neurotrauma 2023, 40, 435–448. [Google Scholar] [CrossRef] [PubMed]
- Pape, T.L.B.; Herrold, A.A.; Guernon, A.; Aaronson, A.; Rosenow, J.M. Neuromodulatory Interventions for Traumatic Brain Injury. J. Head Trauma Rehabil. 2020, 35, 365–370. [Google Scholar] [CrossRef] [PubMed]
- Shin, S.S.; Dixon, C.E.; Okonkwo, D.O.; Richardson, R.M. Neurostimulation for Traumatic Brain Injury: A Review. J. Neurosurg. 2014, 121, 1219–1231. [Google Scholar] [CrossRef] [PubMed]
- Villamar, M.F.; Portilla, A.S.; Fregni, F.; Zafonte, R. Noninvasive Brain Stimulation to Modulate Neuroplasticity in Traumatic Brain Injury. Neuromodulation 2012, 15, 326–338. [Google Scholar] [CrossRef]
- McNerney, M.W.; Gurkoff, G.G.; Beard, C.; Berryhill, M.E. The Rehabilitation Potential of Neurostimulation for Mild Traumatic Brain Injury in Animal and Human Studies. Brain Sci. 2023, 13, 1402. [Google Scholar] [CrossRef]
- Nardone, R.; Sebastianelli, L.; Versace, V.; Brigo, F.; Golaszewski, S.; Manganotti, P.; Trinka, E. Repetitive Transcranial Magnetic Stimulation in Traumatic Brain Injury: Evidence from Animal and Human Studies. Brain Res. Bull. 2020, 159, 44–52. [Google Scholar] [CrossRef]
- Li, S.; Zaninotto, A.L.; Neville, I.S.; Paiva, W.S.; Nunn, D.; Fregni, F. Clinical Utility of Brain Stimulation Modalities Following Traumatic Brain Injury: Current Evidence. Neuropsychiatr. Dis. Treat. 2015, 11, 1573–1586. [Google Scholar]
- Kim, W.S.; Lee, K.; Kim, S.; Cho, S.; Paik, N.J. Transcranial Direct Current Stimulation for the Treatment of Motor Impairment Following Traumatic Brain Injury. J. Neuroeng. Rehabil. 2019, 16, 14. [Google Scholar] [CrossRef]
- Grabljevec, K. Neuromodulation in Rehabilitation After Traumatic Brain Injury. Fiz. I Rehabil. Med. 2015, 27, 79–89. [Google Scholar]
- Donat, C.K.; Scott, G.; Gentleman, S.M.; Sastre, M. Microglial Activation in Traumatic Brain Injury. Front. Aging Neurosci. 2017, 9, 208. [Google Scholar] [CrossRef]
- Kumar, A.; Stoica, B.A.; Loane, D.J.; Yang, M.; Abulwerdi, G.; Khan, N.; Faden, A.I. Microglial-Derived Microparticles Mediate Neuroinflammation After Traumatic Brain Injury. J. Neuroinflammation 2017, 14, 47. [Google Scholar] [CrossRef] [PubMed]
- Loane, D.J.; Kumar, A. Microglia in the TBI Brain: The Good, the Bad, and the Dysregulated. Exp. Neurol. 2016, 275, 316–327. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Ontiveros, D.G.; Tajiri, N.; Acosta, S.; Giunta, B.; Tan, J.; Borlongan, C.V. Microglia Activation as a Biomarker for Traumatic Brain Injury. Front. Neurol. 2013, 4, 30. [Google Scholar] [CrossRef] [PubMed]
- Shao, F.; Wang, X.; Wu, H.; Wu, Q.; Zhang, J. Microglia and Neuroinflammation: Crucial Pathological Mechanisms in Traumatic Brain Injury-Induced Neurodegeneration. Front. Aging Neurosci. 2022, 14, 825086. [Google Scholar] [CrossRef] [PubMed]
- Fei, X.; Dou, Y.N.; Lv, W.; Ding, B.; Wei, J.; Wu, X.; Fei, F. TLR4 Deletion Improves Cognitive Brain Function and Structure in Aged Mice. Neuroscience 2022, 492, 1–17. [Google Scholar] [CrossRef]
- Zaninotto, A.L.; El-Hagrassy, M.M.; Green, J.R.; Babo, M.; Paglioni, V.M.; Benute, G.G.; Paiva, W.S. Transcranial Direct Current Stimulation (tDCS) Effects on Traumatic Brain Injury (TBI) Recovery: A Systematic Review. Dement. Neuropsychol. 2019, 13, 172–179. [Google Scholar] [CrossRef]
- Oishi, R.; Takeda, I.; Ode, Y.; Okada, Y.; Kato, D.; Nakashima, H.; Wake, H. Neuromodulation with Transcranial Direct Current Stimulation Contributes to Motor Function Recovery via Microglia in Spinal Cord Injury. Sci. Rep. 2024, 14, 18031. [Google Scholar] [CrossRef]
- Wicker, E.; Benton, L.; George, K.; Furlow, W.; Villapol, S. Serum Amyloid A Protein as a Potential Biomarker for Severity and Acute Outcome in Traumatic Brain Injury. Biomed. Res. Int. 2019, 2019, 5967816. [Google Scholar] [CrossRef]
- Huang, J.; Qi, Z.; Chen, M.; Xiao, T.; Guan, J.; Zhou, M.; Wang, Z. Serum Amyloid A1 as a Biomarker for Radiation Dose Estimation and Lethality Prediction in Irradiated Mouse. Ann. Transl. Med. 2019, 7, 23. [Google Scholar] [CrossRef]
- Kahana, M.J.; Ezzyat, Y.; Wanda, P.A.; Solomon, E.A.; Adamovich-Zeitlin, R.; Lega, B.C.; Diaz-Arrastia, R.R. Biomarker-Guided Neuromodulation Aids Memory in Traumatic Brain Injury. Brain Stimul. 2023, 16, 1086–1093. [Google Scholar] [CrossRef]
- O’Donnell, J.C.; Swanson, R.L.; Wofford, K.L.; Grovola, M.R.; Purvis, E.M.; Petrov, D.; Cullen, D.K. Emerging Approaches for Regenerative Rehabilitation Following Traumatic Brain Injury: Regenerative Rehabilitation in TBI. In Regenerative Rehabilitation: From Basic Science to the Clinic; Springer: Berlin/Heidelberg, Germany, 2022; pp. 409–459. [Google Scholar]
- Reis, C.; Wang, Y.; Akyol, O.; Ho, W.M.; Applegate II, R.; Stier, G.; Zhang, J.H. What’s New in Traumatic Brain Injury: Update on Tracking, Monitoring and Treatment. Int. J. Mol. Sci. 2015, 16, 11903–11965. [Google Scholar] [CrossRef] [PubMed]
- Gaggi, N.L. Cerebrovascular Impairment as a Potential Target for Neuromodulation Therapy in Moderate-Severe Traumatic Brain Injury. Biomedicines 2022, 10, 2436. [Google Scholar]
- Khairi, N.A.A.M.; Hanafi, M.H.; Kassim, N.K.; Ahmad, W.M.A.W.; Ahmad, W.M.A.W. The levels of biomarkers interleukin 1 (IL-1) and brain-derived neurotrophic factor (BDNF) in non-invasive conventional rehabilitation and robotic rehabilitation among brain injury patients: A narrative review. Cureus 2024, 16, e68332. [Google Scholar]
- Cherepanova, A.V.; Bravy, Y.R.; Karabelsky, A.V.; Kotova, M.M.; Sherbakova, A.S.; Apukhtin, K.V.; Nikitin, V.S.; Bobrov, M.Y.; Kalueff, A.V. Molecular genetic markers of neuroglia in traumatic brain injury and their use for the functional assessment of sportsmen. J. Evol. Biochem. Physiol. 2024, 60, 1490–1503. [Google Scholar] [CrossRef]
- Rafie, F.; Khaksari, M.; Amiresmaili, S.; Soltani, Z.; Pourranjbar, M.; Shirazpour, S.; Jafari, E. Protective effects of early exercise on neuroinflammation and neurotoxicity associated with traumatic brain injury: A behavioral and neurochemical approach. Int. J. Neurosci. 2024, 134, 700–713. [Google Scholar] [CrossRef]
- Thakur, M.; Vasudeva, N.; Sharma, S.; Datusalia, A.K. Plants and their bioactive compounds as a possible treatment for traumatic brain injury-induced multi-organ dysfunction syndrome. CNS Neurol. Disord.-Drug Targets-CNS Neurol. Disord. 2023, 22, 1313–1334. [Google Scholar] [CrossRef]
- Gerber, K.S. Neuroinflammatory Biomarkers, Symptoms, and Functional Outcomes in Individuals Who Have Sustained Traumatic Brain Injury 3–12 Months Post-Injury. Master’s Thesis, University of Miami, Miami, FL, USA, 2023. [Google Scholar]
- Koller, B.H.; Nguyen, M.; Snouwaert, J.N.; Gabel, C.A.; Ting, J.P. Species-specific NLRP3 regulation and its role in CNS autoinflammatory diseases. Cell Rep. 2024, 43, 113852. [Google Scholar] [CrossRef]
Author | Aim | Study Design/Intervention | Treatment Period | Sample Size | Outcomes Measures | Main Findings |
---|---|---|---|---|---|---|
Rodriguez et al., 2022 [89] | To study how the NLRP3 inflammasome contributes to neuroinflammation after TBI and its impact on transcriptional and behavioral reactions. | Experimental study. | The pharmacological approach included giving MCC950 (3 mg/kg) before the injury and again 1 h after the injury. | Rats with TBI (number not specified). | The research assessed gene expression patterns, reactions to stimuli, inflammasome constituents, markers of microglia and astrocytes, levels of cytokines, and maintenance of the blood–brain barrier. NSS. | Wild-type mice showed a notable inflammatory reaction following TBI, whereas NLRP3 knockout mice displayed heightened cytokine expression because of increased levels of microglial and astrocyte indicators. MCC950 treatment produced similar outcomes as in mice lacking the gene and enhanced repair when given after the injury. |
Jensen et al., 2014 [90] | To assess how effective MK-886, a FLAP inhibitor, is in decreasing the production of leukotrienes, secondary brain damage, synaptic dysfunction, and cognitive impairments after TBI. | Experimental study. | MK-886 was given before and after the injury to assess its ability to prevent and treat the blocking of leukotriene production. | Rats with TBI (number not specified). | Leukotriene levels were assessed with liquid chromatography linked to tandem mass spectrometry; brain swelling was examined with T2-weighted MRI. | MK-886 effectively inhibited leukotriene formation, decreased swelling in the brain, maintained the integrity of the blood–brain barrier in the hippocampal CA1 area, and enhanced synaptic function and cognitive abilities after TBI. |
Carabias et al., 2020 [96] | The research sought to establish connections between certain serum biomarkers (S100β, GFAP, NSE, tau, pNF-H, SAA1, CRP, PCT, YKL-40) and the seriousness, size, and site of hemorrhagic TBI lesions. | Prospective observational cohort study. | Not specified. | 115 human patients with TBI. | GCS; serum level biomarkers. | SAA1, YKL-40, PCT, and S100β showed a strong correlation with the severity of TBI (based on GCS scores) and the extent of various types of intracranial bleeding. The accuracy in detecting intracranial bleeding was enhanced by combining biomarkers. |
Bray et al., 2022 [91] | To determine if replacing trauma-related microglia after TBI can decrease long-term inflammation, enhance cognitive and behavior improvement, and lessen immune response to stimuli like LPS. | Preclinical experimental study. | Microglial replacement was initiated 7 days after the injury, with evaluations being carried out at 30 days after the injury. | Mice (number not specified) | Gene expression in the cortex, complexity of dendrites, amount of myelin, connectivity of neurons, cognitive abilities, reactivity of the immune system, and behavior were assessed. | Mandatory replacement of microglia reversed 90% of gene changes caused by TBI, reduced deficits in neuronal connections, and enhanced cognitive and behavioral results. |
Dall’Acqua et al., 2017 [97] | To evaluate the interactions between group and time regarding gray matter changes in healthy individuals and mTBI patients from the early to late phase, and to link these results to cognitive differences, differentiating between GO and PO recovery results. | Longitudinal cohort study. | The assessment period ranged from one week to one year after the injury occurred. | 49 mTBI human patients and 49 healthy controls. | Alterations in cortical thickness occur in various brain regions, especially in the prefrontal cortex, along with changes in cognitive performance over time. | Differences in cortical thickness in the prefrontal cortex varied among the groups. Cortical thickening was observed in patients with mTBI, whereas healthy controls displayed typical developmental thinning. In the GO group, cognitive improvement was connected to slight increases in cortical thickness, while the PO group showed an excessive thickening associated with cognitive deterioration. |
Aungst et al., 2014 [92] | To examine the histological, neurophysiological, and cognitive impacts of single or repeated mTBI in rats, with emphasis on neuronal loss, synaptic activity, and inflammation. | Experimental study. | Rats were monitored and assessed for 28 days after the injury occurred. | Rats (number not specified). | Examination of neuronal cell death and microglial activation through histology, analysis of synaptic plasticity using LTP in hippocampal slices, and cognitive function assessments including Morris water maze and novel object recognition tests. | Multiple occurrences of mTBI led to notable nerve cell depletion, heightened microglial activity in the hippocampus, hindered LTP, and decreased NMDA receptor reactions. Memory and recognition tasks revealed cognitive deficits. A solitary mTBI also caused alterations in LTP, albeit with less serious consequences in contrast to multiple mTBI. |
Carabias et al., 2020 [98] | To find new peptide biomarkers through mass spectrometry and determine if SAA1 indicates the extent of intracranial and extracranial damage in TBI patients. | Prospective observational study. | Serum samples were taken when the patient was admitted, and outcomes were evaluated at hospital discharge and again at 6 months. | 120 human patients with TBI. | Volume of lesion inside the skull (determined through CT scan), levels of GOS, and concentrations of biomarkers in the blood. | Levels of SAA1 were strongly linked to the severity of both intracranial and extracranial injuries, were related to other injury indicators, and were a predictor of negative outcomes and death. SAA1 showed strong predictive accuracy with AUC values of 0.90 at discharge and 0.89 at 6 months. |
Alins et al., 2021 [99] | Studying how the SAA1-TLR4 axis affects inflammation and outcomes in individuals with TBI and evaluating the potential of using SAA1-TLR4 as a biomarker and target for treatment. | Experimental study. | Not specified. | Vitro and patients with TBI. | Serum concentrations of SAA1, TLR4 mRNA levels in white blood cells, neurobehavioral outcomes, and blood–brain barrier integrity. NSS. | Serum levels of SAA1 demonstrated a direct relationship with the extent of TBI and the results after 6 months. SAA1 showed a correlation with TLR4 mRNA levels as well. |
Tapp et al., 2022 [93] | To examine the impact of mechanical SF post-TBI on HPA-axis dysfunction, neuroinflammation, and recovery. | Experimental study. | Mice were subjected to sleep interruption for a period of either 7 or 30 days after the injury occurred. | Mice (number not specified). | The cortical levels of stress-related genes, neuronal activation in the hippocampus and hypothalamic paraventricular nucleus, increase in microglial cells, activation of pro-inflammatory glial signaling genes, electrophysiological assessments, and learning of trace fear conditioning. | Post-TBI SF worsens neuroinflammation, affects HPA-axis response, and hampers hippocampal performance. It enhances microgliosis, changes gene expression associated with stress, and hinders cognitive function. |
Zhang et al., 2023 [94] | To study how microRNAs in MSC-derived sEVs can support neurological healing, decrease neuroinflammation, and improve neurovascular restructuring in TBI rats. | Experimental study. | SEVs were given through an IV one day after the injury, with assessments carried out for five weeks after the injury and spatial learning and memory examined between days 31 and 35 after the injury. | Rats (number not specified) | MWM, lesion volume, cell loss, neurovascular remodeling, and neuroinflammation. | Naïve-sEV and vector-sEV therapies enhanced functional improvement, decreased neuronal cell death, suppressed neuroinflammation, and stimulated neurovascular restructuring. |
Witcher et al., 2021 [95] | To assess the role of microglia in neuropathology and neuroinflammatory processes at various time points after TBI. | Experimental study. | Time markers of 1 day, 7 days, and 30 days after injury indicate the acute, subacute, and chronic phases correspondingly. | Mice (number not specified) | Gene expression was associated with inflammation, interferon signaling, and neuropathology, as well as cortical dendritic complexity, neuronal connectivity, and cognitive function. | Microglial elimination reversed alterations in gene expression linked to inflammation and neuropathology caused by TBI at 7 and 30 days post-injury. Depletion prevented reductions in neuronal dendritic complexity and connectivity, as well as cognitive impairments caused by TBI. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calderone, A.; Latella, D.; Cardile, D.; Gangemi, A.; Corallo, F.; Rifici, C.; Quartarone, A.; Calabrò, R.S. The Role of Neuroinflammation in Shaping Neuroplasticity and Recovery Outcomes Following Traumatic Brain Injury: A Systematic Review. Int. J. Mol. Sci. 2024, 25, 11708. https://doi.org/10.3390/ijms252111708
Calderone A, Latella D, Cardile D, Gangemi A, Corallo F, Rifici C, Quartarone A, Calabrò RS. The Role of Neuroinflammation in Shaping Neuroplasticity and Recovery Outcomes Following Traumatic Brain Injury: A Systematic Review. International Journal of Molecular Sciences. 2024; 25(21):11708. https://doi.org/10.3390/ijms252111708
Chicago/Turabian StyleCalderone, Andrea, Desirèe Latella, Davide Cardile, Antonio Gangemi, Francesco Corallo, Carmela Rifici, Angelo Quartarone, and Rocco Salvatore Calabrò. 2024. "The Role of Neuroinflammation in Shaping Neuroplasticity and Recovery Outcomes Following Traumatic Brain Injury: A Systematic Review" International Journal of Molecular Sciences 25, no. 21: 11708. https://doi.org/10.3390/ijms252111708
APA StyleCalderone, A., Latella, D., Cardile, D., Gangemi, A., Corallo, F., Rifici, C., Quartarone, A., & Calabrò, R. S. (2024). The Role of Neuroinflammation in Shaping Neuroplasticity and Recovery Outcomes Following Traumatic Brain Injury: A Systematic Review. International Journal of Molecular Sciences, 25(21), 11708. https://doi.org/10.3390/ijms252111708