New Toolset of Reporters Reveals That Glycogen Granules Are Neutral Substrates of Bulk Autophagy in Komagataella phaffii
Abstract
:1. Introduction
2. Results
2.1. K. phaffii Gsy1-GFP Marks GGs
2.2. Gsy1-GFP Reports About the Autophagy of GGs
2.3. Gsy1-GFP-Marked Glycogen Is a Neutral Cargo of Bulk Autophagy in K. phaffii
2.4. CBM20 Fusion Proteins Mark GGs in K. phaffii
2.5. CBM20 Fusions Report About the Autophagy of GGs
2.6. Glycogen Marked with CBM20 Fusions Is a Neutral Cargo of Bulk Autophagy in K. phaffii
3. Discussion
4. Materials and Methods
4.1. Strains and Plasmids
Mutant | Strain | Background | Genotype and Plasmid | Source |
---|---|---|---|---|
WT | PPY12h | PPY12h | arg4 his4 | [34] |
WT | SRK147 | PPY12h | his4::pRK22 (PGLG1-GLG1-GFP, HIS4) | [18] |
WT | SNW78 | PPY12h | his4::pNW10 (PGLG1-PGK1-GFP, HIS4) | This study |
WT | SRK152 | PPY12h | his4::pRK23 (PGSY1-GSY1-GFP, HIS4) | This study |
WT | SRK176 | PPY12h | his4::pRK29 (PATG8-GFP-CBM20, HIS4) | This study |
WT | SRK213 | PPY12h | his4::pRK34 (PGSY1-GFP-CBM20, HIS4) | This study |
WT | SNW57 | PPY12h | arg4::pRK28 (PATG8-mCherry-CBM20, ARG4) | This study |
WT | SNW59 | PPY12h | arg4::pRK32 (PGSY1-mCherry-CBM20, ARG4) | This study |
atg1 | R12 | GS115 | atg1-1::ZeocinR his4 | [21] |
atg1 | SRK154 | R12 | his4::pRK23 (PGSY1-GSY1-GFP, HIS4) | This study |
atg1 | SRK178 | R12 | his4::pRK29 (PATG8-GFP-CBM20, HIS4) | This study |
atg1 | SRK215 | R12 | his4::pRK34 (PGSY1-GFP-CBM20, HIS4) | This study |
atg4 | PPM408 | PPY12h | atg4::ZeocinR arg4 his4 | [24] |
atg4 | SNW55 | PPM408 | arg4::pRK28 (PATG8-mCherry-CBM20, ARG4) | This study |
atg4 | SNW62 | PPM408 | arg4::pRK32 (PGSY1-mCherry-CBM20, ARG4) | This study |
prA,B | SMD1163 | GS115 | pep4 prb1 his4 | [22] |
prA,B | SRK157 | SMD1163 | his4::pRK23 (PGSY1-GSY1-GFP, HIS4) | This study |
prA,B | SRK180 | SMD1163 | his4::pRK29 (PATG8-GFP-CBM20, HIS4) | This study |
prA,B | SRK217 | SMD1163 | his4::pRK34 (PGSY1-GFP-CBM20, HIS4) | This study |
ypt7 | SRRM197 | PPY12h | Δypt7::GeneticinR arg4 his4 | [25] |
ypt7 | SPB1 | SRRM197 | arg4::pRK28 (PATG8-mCherry-CBM20, ARG4) | This study |
ypt7 | SPB2 | SRRM197 | arg4::pRK32 (PGSY1-mCherry-CBM20, ARG4) | This study |
glg1 | SNW49 | PPY12h | Δglg1::ZeocinR (pNW9) | [18] |
glg1 | SNW51 | SNW49 | his4::pRK23 (PGSY1-GSY1-GFP, HIS4) | This study |
glg1 | SNW53 | SNW49 | his4::pRK34 (PGSY1-GFP-CBM20, HIS4) | This study |
glg1 | SNW64 | SNW49 | arg4::pRK32 (PGSY1-mCherry-CBM20, ARG4) | This study |
4.2. Immunoblotting
4.3. Epifluorescence Microscopy
4.4. Confocal Microscopy
4.5. Glycogen Staining
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Prats, C.; Graham, T.E.; Shearer, J. The dynamic life of the glycogen granule. J. Biol. Chem. 2018, 293, 7089–7098. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.H.; Tang, J.W.; Wen, P.B.; Wang, M.M.; Zhang, X.; Wang, L. From Prokaryotes to Eukaryotes: Insights Into the Molecular Structure of Glycogen Particles. Front. Mol. Biosci. 2021, 8, 673315. [Google Scholar] [CrossRef] [PubMed]
- Skurat, A.V.; Dietrich, A.D.; Roach, P.J. Interaction between glycogenin and glycogen synthase. Arch. Biochem. Biophys. 2006, 456, 93–97. [Google Scholar] [CrossRef] [PubMed]
- François, J.; Parrou, J.L. Reserve carbohydrates metabolism in the yeast Saccharomyces cerevisiae. FEMS Microbiol. Rev. 2001, 25, 125–145. [Google Scholar] [CrossRef] [PubMed]
- Wilson, W.A.; Roach, P.J.; Montero, M.; Baroja-Fernandez, E.; Munoz, F.J.; Eydallin, G.; Viale, A.M.; Pozueta-Romero, J. Regulation of glycogen metabolism in yeast and bacteria. FEMS Microbiol. Rev. 2010, 34, 952–985. [Google Scholar] [CrossRef]
- Roach, P.J.; Depaoli-Roach, A.A.; Hurley, T.D.; Tagliabracci, V.S. Glycogen and its metabolism: Some new developments and old themes. Biochem. J. 2012, 441, 763–787. [Google Scholar] [CrossRef]
- Schiaffino, S.; Hanzlikova, V. Autophagic degradation of glycogen in skeletal muscles of the newborn rat. J. Cell Biol. 1972, 52, 41–51. [Google Scholar] [CrossRef]
- Raben, N.; Schreiner, C.; Baum, R.; Takikita, S.; Xu, S.; Xie, T.; Myerowitz, R.; Komatsu, M.; Van der Meulen, J.H.; Nagaraju, K.; et al. Suppression of autophagy permits successful enzyme replacement therapy in a lysosomal storage disorder--murine Pompe disease. Autophagy 2010, 6, 1078–1089. [Google Scholar] [CrossRef]
- Klionsky, D.J.; Petroni, G.; Amaravadi, R.K.; Baehrecke, E.H.; Ballabio, A.; Boya, P.; Bravo-San Pedro, J.M.; Cadwell, K.; Cecconi, F.; Choi, A.M.K.; et al. Autophagy in major human diseases. EMBO J. 2021, 40, e108863. [Google Scholar] [CrossRef]
- Pant, D.C.; Nazarko, T.Y. Selective autophagy: The rise of the zebrafish model. Autophagy 2021, 17, 3297–3305. [Google Scholar] [CrossRef]
- Nazarko, T.Y.; Farre, J.C.; Polupanov, A.S.; Sibirny, A.A.; Subramani, S. Autophagy-related pathways and specific role of sterol glucoside in yeasts. Autophagy 2007, 3, 263–265. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Wilson, W.A.; Fujino, M.A.; Roach, P.J. Antagonistic Controls of Autophagy and Glycogen Accumulation by Snf1p, the Yeast Homolog of AMP-Activated Protein Kinase, and the Cyclin-Dependent Kinase Pho85p. Mol. Cell. Biol. 2001, 21, 5742–5752. [Google Scholar] [CrossRef] [PubMed]
- Wilson, W.A.; Wang, Z.; Roach, P.J. Systematic Identification of the Genes Affecting Glycogen Storage in the Yeast Saccharomyces cerevisiae: Implication of the Vacuole as a Determinant of Glycogen Level*S. Mol. Cell. Proteom. 2002, 1, 232–242. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Heller, B.; Tagliabracci, V.S.; Zhai, L.; Irimia, J.M.; DePaoli-Roach, A.A.; Wells, C.D.; Skurat, A.V.; Roach, P.J. Starch binding domain-containing protein 1/genethonin 1 is a novel participant in glycogen metabolism. J. Biol. Chem. 2010, 285, 34960–34971. [Google Scholar] [CrossRef]
- Jiang, S.; Wells, C.D.; Roach, P.J. Starch-binding domain-containing protein 1 (Stbd1) and glycogen metabolism: Identification of the Atg8 family interacting motif (AIM) in Stbd1 required for interaction with GABARAPL1. Biochem. Biophys. Res. Commun. 2011, 413, 420–425. [Google Scholar] [CrossRef]
- Yi, H.; Fredrickson, K.B.; Das, S.; Kishnani, P.S.; Sun, B. Stbd1 is highly elevated in skeletal muscle of Pompe disease mice but suppression of its expression does not affect lysosomal glycogen accumulation. Mol. Genet. Metab. 2013, 109, 312–314. [Google Scholar] [CrossRef]
- Sun, T.; Yi, H.; Yang, C.; Kishnani, P.S.; Sun, B. Starch Binding Domain-containing Protein 1 Plays a Dominant Role in Glycogen Transport to Lysosomes in Liver. J. Biol. Chem. 2016, 291, 16479–16484. [Google Scholar] [CrossRef]
- Wijewantha, N.V.; Kumar, R.; Nazarko, T.Y. Glycogen Granules Are Degraded by Non-Selective Autophagy in Nitrogen-Starved Komagataella phaffii. Cells 2024, 13, 467. [Google Scholar] [CrossRef]
- Nazarko, T.Y. Autophagy of Glycogen Is Non-Selective in Komagataella phaffii. Autophagy Rep. 2024, 3, 2382659. [Google Scholar] [CrossRef]
- Isoda, T.; Takeda, E.; Hosokawa, S.; Hotta-Ren, S.; Ohsumi, Y. Atg45 is an autophagy receptor for glycogen, a non-preferred cargo of bulk autophagy in yeast. iScience 2024, 27, 109810. [Google Scholar] [CrossRef]
- Stromhaug, P.E.; Bevan, A.; Dunn, W.A., Jr. GSA11 encodes a unique 208-kDa protein required for pexophagy and autophagy in Pichia pastoris. J. Biol. Chem. 2001, 276, 42422–42435. [Google Scholar] [CrossRef] [PubMed]
- Tuttle, D.L.; Dunn, W.A., Jr. Divergent modes of autophagy in the methylotrophic yeast Pichia pastoris. J. Cell Sci. 1995, 108 Pt. 1, 25–35. [Google Scholar] [CrossRef]
- Skurat, A.V.; Segvich, D.M.; DePaoli-Roach, A.A.; Roach, P.J. Novel method for detection of glycogen in cells. Glycobiology 2017, 27, 416–424. [Google Scholar] [CrossRef] [PubMed]
- Mukaiyama, H.; Oku, M.; Baba, M.; Samizo, T.; Hammond, A.T.; Glick, B.S.; Kato, N.; Sakai, Y. Paz2 and 13 other PAZ gene products regulate vacuolar engulfment of peroxisomes during micropexophagy. Genes Cells 2002, 7, 75–90. [Google Scholar] [CrossRef] [PubMed]
- Manjithaya, R.; Anjard, C.; Loomis, W.F.; Subramani, S. Unconventional secretion of Pichia pastoris Acb1 is dependent on GRASP protein, peroxisomal functions, and autophagosome formation. J. Cell Biol. 2010, 188, 537–546. [Google Scholar] [CrossRef]
- Farre, J.C.; Burkenroad, A.; Burnett, S.F.; Subramani, S. Phosphorylation of mitophagy and pexophagy receptors coordinates their interaction with Atg8 and Atg11. EMBO Rep. 2013, 14, 441–449. [Google Scholar] [CrossRef]
- Farre, J.C.; Vidal, J.; Subramani, S. A cytoplasm to vacuole targeting pathway in P. pastoris. Autophagy 2007, 3, 230–234. [Google Scholar] [CrossRef]
- Farre, J.C.; Manjithaya, R.; Mathewson, R.D.; Subramani, S. PpAtg30 tags peroxisomes for turnover by selective autophagy. Dev. Cell 2008, 14, 365–376. [Google Scholar] [CrossRef]
- Motley, A.M.; Nuttall, J.M.; Hettema, E.H. Pex3-anchored Atg36 tags peroxisomes for degradation in Saccharomyces cerevisiae. EMBO J. 2012, 31, 2852–2868. [Google Scholar] [CrossRef]
- Cregg, J.M.; Russell, K.A. Transformation. Methods Mol. Biol. 1998, 103, 27–39. [Google Scholar] [CrossRef]
- Kumar, R.; Shroff, A.; Nazarko, T.Y. Komagataella phaffii Cue5 Piggybacks on Lipid Droplets for Its Vacuolar Degradation during Stationary Phase Lipophagy. Cells 2022, 11, 215. [Google Scholar] [CrossRef] [PubMed]
- Farre, J.C.; Mathewson, R.D.; Manjithaya, R.; Subramani, S. Roles of Pichia pastoris Uvrag in vacuolar protein sorting and the phosphatidylinositol 3-kinase complex in phagophore elongation in autophagy pathways. Autophagy 2010, 6, 86–99. [Google Scholar] [CrossRef] [PubMed]
- Sears, I.B.; O’Connor, J.; Rossanese, O.W.; Glick, B.S. A versatile set of vectors for constitutive and regulated gene expression in Pichia pastoris. Yeast 1998, 14, 783–790. [Google Scholar] [CrossRef]
- Gould, S.J.; McCollum, D.; Spong, A.P.; Heyman, J.A.; Subramani, S. Development of the yeast Pichia pastoris as a model organism for a genetic and molecular analysis of peroxisome assembly. Yeast 1992, 8, 613–628. [Google Scholar] [CrossRef]
- Baerends, R.J.; Faber, K.N.; Kram, A.M.; Kiel, J.A.; van der Klei, I.J.; Veenhuis, M. A stretch of positively charged amino acids at the N terminus of Hansenula polymorpha Pex3p is involved in incorporation of the protein into the peroxisomal membrane. J. Biol. Chem. 2000, 275, 9986–9995. [Google Scholar] [CrossRef]
- Corpet, F. Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res. 1988, 16, 10881–10890. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wijewantha, N.V.; Battu, P.; Chen, K.; Kumar, R.; Nazarko, T.Y. New Toolset of Reporters Reveals That Glycogen Granules Are Neutral Substrates of Bulk Autophagy in Komagataella phaffii. Int. J. Mol. Sci. 2024, 25, 11772. https://doi.org/10.3390/ijms252111772
Wijewantha NV, Battu P, Chen K, Kumar R, Nazarko TY. New Toolset of Reporters Reveals That Glycogen Granules Are Neutral Substrates of Bulk Autophagy in Komagataella phaffii. International Journal of Molecular Sciences. 2024; 25(21):11772. https://doi.org/10.3390/ijms252111772
Chicago/Turabian StyleWijewantha, Nimna V., Praneetha Battu, Kuangcai Chen, Ravinder Kumar, and Taras Y. Nazarko. 2024. "New Toolset of Reporters Reveals That Glycogen Granules Are Neutral Substrates of Bulk Autophagy in Komagataella phaffii" International Journal of Molecular Sciences 25, no. 21: 11772. https://doi.org/10.3390/ijms252111772
APA StyleWijewantha, N. V., Battu, P., Chen, K., Kumar, R., & Nazarko, T. Y. (2024). New Toolset of Reporters Reveals That Glycogen Granules Are Neutral Substrates of Bulk Autophagy in Komagataella phaffii. International Journal of Molecular Sciences, 25(21), 11772. https://doi.org/10.3390/ijms252111772