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Abstract: Dicer, a cytoplasmic type III RNase, is essential for the maturation of microRNAs (miRNAs)
and is implicated in cancer progression and chemoresistance. Our previous research demonstrated
that phosphorylation of Dicer at S1016 alters miRNA maturation and glutamine metabolism,
contributing to gemcitabine (GEM) resistance in pancreatic ductal adenocarcinoma (PDAC). In
this study, we focused on the role of Dicer phosphorylation at S1728/S1852 in GEM-resistant PDAC
cells. Using shRNA to knock down Dicer in GEM-resistant PANC-1 (PANC-1 GR) cells, we examined
cell viability through MTT and clonogenic assays. We also expressed phosphomimetic Dicer 2E
(S1728E/S1852E) and phosphomutant Dicer 2A (S1728A/S1852A) to evaluate their effects on GEM
resistance and metabolism. Our results show that phosphorylation at S1728/S1852 promotes GEM
resistance by reprogramming glutamine metabolism. Specifically, phosphomimetic Dicer 2E increased
intracellular glutamine, driving pyrimidine synthesis and raising dCTP levels, which compete with
gemcitabine’s metabolites. This metabolic shift enhanced drug resistance. In contrast, phosphomutant
Dicer 2A reduced GEM resistance. These findings highlight the importance of Dicer phosphorylation
in regulating metabolism and drug sensitivity, offering insights into potential therapeutic strategies
for overcoming GEM resistance in pancreatic cancer.

Keywords: phosphorylated Dicer; microRNA; glutamine; pancreatic ductal adenocarcinoma;
gemcitabine

1. Introduction

Pancreatic cancer is a common malignant tumor with a poor prognosis [1]. Further-
more, pancreatic cancer is usually diagnosed at a late stage, resulting in a meager five-year
survival rate of only 9% [2]. This is attributed to the early tendency of pancreatic can-
cer to metastasize and its aggressive local growth, leading to fewer than 20% of patients
being eligible for surgical resection. Consequently, chemotherapy is a crucial treatment
method for pancreatic cancer [3]. Common drugs include gemcitabine (GEM), used alone
or combined with modified FOLFIRINOX (modified folic acid, Fluorouracil, Irinotecan,
and Oxaliplatin). However, clinical cases show that many pancreatic cancer patients have
developed resistance to GEM. Therefore, the exact mechanisms need further research to
identify the causes of drug resistance and improve treatment efficacy.

Dicer is a type III ribonuclease (RNase) in the biosynthesis pathway of miRNA and a
crucial regulator of post-transcriptional gene silencing [4]. Previous studies have indicated
that abnormal expression of Dicer is associated with cancer progression and metastasis [5–7].
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Our laboratory’s prior research has also found that ERK-mediated SP1 transcription factor
binds to the Dicer promoter region and induces increased Dicer expression, contributing to
the survival of gemcitabine-resistant pancreatic cancer cells [8]. The mechanism underlying
Dicer-induced cancer growth and drug resistance is related to the phosphorylation of Dicer.
Studies have indicated that phosphorylation of Dicer at S1728 and S1852 promotes tumor
growth and metastasis or even triggers the DNA damage response (DDR) as a protective
mechanism [9,10]. Therefore, we found that phosphomimetic Dicer S1016E increased
the GLS/GLUL ratio by affecting specific miRNAs, altering glutamine metabolism, and
enhancing gemcitabine resistance [11]. However, further research is needed to confirm the
pathways related to the phosphorylation of Dicer at the S1728 and S1852 sites and their
impact on drug resistance.

Metabolic abnormalities are a significant hallmark of cancer, including not only in-
creased aerobic glycolysis but also glutamine anaplerosis, also called glutamine addition.
These metabolic abnormalities impact tumorigenesis, metastasis, chemoresistance, and can-
cer stem cells [12,13]. Therefore, disruption of the glutamine metabolic pathway has been
shown to enhance the efficacy of gemcitabine treatment in gemcitabine-resistant pancreatic
cancer cells [14]. Additionally, miR-140-5p regulation of GLUL (glutamine synthetase)
expression in glioma cells inhibits cancer cell proliferation, migration, and invasion [15].
This suggests that miRNAs may be involved in metabolic shifts in cancer cells.

This study explored the mechanism of Dicer phosphorylation involved in GEM resis-
tance and metabolic reprogramming in PDAC. We previously found that phosphomimetic
Dicer S1016E increased the GLS/GLUL ratio by affecting specific miRNAs, altering glu-
tamine metabolism, and enhancing gemcitabine resistance [11]. In this study, we further
investigated the effect of Dicer phosphorylation at S1728/1852 and its association with
glutamine metabolism and chemotherapy responses in GEM-resistant PDAC cells. The
results revealed that re-overexpression of phosphomimetic Dicer at S1728E/S1852E in
Dicer-silenced GR cells altered glutamine metabolism by reducing the expression of specific
miRNAs, leading to the accumulation of intracellular glutamine as a substrate for pyrimi-
dine synthesis. This increases dCTP and molecular competition with the final metabolites
produced by gemcitabine, contributing to gemcitabine resistance.

2. Results
2.1. Dicer Expression in PDAC Tumor Tissue and Its Impact on Survival Rate

The online database GEPIA (Gene Expression Profiling Interactive Analysis) found
that Dicer expression levels are higher in pancreatic cancer tumor tissues than in normal
tissues (Figure 1A). Additionally, analysis of another online database, PROGgeneV2 Prog-
nostic Database, revealed that pancreatic cancer patients with low Dicer expression have a
significantly higher overall survival rate after three years compared to patients with high
Dicer expression (p < 0.05) (Figure 1B).

2.2. High Dicer Expression Affects Pancreatic Cancer Cell Proliferation and the Development of
Gemcitabine Resistance

Cell growth was observed after one week of gemcitabine treatment through a colony
formation assay. The results showed that the colony area of PANC-1 GR cells was signif-
icantly more extensive than that of PANC-1 cells (p < 0.0001) (Figure 2A). Furthermore,
cell viability analysis showed that after 72 h of gemcitabine treatment, the survival rate of
PANC-1 GR cells was significantly higher than that of PANC-1 cells (p < 0.0001) (Figure 2B).
These results indicate that this experiment’s PANC-1 GR cell line exhibits gemcitabine
resistance. Subsequent qRT-PCR and Western Blot analyses revealed that the expression
level of Dicer in the gemcitabine-resistant PANC-1 GR cell line was significantly higher
than that in PANC-1 cells (p < 0.05) (Figure 2C,D). Therefore, these results suggest a positive
correlation between Dicer expression levels and gemcitabine resistance.
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Figure 1. The expression level of Dicer1 in PDAC tumor tissues and its impact on survival rates. (A) 
Analysis of the difference in Dicer1 gene expression between PDAC tumor tissues (PAAD, n = 179) 
and normal tissues (n = 171) using the online database GEPIA; (B) survival analysis of pancreatic 
cancer patients based on Dicer expression levels (red line: high expression; green line: low expres-
sion) using the PROGgeneV2 Prognostic Database. 
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To further investigate whether Dicer expression affects the development of gemcita-
bine resistance in pancreatic cancer cells, we established PANC-1 GR cells with silenced 
Dicer using lentiviral infection. We confirmed the silencing effect through qRT-PCR and 

Figure 1. The expression level of Dicer1 in PDAC tumor tissues and its impact on survival rates.
(A) Analysis of the difference in Dicer1 gene expression between PDAC tumor tissues (PAAD, n = 179)
and normal tissues (n = 171) using the online database GEPIA; (B) survival analysis of pancreatic
cancer patients based on Dicer expression levels (red line: high expression; green line: low expression)
using the PROGgeneV2 Prognostic Database.

To further investigate whether Dicer expression affects the development of gemcitabine
resistance in pancreatic cancer cells, we established PANC-1 GR cells with silenced Dicer
using lentiviral infection. We confirmed the silencing effect through qRT-PCR and Western
Blot (Figure 3A,B). Additionally, cell viability assays comparing the growth characteristics
of the two cell lines showed that at 72 h, the growth rate of PANC-1 GR/shDicer was
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significantly lower than that of PANC-1 GR/shCtrl (p < 0.01), with a similar trend at 24
and 48 h (Figure 3C). Moreover, as the dose of gemcitabine increased, the colony area
of PANC-1 GR/shDicer cells was significantly smaller than that of PANC-1 GR/shCtrl,
indicating a significant increase in drug sensitivity to gemcitabine in PANC-1 GR/shDicer
cells (p < 0.0001) (Figure 3D). This demonstrates that high expression of Dicer enhances
gemcitabine resistance in pancreatic cancer cells and increases the cell proliferation rate.
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Figure 2. The expression level of Dicer in the pancreatic cancer cell line PANC-1 GR is positively
correlated with gemcitabine resistance and cell proliferation. (A) The clonogenicity assay was used
to test colony formation ability under different concentrations of gemcitabine treatment for 7 days.
(B) The MTT assay was used to test cell viability after treatment with different concentrations of
gemcitabine for 72 h. Data are presented as mean ± SEM and analyzed using Student’s t-test.
(C) The mRNA expression level of Dicer in PANC-1 and PANC-1 GR cells was tested using qRT-PCR.
The qRT-PCR data were normalized to the GAPGH level in each sample, and a bar plot presents fold
changes in the expression of PANC-1 cells. (D) The protein expression level of Dicer in PANC-1 and
PANC-1 GR cells was tested using Western Blot, with Vinculin as the control. Data are presented as
mean ± SEM and analyzed using Student’s t-test. Significant differences are indicated when p < 0.05
(represented as * p < 0.05, ** p < 0.01, and **** p < 0.0001).
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To investigate the role of Dicer phosphorylation at S1728 and S1852 sites in gemcita-
bine-resistant pancreatic cancer cells, we transfected PANC-1 GR/shDicer cells to express 
phosphomimetic Dicer S1728E/S1852E and phosphomutant Dicer S1728A/S1852A. We ex-
amined the effects of phosphorylated Dicer on colony formation and gemcitabine sensi-
tivity. First, Western Blot was used to confirm successful transfection, and the results 
showed that the expression levels of overexpressed Dicer wild type (WT), Dicer 

Figure 3. Silencing Dicer expression in the pancreatic cancer cell line PANC-1 GR increases sensitivity
to gemcitabine and reduces cell growth rate. (A) The mRNA expression level of Dicer in PANC-1
GR/shCtrl #1 and PANC-1 GR/shDicer#1 cells was tested using qRT-PCR. The qRT-PCR data were
normalized to the GAPGH level in each sample, and a bar plot presents fold changes in the expression
of PANC-1_GR_shCtrl#1 cells. (B) The protein expression level of Dicer in PANC-1 GR/shCtrl #1
and PANC-1 GR/shDicer#1 cells was tested using Western Blot, with Vinculin as the control. (C) The
MTT assay was used to test cell viability at 24, 48, and 72 h in PANC-1 GR/shCtrl #1 and PANC-1
GR/shDicer#1 cells. (D) The clonogenicity assay was used to test colony formation ability under
different concentrations of gemcitabine treatment for 7 days. Data are presented as mean ± SEM and
analyzed using Student’s t-test and Two-way ANOVA. Significant differences are indicated when
p < 0.05 (represented as * p < 0.05, ** p < 0.01, *** p < 0.001, and **** p < 0.0001).

2.3. The Association Between Phosphorylated Dicer and Gemcitabine-Resistant Pancreatic
Cancer Cells

To investigate the role of Dicer phosphorylation at S1728 and S1852 sites in gemcitabine-
resistant pancreatic cancer cells, we transfected PANC-1 GR/shDicer cells to express phos-
phomimetic Dicer S1728E/S1852E and phosphomutant Dicer S1728A/S1852A. We exam-
ined the effects of phosphorylated Dicer on colony formation and gemcitabine sensitivity.
First, Western Blot was used to confirm successful transfection, and the results showed that
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the expression levels of overexpressed Dicer wild type (WT), Dicer S1728A/S1852A (2A),
and Dicer S1728E/S1852E (2E) were significantly higher than those of the control group
(p < 0.05). Additionally, the expression levels of Dicer 2E and Dicer 2A were not substan-
tially different from Dicer WT (p > 0.05) (Figure 4A).
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Figure 4. Simulating phosphorylation of Dicer at S1728E/S1852E in PANC-1 GR/shDicer cells
restores cell growth rate. (A) The protein expression level of Dicer wild type (WT), phosphomutant
Dicer S1728A/S1852A, and phosphomimetic Dicer S1728E/S1852E was tested using Western Blot,
with Vinculin as the control. (B) The MTT assay was used to test cell viability at 24, 48, and 72 h in
Ctrl, Dicer WT, Dicer 2A, and Dicer 2E cells. (C) The clonogenicity assay was used to test colony
formation ability under different concentrations of gemcitabine treatment for 7 days in Ctrl, Dicer
WT, Dicer 2A, and Dicer 2E cells. Data are presented as mean ± SEM and analyzed using One-way
ANOVA and Two-way ANOVA. Significant differences are indicated when p < 0.05 (represented as
**** p < 0.0001).
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Next, we observed the cell growth rate after gemcitabine treatment. At 24, 48, and
72 h, the growth rates of Dicer WT and Dicer 2E were significantly higher than those of
the control and Dicer 2A (p < 0.0001) (Figure 4B). Furthermore, the colony formation assay
revealed that Dicer WT and Dicer 2E significantly restored the ability to form colonies
compared to the control group. At the same time, Dicer 2A continued to inhibit cell
growth (p < 0.0001) (Figure 4C). These results demonstrate that phosphorylation at Dicer
S1728E/S1852E can increase the rate of cell proliferation.

Subsequently, we treated the cells with different concentrations of gemcitabine to
observe drug sensitivity over three days and one week. The results showed that, com-
pared to the control and Dicer 2A, the cell viability of Dicer WT and Dicer 2E remained
significantly higher under both high-dose gemcitabine treatment for three days (10 µM,
Figure 5A) and lower-dose therapy for one week (Figure 5B), indicating retained drug
resistance. In contrast, Dicer 2A lost its resistance to gemcitabine. These findings suggest
that phosphorylation at Dicer S1728E/S1852E is associated with developing gemcitabine
resistance and changes in cell growth characteristics in pancreatic cancer cells.
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Figure 5. Simulating phosphorylation of Dicer at S1728E/S1852E in PANC-1 GR/shDicer cells
restores resistance to gemcitabine. (A) The MTT assay was used to test cell viability after treatment
with different concentrations of gemcitabine in Ctrl, Dicer WT, Dicer 2A, and Dicer 2E cells after 72 h.
(B) The clonogenicity assay was used to test colony formation ability under different concentrations of
gemcitabine treatment in Ctrl, Dicer WT, Dicer 2A, and Dicer 2E cells after 7 days. Data are presented
as mean ± SEM and analyzed using One-way ANOVA. Significant differences are indicated when
p < 0.05 (represented as and **** p < 0.0001).
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2.4. Phosphorylated Dicer Influences Glutamine Metabolism Balance in Pancreatic Cancer Cells by
Regulating Specific miRNAs, Thereby Increasing Intracellular Glutamine Levels

Previous studies have shown that the development of gemcitabine resistance in pan-
creatic cancer cells is closely related to abnormal cancer cell metabolism. Furthermore,
based on our past research, phosphomimetic Dicer phosphorylation at another site (S1016E)
affected glutamine metabolism in pancreatic cancer cells, leading to gemcitabine resistance.
Therefore, we examined the change in metabolism-related genes. The results of qPCR
showed that the expression of GLUL was significantly increased in Dicer 2E (p < 0.05),
while there were no changes in GLS and GLUL expression in the control group and Dicer
2A (Figure 6A,B). Additionally, observing changes in the expression of transport proteins
involved in glutamine metabolism, compared to Dicer 2A, Dicer 2E had significantly
higher expressions of SLC1A5 (p < 0.01) (Figure 6C), SLC38A1 (p < 0.05) (Figure 6D), and
SLC1A5_var (p < 0.05) (Figure 6E).
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Figure 6. Impact of simulating phosphorylation of Dicer S1728E/S1852E on glutamine metabolism in
PANC-1 GR/shDicer cells. (A–E) The mRNA expression levels of GLS, GLUL, SLC38A1, SLC1A5,
and SLC1A5_var in Ctrl, Dicer WT, Dicer 2A, and Dicer 2E cells were tested using qRT-PCR. The
qRT-PCR data were normalized to the GAPGH level in each sample, and a bar plot presents fold
changes in the expression of PANC-1_GR_shCtrl#1 cells. Data are presented as mean ± SEM and
analyzed using One-way ANOVA. Significant differences are indicated when p < 0.05 (represented as
* p < 0.05, ** p < 0.01).

Moreover, using the glutamine/glutamate-Glo assay kit to detect the cells’ ability to
uptake glutamine from the medium and release glutamate, the results showed that Dicer
2E had a higher capacity to uptake glutamine and a trend of releasing less glutamate into
the extracellular environment (Figure 7A,B). On the other hand, the intracellular glutamine
concentration in Dicer 2E was significantly higher than in Dicer 2A (p < 0.01) (Figure 7C).
In comparison, the intracellular glutamate concentration was considerably lower than in
Dicer 2A (p < 0.01) (Figure 7D). These results correspond with the significant increases
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in GLUL expression and the expression of glutamine metabolism transport proteins in
Dicer 2E, indicating that phosphorylation at Dicer S1728E/S1852E significantly increases
GLUL expression and the expression of glutamine metabolism transport proteins, further
increasing the intracellular glutamine concentration and accumulating within the cells.

Referring to previous studies and using TargetScan (http://www.targetscan.org/vert_
72/, accessed on 20 August 2024) software analysis, miR-29a-5p and miR-140-5p can bind
to glutamine synthetase (GLUL) and regulate mRNA and protein expression [11]. To
understand how phosphorylation at Dicer S1728E/S1852E regulates GLUL, we designed
primers for miR-29a-5p and miR-140-5p and used qPCR to detect changes in these miRNAs.
The results showed that the expression levels of miR-29a-5p and miR-140-5p in Dicer 2E
were significantly lower than in Dicer 2A (p < 0.01) (Figure 8A,B). This confirms that the
expression of GLUL is increased substantially in Dicer 2E (Figure 8A,B), demonstrating
that phosphorylation at Dicer S1728E/S1852E affects the expression of glutamine syn-
thetase in pancreatic cancer cells through the regulation of miR-29a-5p and miR-140-5p,
thereby influencing glutamine metabolism balance and further increasing intracellular
glutamine concentration.
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2.5. Addressing the Abnormal Glutamine Metabolism in Gemcitabine-Resistant Pancreatic Cancer
Cells Further Inhibits Cell Proliferation and Increases Drug Sensitivity to Gemcitabine

To confirm that phosphorylation of Dicer at S1728E/S1852E leads to the develop-
ment of gemcitabine resistance and affects cancer cell proliferation by altering glutamine
metabolism balance, we cultured the cells in a glutamine-deficient medium. We used
cell viability assays and colony formation assays to determine whether glutamine defi-
ciency can slow down the growth of pancreatic cancer cells and increase their sensitivity to
gemcitabine. The results showed that consistent with the qPCR results, Dicer 2E, which
had the highest intracellular glutamine concentration, exhibited significantly reduced cell
proliferation under glutamine-deficient conditions (p < 0.0001) and significantly increased
sensitivity to gemcitabine (p < 0.0001) compared to Dicer 2A (Figure 9A,B).

Additionally, we treated the cells with the GLUL inhibitor methionine sulfoximine
(MSO). We used cell viability and colony formation assays to determine whether inhibiting
GLUL activity affects pancreatic cancer cell growth and gemcitabine sensitivity. Similarly
consistent with the qPCR results, Dicer 2E, which had higher GLUL expression, showed
significantly reduced cell proliferation over three days or one week after GLUL inhibi-
tion (p < 0.01) compared to Dicer 2A (Figure 9C,D). Furthermore, gemcitabine sensitivity
was also significantly increased (p < 0.0001) (Figure 9E,F). Therefore, the above results
further confirm that the phosphorylation of Dicer at S1728E/S1852E leads to the develop-
ment of gemcitabine resistance and affects cancer cell proliferation by altering glutamine
metabolism balance.

2.6. Phosphorylated Dicer Promotes Competitive Inhibition Between Pyrimidine Synthesis-Related
Enzymes and the Metabolites Produced by Gemcitabine, Leading to the Development of
Gemcitabine Resistance

Previous results showed that Dicer 2E cells had significantly higher concentrations of
glutamine and tended to absorb more glutamine from the medium into the cells. Further-
more, Dicer 2E cells also had higher GLUL expression than other cells, indicating that Dicer
2E does not tend to convert intracellular glutamine to glutamate but has another purpose.
Considering the perspective of cancer metabolism abnormalities, cancer cells need to rely
on glutamine to increase nucleotide synthesis, including purines and pyrimidines, to sup-
port and promote cancer cell proliferation. However, the pharmacological mechanism of
gemcitabine is to produce nucleoside analogs, preventing DNA synthesis. Since nucleotide
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synthesis requires glutamine, Dicer 2E may tend to use glutamine for pyrimidine synthesis,
further reducing the efficacy of gemcitabine and simultaneously increasing the proliferation
of cancer cells.

We examined the mRNA expression levels of enzymes related to pyrimidine synthe-
sis in Dicer 2E cells, including CAD (carbamoyl-phosphate synthetase 2, aspartate tran-
scarbamylase, and dihydroorotase) and CTPS1 and 2 (cytidine triphosphate synthetase).
Consistent with previous results, Dicer 2E indeed showed significantly higher mRNA
expression levels of these enzymes (p < 0.05) (Figure 10A). Further, through Western Blot
analysis, the protein expression levels of these pyrimidine synthesis-related enzymes in
Dicer 2E were also significantly increased (p < 0.01) (Figure 10B). Therefore, it is reasonable
to infer that the phosphorylation at the Dicer S1728 and S1852 sites can promote pyrimi-
dine synthesis by utilizing the accumulated intracellular glutamine, thereby reducing the
efficacy of gemcitabine and increasing cancer cell proliferation.
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WT, Dicer 2A, and Dicer 2E cells were cultured in a glutamine-free medium after 72 h. (B) The
MTT assay was used to test cell viability, followed by treatment with different concentrations of
gemcitabine after 72 h, of Ctrl, Dicer WT, Dicer 2A, and Dicer 2E cells cultured in glutamine-free
medium. (C) The MTT assay was used to test the cell viability of Ctrl, Dicer WT, Dicer 2A, and
Dicer 2E cells treated with methionine sulfoximine (MSO) after 72 h. (D) The clonogenicity assay
was used to test Ctrl, Dicer WT, Dicer 2A, and Dicer 2E cells’ colony formation ability after being
treated with methionine sulfoximine (MSO) after 7 days. (E) Three thousand cells/well were seeded
in a 96-well plate and treated with methionine sulfoximine (MSO), followed by treatment with
different concentrations of gemcitabine, and MTT assay to test the cell viability of Ctrl, Dicer WT,
Dicer 2A, and Dicer 2E cells after 72 h. (F) Five hundred cells/well were seeded in a 6-well plate
and treated with methionine sulfoximine (MSO), followed by clonogenicity assay to test the colony
formation ability of Ctrl, Dicer WT, Dicer 2A, and Dicer 2E cells under different concentrations of
gemcitabine treatment after 7 days. Data are presented as mean ± SEM and analyzed using One-way
and Two-way ANOVAs. Significant differences are indicated when p < 0.05 (represented as * p < 0.05,
** p < 0.01, *** p < 0.001, **** p < 0.0001, and ns: Non significance.).
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**** p < 0.0001).
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3. Discussion

In PANC-1 GR/shDicer cells, Dicer wild type (WT), Dicer 2A (S1728A, S1852A), and
Dicer 2E (S1728E, S1852E) were overexpressed. The central concept is to mutate the serine
(S) residues at positions 1728 and 1852 of Dicer to alanine (A) to simulate a phosphomutant
state and to mutate them to glutamine (E) to simulate a phosphomimetic state. It was found
that Dicer 2E cells promoted cancer cell proliferation and led to drug resistance in pancreatic
cancer-resistant cells. Previous clinical studies have also found that the phosphorylation
level of Dicers S1728 and S1852 positively correlates with the invasion degree of primary
endometrial cancer [9]. Additionally, mouse experiments have shown that phosphorylated
Dicer S1728 and S1852 cells can cooperate with KRASG12D to increase the likelihood of
tumor formation, such as lung adenocarcinoma and lymphoma, while also significantly
reducing mouse survival rates [10]. In this experiment, the cell line PANC-1 is a KRASG12D
PDAC cell line. Previous literature indicates that KRAS mutations and activation are
critical genetic drivers of PDAC occurrence and progression and are crucial for maintaining
PDAC tumor growth [16,17]. The RAF–MEK–ERK pathway is its downstream regulatory
factor [18]. Combined with previous research in our laboratory, it was found that the
ERK-induced SP1 transcription factor binds to the Dicer promoter region, increasing Dicer
expression, which helps the survival of PDAC cells resistant to gemcitabine [8]. These
results suggest that the upstream re-mechanism of phosphorylated Dicer may be synergistic
with KRASmut in PDAC, driving the development of drug resistance.

Regarding whether phosphorylation of Dicer at different sites has different effects,
compared to previous research in our laboratory, it was found that phosphorylation of
Dicer at S1016 in pancreatic cancer cells resistant to gemcitabine also regulates specific
miRNAs, affecting glutamine metabolism and leading to gemcitabine resistance. However,
its effect decreases GLUL expression, increasing the GLS/GLUL ratio [11]. This result
indicates that pancreatic cancer cells tend to convert glutamine to glutamate. However,
further experiments confirm whether the downstream mechanism involves the enzyme
GLUD1 or various mitochondrial transaminases GPT2 and GOT2 to convert glutamate to
α-KG and enter the TCA cycle to assist the Warburg effect [19]. What is certain so far is
that the phosphorylation of Dicer at different sites primarily affects glutamine metabolism,
influencing the drug sensitivity of cancer cells to gemcitabine. It may regulate different
enzymes in the metabolic pathway, driving glutamine to perform different functions within
the cell. More research is needed to confirm the differences in these pathways. Additionally,
whether other different sites also influence the development of drug resistance through
different pathways is worth exploring. In this era of precision medicine, not only can we
judge the degree of drug resistance through the level of phosphorylated Dicer in tumor
tissues of different patients, but we can also provide appropriate adjuvant therapy based
on the phosphorylation of Dicer at different sites.

MicroRNA (miRNA) is classified as non-coding mRNA, with about 22 long nucleotides.
Due to its impact on gene expression, abundance in body tissues and fluids, and potential
use as disease biomarkers, miRNA is a significant area of basic and translational biomed-
ical research. This study showed that phosphorylated Dicer 2E cells had significantly
higher expression levels of miR-140-5p and miR-29a-5p than Dicer 2A and Dicer WT cells
(Figure 8A,B). Both miRNAs are predicted to bind to the 3′-UTR of GLUL, further affecting
its expression. This result is consistent with the GLUL mRNA expression levels in Dicer 2E
cells (Figure 6B). Previous studies have also confirmed that miR-140-5p and miR-29a-5p can
bind to the 3′-UTR of GLUL, affecting the invasion and proliferation of glioma cells [20,21].
Additionally, concerning how phosphorylated Dicer regulates specific miRNAs, previous
literature indicates that under hypoxic conditions expected in the tumor microenvironment,
the epidermal growth factor receptor (EGFR) can phosphorylate argonaute (AGO) at Y393,
changing its structure. The phosphorylated side chain structure protrudes towards the
cavity between the N-structure domain (EGFR’s interaction surface) and the L2 linker
region (the linker domain between PAZ and MID), affecting the interaction between Dicer
and AGO and altering the maturation of specific miRNAs. Phosphorylated Dicer may
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also influence its structure, further affecting the maturation of particular miRNAs [22].
However, researchers have different speculations and concerns about miRNAs. Due to
their low specificity, many miRNAs can act as oncogenes (oncomiRs) or tumor suppressor
genes (oncosuppressor miRs), and dysregulated miRNA expression is closely related to
the occurrence, progression, and metastasis of cancer [23,24]. Therefore, regarding the
choice of miR-140-5p as a research target, previous literature indicates that its expression is
significantly lower in most cancers. For example, in esophageal cancer, low expression of
miR-140-5p can regulate ZEB2 expression to block Wnt/β-catenin signaling, further affect-
ing cancer cell proliferation, invasion, and metastasis [25]. In gastric cancer, low expression
of miR-140-5p can regulate the EMT regulator SOX4 to inhibit cancer cell proliferation
and metastasis [26]. On the other hand, miR-140-5p fundamentally influences cancer cell
sensitivity to chemotherapy or radiotherapy. For example, low expression of miR-29a-
5p in gastric cancer can regulate NDRG3, further increasing cancer cell resistance to the
chemotherapeutic drug 5-fluorouracil [27]. Additionally, other literature has observed
that overexpression of miR-29a-5p in PDAC cells can inhibit cancer cell proliferation and
invasion [28]. For example, enhanced expression of miR-29a can inhibit mucin 1 (MUC1),
reducing the expression levels of cell cycle-dependent kinases CDK2, CDK4, and CDK6,
leading to reduced proliferation of gastric cancer cells [29]. The results of this study, com-
bined with the above literature, support that miR-140 and miR-29a can act as inhibitors
regulating cancer cell proliferation.

Additionally, we used the GLUL inhibitor methionine sulfoximine (MSO), an organic
sulfur analog of glutamate and an irreversible competitive inhibitor of GLUL, to effectively
inhibit GLUL activity. The results showed that after administering MSO, PDAC cells’
sensitivity to gemcitabine increased, especially in Dicer 2E cells with significantly higher
GLUL expression levels (Figure 6B). Conversely, Dicer 2A and Dicer WT cells responded less
to MSO, consistent with their lower GLUL expression levels (Figure 6B). Previous literature
has discussed the potential of GLUL inhibitors as cancer treatment drugs. Due to the highly
fibrotic characteristic of pancreatic ductal adenocarcinoma [30], the supply of glutamine
in cancer cells is limited, potentially leading to glutamine deficiency [31]. Therefore,
increased GLUL expression in pancreatic cancer patients and PDAC mouse models supplies
glutamine to cancer cells to prevent glutamine deficiency [30]. Additionally, GLUL plays
an important role not only in cancer cells but also in cells in the tumor microenvironment
(TME), including cancer-associated fibroblasts (CAFs) and macrophages, where GLUL
expression is also higher. When glutamine is insufficient in cancer cells, GLUL provides
glutamine to support cancer cell proliferation. Therefore, GLUL is an essential option for
cancer treatment targeting the specificity of the pancreatic cancer tumor microenvironment.
Conversely, other literature indicates that silencing GLUL expression inhibits nucleotide
synthesis, suppresses tumor growth in LSL-KrasG12D/+; Pdx1-Cre (KPC) PDAC mice, and
increases survival rates [32]. These findings indicate that GLUL and nucleotide synthesis
are crucial for PDAC tumor development and growth. Additionally, this study found
that in the absence of glutamine, phosphorylated Dicer 2E cells’ sensitivity to gemcitabine
significantly increased, and cancer cell proliferation significantly decreased, indicating
that glutamine is indeed an essential material for drug resistance and cell proliferation
(Figure 9A,B). Previous literature also suggests that administering a glutamine analog
(6-diazo-5-oxo-L-norleucine, DON) to the pancreatic cancer-resistant cell line MiaPaca-2
GR significantly increases sensitivity to gemcitabine [14]. These findings further confirm
that PDAC cells’ resistance to gemcitabine is closely related to glutamine metabolism.

This study found that Dicer 2E cells, compared to Dicer 2A cells, significantly in-
creased the expression of glutamine transporter proteins (SLC1A5, SLC1A5_var, and
SLC38A1) (Figure 6C–E). This result is consistent with the substantially higher glutamine
concentration in Dicer 2E cells (Figure 7C). Previous experiments also found significantly
higher expression levels of alanine–serine–cysteine transporter 2 (ASCT2, also known as
SLC1A5), SLC1A5_var, and SLC38A1 in PDAC cells and tissues. Silencing these genes
affects glutamine metabolism and further influences cancer cell proliferation, even leading
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to apoptosis [19,33,34]. Additionally, other literature indicates that miR-122-5p can bind to
SLC1A5 in PDAC, regulating its expression to alter glutamine metabolism [35]. This also
suggests that the gene expression observed in phosphorylated Dicer S1728/S1852 might be
regulated by specific miRNAs, which requires further experiments to confirm.

CAD (carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and dihydrooro-
tase), CTPS1, and CTPS2 (cytidine triphosphate synthetase) are enzymes required for
pyrimidine synthesis, a process that involves glutamine. This experiment observed that
Dicer 2E cells had significantly higher intracellular glutamine concentrations compared
to Dicer 2A cells (Figure 7C), consistent with the higher glutamine consumption in Dicer
2E cells (Figure 7A). However, they convert glutamate to glutamine (Figure 6B). Further,
it was found that Dicer 2E tends to use accumulated intracellular glutamine for pyrimi-
dine synthesis, leading to gemcitabine resistance (Figure 10A,B). Previous studies have
also found that in gemcitabine-resistant pancreatic cancer cell lines, pyrimidine synthesis
increases, leading to gemcitabine resistance through the HIF-1α-induced aerobic glycolysis
pathway [36]. Therefore, whether the phosphorylation of Dicer at S1728 and S1852 involves
other mechanisms to increase pyrimidine synthesis and lead to drug resistance remains to
be clarified.

4. Materials and Methods
4.1. Cell Culture

The cell line used in this study was PANC-1. For different experiments, 10 cm dishes,
6-well plates, and 96-well plates were used, and the cells were cultured in an incubator
at 37 ◦C with 5% CO2. To establish a gemcitabine-resistant PANC-1 pancreatic cancer cell
line, PANC-1 cells were treated with 0.5 µM, 1 µM, and 2 µM concentrations of gemc-
itabine. The surviving cells were selected and passaged, resulting in a cell line capable of
surviving at a gemcitabine concentration of 2 µM. Once stabilized, these cells were termed
gemcitabine-resistant cells (PANC-1_GR). The MTT assay was used to verify the drug
resistance of the resistant cell line and to assess the differences in survival rates at various
gemcitabine concentrations.

Both the PANC-1 and PANC-1 GR cells were maintained in Dulbecco’s Modified
Eagle’s Medium (DMEM, 23-10-013-CM, Corning®, Corning, NY, USA) containing high
glucose (4500 mg/L), l-Glutamine (4 mM), and sodium pyruvate (1 mM) with 10% fetal
bovine serum and 1% penicillin–streptomycin. The cells were incubated at 37 ◦C with
humidified 5% CO2, and the medium was replaced every 3 days until 70% confluency
was reached.

4.2. Cell Viability Assay

The cells were seeded in a 96-well plate (approximately 3000 cells per well). After 24 h,
the test drugs, such as gemcitabine and MSO, were added. At 24, 48, and 72 h, 50 µL/well
of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) solution (1 µg/mL)
was added. After 4 h, the culture medium was removed, and 100 µL/well of DMSO was
added to dissolve the purple crystals. The plate was covered with aluminum foil and
shaken for 15 min. The absorbance at 570/630 nm was then measured using an EPOCH2
microplate spectrophotometer, and cell viability was expressed as a percentage of viable
cells relative to the control group (set at 100%) and analyzed using GraphPad software.

The cells were seeded into a 6-well plate (approximately 500 cells per well) and placed
in a 37 ◦C, 5% CO2 incubator. Different drug concentrations were added the next day
according to the experimental design. After one week, the culture medium was removed
and the cells attached to the bottom were fixed with 10% formalin and subjected to shaking
using a shaker for 30 min. Then, the cells were stained with 0.5% crystal violet and subjected
to shaking using a shaker for another 30 min. After washing thoroughly, images were
captured using a digital camera. Finally, the images were analyzed using Image J software
(Version 1.54k).
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4.3. RNA Isolation and Quantitative RT-PCR

Add 200 µL of sterile DEPC-treated H2O to the cells intended for RNA extraction,
mix thoroughly, then add 500 µL of NucleoZol (REF 740404.200, Macherey-Nagel, Düren,
Germany). Next, add an equal volume of isopropanol and centrifuge, and then remove
the supernatant. Wash the RNA pellet gently with 500 µL of 75% ethanol, and then
discard the supernatant, leaving the RNA pellet. Finally, the pellet should be dissolved by
adding an appropriate amount of sterile DEPC-treated H2O according to the volume of
the RNA pellet. The extracted RNA is then added to RNA reverse transcription reagents
(Invitrogen, Waltham, MA, USA) to convert it into cDNA. Quantitative RT-PCR (qRT-
PCR) measurements use the Lightcycler 480 system (Roche, Basel, Switzerland). Primer
sequences used in the lab are designed based on the ROCHE Universal Probe Library Assay
Design Center and NCBI database.

4.4. Western Blotting

Add the cell lysis buffer (980 µL RIPA buffer, 10 µL PIC (10X), 10 µL 20 mM Na3VO4)
to the cells and use an ultrasonic cell disruptor to sonicate the samples. Using the Bradford
protein-binding assay, use a centrifuge to collect the supernatant-containing proteins and
measure the protein concentration. Then, perform sodium dodecyl sulfate-polyacrylamide
gel electrophoresis and transfer the proteins to polyvinylidene difluoride membranes. Next,
soak the membrane in 5% blocking buffer (2.5 g skimmed milk powder and 50 mL TBST) for
one hour, and incubate overnight at 4 ◦C with the indicated primary antibodies: GAPDH
(1:7500; ABclonal, Cambridge, MA, USA) and Dicer (1:1000; ab14601, Abcam, London, UK).
Wash the membrane with TBST and incubate for 1 h at room temperature with appropriate
secondary antibodies conjugated to horseradish peroxidase. Subsequently, visualize the
bands on the membrane using enhanced chemiluminescence (ECL) and capture the images
using the UVP ChemiDoc-IT 515 Imaging System and Vision Work software (81-0225-01
Rev K).

4.5. Lentiviral Knockdown and Phosphomimetic Dicer Constructs

The pLKO.1-puro-based lentiviral vectors TRCN0000290426 (shDicer#1) and the con-
trol plasmids TRC025.shLKO (shCtrl#1) were purchased from the National RNAi Core
Facility at Academia Sinica, Taipei, Taiwan. HEK293T cells were cotransfected with the
lentivirus expression plasmid, packaging plasmid (pCMV-dR8.91), and envelope plasmid
(VSV-G expressing plasmid, pMD2.G) with polyethyleneimine (Merck, Rahway, NJ, USA)
for 48 h. We generated a recombinant lentivirus from the culture medium. The cells were
infected with lentiviruses combined with 8 µg/mL polybrene, and stable cells were selected
using 2 µg/mL puromycin.

To overexpress Dicer and phosphomimetic Dicer, the Dicer WT plasmid (pCAGGS-
Flag-hsDicer plasmid #41584) was purchased from Addgen, and then Dicer was subcloned
into the pcDNA6/myc-His vector. The pcDNA6-Dicer S1728A/1852A and S1728E/1852E
mutations were achieved using the Q5 site-directed mutagenesis kit (NEB E0554S). The
cells were transfected with a Dicer WT, S1728A/S1852A or S1728E/S1852E plasmid, or a
control vector (pcDNA6) for 48 h by using the NTR II (non-liposome transfection reagent),
JT97-N002, T-Pro Biotechnology, following the manufacturer’s instructions, and stable cell
lines were selected using 4 µg/mL blasticidin (ant-bl-05; InvivoGen, San Diego, CA, USA).

4.6. Glutamine Consumption and Glutamate Secretion Assay

Seed cells into a 96-well plate (approximately 3000 cells per well) and place in a 37 ◦C,
5% CO2 incubator. After 72 h, take 2 µL of the culture medium and add 98 µL of DPBS to
dilute it, resulting in the sample. Add 25 µL of the sample to 25 µL of glutaminase enzyme
solution or buffer (glutamine/glutamate-Glo assay kit, Promega Corporation, Madison,
WI, USA) and shake using a shaker at room temperature for 30 to 60 s. Then, incubate in
the dark at room temperature for 30 to 40 min and measure using a Microplate Reader,
Thermo Varioskan Flash, Waltham, MA, USA.
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4.7. Statistical Analysis

GraphPad Prism version 8 was used as the statistical software for creating charts.
All data are presented as mean ± standard error of the mean (mean ± SEM). Differences
between the two experimental groups were compared using Student’s t-test. One-way
analysis of variance (One-way ANOVA) was used to compare the mean differences among
three or more groups with a single variable, and Two-way analysis of variance (Two-way
ANOVA) was used to compare the mean differences among three or more groups with two
variables. The results are considered statistically significant when p < 0.05.

5. Conclusions

This study mainly discovered that the occurrence of drug resistance and the promo-
tion of cancer cell proliferation in pancreatic ductal adenocarcinoma are closely related
to the phosphorylation of the Dicer S1728/S1852 sites. It was found that phosphorylated
Dicer S1728E/S1852E can lead to abnormal glutamine metabolism by regulating the ex-
pression levels of miR-140-5p and miR-29a-5p, thereby increasing intracellular glutamine
concentration and promoting pyrimidine synthesis. This results in competitive inhibition
with the final metabolites of gemcitabine, leading to gemcitabine resistance. In the future,
phosphorylated Dicer S1728/S1852 could indicate drug resistance in pancreatic ductal
adenocarcinoma patients, allowing for appropriate adjuvant therapy based on the degree
of its phosphorylation.
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