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Abstract: Tuberculosis caused by the obligate intracellular pathogen, Mycobacterium tuberculosis, is one
among the prime causes of death worldwide. An urgent remedy against tuberculosis is of paramount
importance in the current scenario. However, the complex nature of this appalling disease contributes
to the limitations of existing medications. The quest for better treatment approaches is driving the
research in the field of host epigenomics forward in context with tuberculosis. The interplay between
various host epigenetic factors and the pathogen is under investigation. A comprehensive under-
standing of how Mycobacterium tuberculosis orchestrates such epigenetic factors and favors its survival
within the host is in increasing demand. The modifications beneficial to the pathogen are reversible
and possess the potential to be better targets for various therapeutic approaches. The mechanisms,
including histone modifications, DNA methylation, and miRNA modification, are being explored for
their impact on pathogenesis. In this article, we are deciphering the role of mycobacterial epigenetic
regulators on various strategies like cytokine expression, macrophage polarization, autophagy, and
apoptosis, along with a glimpse of the potential of host-directed therapies.

Keywords: epigenetics; tuberculosis; miRNA modification; macrophage polarization; autophagy;
apoptosis

1. Introduction

All chromosomal alterations that change gene expression without changing the nu-
cleotide sequencing of the coding DNA are considered epigenetic regulations [1]. The
transcriptional profile of genes linked to the immune system is regulated via epigenetic
mechanisms which facilitate the interaction between the pathogen and the host [2]. Epige-
netic reprogramming is the process by which infectious agents frequently alter epigenetic
processes to impact human responses related to immunity and inflammation. Promising tar-
gets for this epigenetic regulation are the host’s genes implicated in immunity, inflammation,
senescence, survival, etc. [3]. Recent research has documented epigenetic modifications
brought about by the interaction of the Mycobacterium tuberculosis (Mtb) pathogen with the
host’s cells, which includes modification of histone, miRNA-assisted regulation, and DNA
methylation [4]. Mtb is considered a significant immunomodulator influencing the host
responses and results in epigenome alterations, affecting the transcriptional machinery [5].
Throughout human immune system evolution, Mtb has acted as a host as well as a reservoir.
Understanding the genes necessary for its development and survival can therefore provide
related information about its virulence and host defense [6]. Current research indicates that
Mtb can modify the host epigenome to control transcriptional machinery via the activation or
inhibition of significant immune genes linked to pathogen survival or immune response [7].
Current research suggests that Mtb can modify the host epigenome to control transcriptional
machinery via activating or inhibiting significant immune genes linked to pathogen survival

Int. J. Mol. Sci. 2024, 25, 11801. https://doi.org/10.3390/ijms252111801 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms252111801
https://doi.org/10.3390/ijms252111801
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0003-2599-7428
https://doi.org/10.3390/ijms252111801
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms252111801?type=check_update&version=1


Int. J. Mol. Sci. 2024, 25, 11801 2 of 16

or immune response [7]. The traits associated with Mtb to negatively affect the host includes
various strategies like the alterations in phagocytosis, apoptosis, autophagy, presentation of
antigens, and polarization of macrophages [8]. With the ability to connect the disparities
between Mtb, the host, and the niche, epigenetics hold considerable promise for anticipating
the onset of tuberculosis outbreaks [9]. Since the existing antibiotics fail to challenge this
globally threatening organism, novel approaches like host-directed therapies are a crucial
need [10]. According to the WHO Global Tuberculosis Report 2023, in order to meet the
targets for tuberculosis prevalence reductions, its incidence rate had to decrease at a rate of
10% annually by 2025, with an average annual rate of 17% from 2025 until 2035 [11]. Here, in
this review, we have attempted to provide a summary of the recent research insights into the
role of various epigenetic alterations induced by Mycobacterium tuberculosis to accomplish
the onset of tuberculosis by combating the host immune response.

2. Unraveling the Mycobacterial Epigenetic Tools

Among the crucial mycobacterial traits that allow for efficient host conquest, some
are epifactors [12]. Mycobacterium tuberculosis (Mtb) aids to ensure self-survival within the
host by functioning as an epigenetic modulator. The bacteria use several techniques, such
as non-coding RNA-mediated silencing, histone and chromatin remodeling, and DNA
methylation, in this context [3], and are indicated in Figure 1.
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Figure 1. The various epigenetic alterations induced by Mycobacterium tuberculosis.

2.1. Histone Modification

Histone alterations and chromatin dynamics are important modulators of eukary-
otic transcription; thus, they are becoming obvious targets for infections by pathological
agents [13]. Chromatin formation begins with the octamer of four basic histones, H2A, H2B,
H3, and H4, being wrapped around 147 nucleotide combinations of DNA. The dynamic
characteristic of chromatin is also conversed by histone-modifying enzymes. In fact, phos-
phorylation, acetylation, methylation, and ubiquitylation are some of the covalent changes
that can occur, and these modifications primarily affect the N-terminal tails of the histones
but are also possible within the core [13]. The removal of these dynamic modifications
is catalyzed by factors known as epigenetic erasers. To assess the effective modifications
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existing at an exact location on a specific histone, a remarkable balance between these
enzymes is crucial [14]. ESAT-6 (Early Secreted Antigen-6), the secretory protein of Mtb,
has been shown to cause acetylation at the promoter of CIITA (class II trans activator gene)
and histone methylation at the H3K4 location, which controls the release of IFN-γ [15]. The
function of several Mtb-specific proteins in histone methylation has been investigated. A few
of these proteins with well-defined roles include Rv1198, Rv1988, SET8, and RV2966c [2,16].
The modification of host histone proteins by Rv2966c and Rv1988 is a crucial factor in the
abduction of the host immune system and its subsequent modifications. Rv1988 works
via changing the expression of genes that are crucial for the formation of ROS, such as
NOX1, NOX4, NOS2, and TRAF3, which produce type I IFN [2]. Sharma et al. determined
that the host cell’s cytoplasm as well as its nucleus are niche to the Mtb protein Rv2966c,
a DNA methyltransferase specific to 5-methylcytosine. This statement is supported by
the inhibition of host genes after Mtb infection, which is linked to the binding of Rv2966c
and non-CpG methylation [16]. H3K27, the host histone protein, acquires hypermethyla-
tion because of the suppression of the KDM6B gene by Mtb [4]. Enzymes called histone
acetyltransferases (HATs) attach acetyl groups to the lysine residues of host proteins, in-
cluding histones, as well as transcription factors [2]. Several host enzymes, including
matrix metalloproteinase (MMP), orchestrate the inflammatory reaction against the Mtb [4].
Bacterial intracellular survivability in the host is influenced by the acetylation of MMP-1
and MMP-3, which breaks down the lung’s extracellular matrix. While inside the nucleus
of infected macrophages, Rv3423.1 acetylates histone H3 at the K9/K14 sites. This protein
may play a critical role in both the pathogenicity and survival of M. tuberculosis, since the
researchers observed that it was only found in the suspension filtrate of virulent strains of
the bacteria, not in avirulent ones [2]. It is well known that HDACs are negative modulators
of gene expression; however, HAT-mediated histone tail acetylation increases the gaps
between nucleosomes, thereby activating chromatin [17]. Histone deacetylases such as
HDAC1 and HDAC3 along with Sirtuin (SIRT1 and SIRT2) are positively and negatively
modulated, respectively, to influence various pathways to encourage bacterial survival [18].
Substantial studies are presently being executed to assess the therapeutic efficacy of various
HDAC inhibitors in bacterial infections [19]. To ensure proper control over gene expression,
maintaining balance in histone modification is vital.

2.2. DNA Methylation

The most extensively researched epigenetic marker is DNA methylation. According to
Chen et al., diverse levels of DNA methylation across the PARP9/miR505/RASGRP4/GNG12
genes could influence the start of active tuberculosis [9,20]. A CpG site, often known as an
island, is a phosphate linkage formed by a higher proportion of CG dinucleotide sequence
and is considered the site of DNA methylation [3]. This mechanism is a persistent epigenetic
modification that prevents the attachment of transcription factors, thereby leading to sup-
pressed gene expression and a lack of adequate immune responses [21]. By increasing the
methylation of specific genes involved in immune activation, the bacteria can suppress the
immune response. On the other hand, hypomethylated genes also benefit Mtb, which shows
the multiple strategies that can be taken [22]. To suppress transcription, DNA methylation
enrolls methyl-CpG binding domain proteins, namely, MeCP2, MBD1, MBD2, MBD3, and
MBD4, thereby activating histone deacetylases to suppress transcription [23]. The methyla-
tion patterns of THP-1 monocytes and monocyte-derived macrophages throughout their
entire genomes have revealed that Mtb infection disrupts host gene expression through
mechanisms reliant on changes in DNA methylation [18]. In an investigation, BCG respon-
ders’ PBMC showed increased antimycobacterial activity of MDM and variable methylation
of many gene promoters, which includes IFN-γ, RASAL1, TLR6, and NFKBIE, for a period
of 4 months [24]. Alveolar macrophages of some people have either an epigenetically pre-
disposed immunological response to Mtb or their DNA methylation is aimed at before the
adaptive immune response is triggered. Exposure to M. tuberculosis elicits more significant
epigenetic modulations in pulmonary immune cells when weighed against peripheral
blood monocytes [25].
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As DNA methylation is a mechanism exhibited by various chronic infectious agents to
escape from host’s immune responses, extensive studies have been executed in this con-
text in tuberculosis. The DNA methylation profile of Mtb-infected patients has displayed
excessive methylation in TNF/NF-κB, IFN-γ, and IL-2/STAT5 signaling pathways [26].
The attachment of a methyl group from S-adenosyl methionine (SAM) onto the cytosine
(C) residue of the CpG sequence found in the genome is a tightly controlled process [2].
Mam A is a mycobacterial DNA methyl transferase that is required for Mtb replication. It
may incorporate N6-methyladenine into a recognition sequence present in the Mtb genome,
conferring survival advantage to the pathogen [27]. The tumor suppressor protein CD82
is an additional instance of DNA methylation having a significant impact on tuberculosis
development. A study claims that the RUNX1-Rab5/22 transcription factor causes CD82 to
undergo epigenetic reprogramming after infection with Mtb. CD82′s interaction with this
transcription factor requires hypomethylation. As a result, an increased level of both CD82
and transcription factor is preferable and has been examined in the development of granu-
lomas [28]. Major shifts in the methylation levels of genes associated with inflammation
are caused by Mtb-infected macrophages, with the promoter region of IL-17 exhibiting a
greater rise than other receptors in infected macrophages. Furthermore, the host genotype
and nature of the Mtb strain influence these methylation pattern alterations [29].

2.3. miRNA Expression

MicroRNAs, the commonly observed non-coding RNAs, have been identified as post-
transcriptional modulators. Many of these impact the microbe’s abilities to multiply, undergo
apoptosis, respond to both pro- and anti-inflammatory stimuli, and to reside in the host [3].
Their usual length is between 20 and 22 nucleotides [30]. Post-translational changes like
phosphorylation and sumoylation control miRNA synthesis [31]. The miRNAs bind to
specific sequences in the 3′ untranslated region of their target mRNA, which can either
break down the mRNA or prevent its translation [32]. Proper miRNA expression is essential
for preserving homeostasis. Moreover, changes in cellular miRNA levels driven by natural
or artificial means could have profound effects on life. Epigenetic changes in the human
genome are an extensive cause in this context. These alterations not only impact cellular
functions but also lead to potentially fatal disease conditions. Additionally, mycobacteria
alter miRNAs linked to signaling pathways to improve their survival within hosts [33].
Together with other intricate epigenetic processes, including chromatin remodeling and
genome organization within the nucleus, these miRNAs control key cellular pathways
like cell division, angiogenesis, and invasion [34]. The miRNA mediates several signaling
pathways and autophagy during Mtb infection. In this regard, overexpression of miR-1178
as well as miR-708-5p adversely affects TLR-4, which in turn inhibits the expression of
inflammatory cytokines including IFN-γ, IL-6, IL-1, and TNF-α [4]. A single mRNA can
be targeted by many microRNAs, and each miRNA has the potential to silence multi-
ple genes. Consequently, disease-specific miRNAs constitute a novel class of therapeutic
targets or diagnostic indicators [35]. The escalation of drug efflux, transition in targets,
suppression of apoptosis, and accelerated DNA damage repair are all factors influencing
drug resistance [36]. The miRNAs have an impact over these processes, including cell cycle,
proliferation, apoptosis, and immunological response [37,38], and any significant alteration
in miRNAs can thereby effect drug resistance [39]. Mtb modifies miRNAs at the molec-
ular level, which may hijack cell differentiation and tailor the macrophage responses to
ensure their survival [40]. Overexpression of miR-21-5p has been observed to suppress the
TLR2/TLR1-linked antimicrobial activity against Mtb. However, the activity can be restored
by downregulating the same [41]. Similarly, mycobacterial survivability has been enhanced
by the elevation of miR-26a and miR-132, triggered by live and attenuated Mtb, which
adversely influences the p300 mRNA within human monocyte-derived macrophages [42].

A study revealing an elevated level of over 59 miRNAs in the serum of tuberculosis
patients in contrast to healthy controls demonstrated the significance of miRNAs in patients
with Mtb infections [43]. One of the extensively studied miRNAs in tuberculosis is miR-155-
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5p, which has been shown to be altered by infection [35]. One literature survey indicates
that miR-155-5p can be host-beneficial, enhancing the survival of Mtb-specific T cells as well
as harmful for the host via autophagy suppression [22]. MiR-125b inhibits TNF production,
while miR-29 targets INF-γ to regulate immune responses against Mtb. Because of its associa-
tion with the clinical manifestation of the disease, miR-29 has been proposed as a diagnostic
for pulmonary tuberculosis [35,44]. Mtb was discovered to downregulate the levels of miRNA
let-7f, a gene that targets the mRNA of A20, an NF-κB inhibitor. Remarkably, in mice infected
with Mtb, there is a simultaneous overexpression of A20 and a downregulation of let-7f [45].
Numerous studies have documented the distinct expression patterns of miRNAs in various
cell types upon mycobacterial infection. Understanding the specific roles of these miRNAs
is of great interest, as it not only enhances our knowledge but also holds promise for the
generation of authentic biomarkers for the diagnosis of tuberculosis [35].

3. Mycobacterial Epigenetic Regulation of Innate Effectors
3.1. Cytokine Expression

By resisting the host’s immune system, Mycobacterium tuberculosis (Mtb) has the poten-
tial to become a chronic infection. Because of its mutual evolution with humans, Mtb has
developed several strategies for subverting the host’s immune systems [46]. Cytokines are
always released when bacteria and the host cells interact; the specific cytokines released
depend primarily on the type of bacteria as well as the host cells affected [47]. Macrophage
phenotype in response to infectious conditions is determined by epigenetic change in
macrophage genes, which influences cytokine secretion [48]. It is well recognized that im-
munosuppressive cytokines, such as IL-10, influence immune cells and encourage Mtb
infection [49]. Experiments in macrophages showed that when HDAC6 expression declined
and HDAC11 expression increased, the level of IL-10 was reduced, suggesting the former is a
transcription activator and the latter a suppressor of IL-10 [50]. During Mtb H37Rv infection,
IL-10 production due to acetylation and CCR5/ERK-regulated histone phosphorylation
inhibited MHC-II expression within macrophages [49]. TNF-α is undoubtedly the most
well-known human immune factor that combats mycobacteria. Thus, Mtb could overcome
the host’s battle against tuberculosis by expressing specific mycobacterial proteins and
reducing the synthesis of TNF-α [51]. Rajaram et al. demonstrated how Mtb altered cytokine
production by epigenetically changing the gene expression of the cytokine, consequently
aiding in the pathogenesis [52]. On infecting macrophages with TB-LM (Lipomannan) and
live Mtb, increased expression of miR-125b and decreased expression of miR-155 and TNF-α
release were observed [52]. Human monocytes incubated with Mtb produced less IL-1β
as well as IL-8 than those treated with an equivalent quantity of BCG vaccine. This shows
that Mtb can cause depleted synthesis of IL-1β and thus conveys that it can inhibit the
generation of inflammasomes [53]. Suberoylanilide hydroxamic acid (SAHA) is an HDAC
inhibitor that promoted the first transition to glycolysis, boosted the levels of IL-1β, and
reduced IL-10 release in Mtb-infected macrophages. SAHA treatment exhibited increased
pro-inflammatory activity. Immune-metabolic pathways in human macrophages can be
altered by this inhibitor, leading to an increase in pro-inflammatory reactions [54].

The miR-146a targets TNF receptor-associated factor-6 (TRAF-6) and interleukin-1
receptor-associated kinase-1 (IRAK-1) as two important factors associated in the TLR/NF-
κB signaling pathway cascades. It is probable that the elevated expression of miR-146a
during Mtb infection may impact these pathways, followed by a decline in the synthesis of
pro-inflammatory cytokines, which includes TNF-α, IL-1β, IL-6, and also the chemokine
MCP-1 [33]. Through the elevation of the levels of miR-223, Mtb can downregulate the
levels of CXCL2, CCL3, and IL-6 [55]. According to a recent investigation, miR-27a in-
hibits the immune response in Mtb infection by focusing on IRAK4. After miR-27a mimics
were transfected, there was a substantial drop in the levels of TNF-α, IL-6, IFN-γ, and
IL-β [56]. Similarly, in the case of the EIS protein (Enhanced Intracellular Survival), its
N-acetyltransferase domain is responsible for the alterations in ROS production along with
the synthesis of pro-inflammatory cytokines via the JNK pathway [57]. Studying cytokine
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expression and the impact of epigenetics over it can provide relevant insights into the
regulation of gene expression and the host’s immune responses (Table 1). This can be a
promising approach for understanding and implementing specific treatment regimes.

Table 1. An overview of epigenetic modifications induced by Mycobacterium tuberculosis and its role
in cytokine expression.

Epifactor Modification/Enzyme Mechanism Reference

Mtb miR-146a Targets TRAF6 and IRAK1, leading to
depletion in the levels of TNF-α, IL-1β, IL-6, MCP-1. [33]

Mtb H37Rv Histone Phosphorylation
Histone acetylation CCR5/ERK regulated modifications elevated the levels of IL-10. [49]

Mtb HDAC6
HDAC11

Interference in the levels of HDAC6 and
HDAC11 can impact the levels of IL-10. [50]

Mtb-Lipomannan miR-125b Reduced levels of TNF-α. [52]

Mtb miR-223 Reduction in the levels of CXCL3, CCL3, IL-6. [55]

Mtb miR-27a Aims at IRAK-4 and downregulates TNF-α, IL-6, IFN-γ, IL-1β. [56]

3.2. Macrophage Polarization

Another vital host immune evasion strategy exhibited by Mtb is macrophage polariza-
tion (Figure 2). Macrophage polarization is a fascinating concept in which macrophages
display a specific functional reaction to the surrounding milieu [58]. In order to promote
the spread of infection, mycobacteria associate with macrophages and alter their polariza-
tion status. Therefore, knowledge of the pathophysiology of mycobacterial infections and
the identification of treatment targets depends primarily on the features of macrophages
in these conditions [48]. After being subjected to cytokines or microbial stimuli, circulat-
ing monocytes from the bone marrow develop into macrophages (M0s) at infection sites.
Mycobacterium tuberculosis (Mtb) infects and develops in naive M0s during the course of
the disease [59]. Upon mycobacterial infection, macrophages become activated due to
changes in bioenergetic pathways, variable cytokine production, and epigenetic alterations
of genes. These approaches promote macrophages into M1 or M2 [60]. Present theories about
macrophage plasticity suggest that pro-inflammatory stimuli like LPS and IFN-γ direct the
M1 phenotype to increase the production of cytokines that induce inflammation. Conse-
quently, a pro-inflammatory phenotype is established that facilitates the antimicrobial M1
profile to be programmed quickly. The M2 phenotype is programmed by anti-inflammatory
cytokines like TGF-β, IL-10, and IL-13, which induce the cell to release an increased num-
ber of anti-inflammatory cytokines [61]. Figure 2 represents an outline of the macrophage
polarization. An overlap of genes regulated by Mycobacterium tuberculosis and IFN-γ,
equivalent to an M1 phenotype, is revealed via the preliminary transcriptome investigation
of mouse macrophage feedback [62].

In the case of tuberculosis patients, the M1 phenotype was more observed in non-
granulomatous conditions, whereas the M2 phenotype was observed in others [63]. HMGN2
(high-mobility group N2), a non-histone nuclear protein, was discovered to be produced
during the polarization of M1 macrophages stimulated by non-tuberculous mycobacteria.
Research findings indicate that HMGN2 deficiency in such infected macrophages stimulates
M1 markers and nitric oxide generation through a greater stimulation of MAPK and NF-κB
signaling [64]. Existing studies prove that ESAT-6, a secretory protein of Mtb, promotes differ-
entiation of M0 macrophages and switches the M1 phenotype to the anti-inflammatory M2
phenotype [65]. Gaining insights into the process of the paradoxical concept of macrophage
polarization will broaden our comprehension of its underlying mechanisms [61].
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3.3. Autophagy

Autophagy is a critical homeostatic mechanism that can be epigenetically altered by a
variety of intracellular microbes, including Mtb [49]. Aravind et al. investigated a complex
where HDAC1 (histone deacetylase 1) gets associated with ZBTB25 (Zinc finger and BTB
domain 25), a transcription repressor, along with Sin3a, a corepressor. Upon Mtb infection,
it has been observed that this complex binds to the promoter of IL-12b, thereby suppressing
the transcription in macrophages [66]. Moreover, IL-12 also stimulates the JAK/STAT
pathway [67]. Therefore, the aforesaid suppression negatively affects the activation of this
pathway, preventing the elimination of Mtb. Administering HDAC1 and ZBTB inhibitors
to macrophages has enhanced the JAK2/STAT4 phosphorylation, conferring its role in
autophagy [66].

According to several researchers, Mtb exploits the control of miRNAs or lncRNAs as a
key survival approach within host cells [68]. Upregulation of miR-30A inhibits autophagy,
which in turn results in a lack of clearance of intracellular Mtb. Therefore, miR-30A is a
promising therapeutic target for tuberculosis treatments [69]. Similarly, in macrophages
infected with Mtb, the autophagy was enhanced by the suppression of miR-23a-5p, whereas
the process was inhibited by its upregulation. Direct miRNA association to TLR2 is the
mechanism via which miR-23a-5p influences TLR2 expression. Reduced TLR2 expression
and corresponding TLR2/MyD88/NF-κB activity are brought about via the upregulation
of miR-23a-5p [70]. By specifically targeting DRAM2, it has been discovered that miR144*
serves a significant role in inhibiting the maturation of phagosomes as well as antimicrobial
activities in host macrophages challenged with Mtb [71]. The miR-155 has also been studied
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widely in this aspect. Through the activation of miR-155, Mtb decreases the amount of the
ATG3, which is essential during the commencing stages of autophagy [72]. In contrast to
patients without infection, those with latent tuberculosis infection showed higher expres-
sion levels of miR889. TWEAK, or tumor necrosis factor-like weak inducer of apoptosis,
was determined to be the target of miR889. To sustain mycobacterial existence within
granulomas, miR-889 suppressed TWEAK expression post-transcriptionally, inhibiting
autophagy [73]. In the presence of Mtb, miR-17 is downregulated, whereas its targets, Mcl-1
and STAT-3, are elevated concurrently. Contrary to this, if miR-17 is compelled to express, it
can also impact the interplay between Mcl-1 and Beclin-1. The miR-17 has been observed to
target the negative modulators of autophagy. Upon infected macrophages, overexpression
of miR-17 inhibits the PKCδ phosphorylation. While the exact pathway remains elusive,
the involvement of miR-17 in autophagy also exhibits the significance of epigenetics [74].
The miR26A has also been reported to have influence on autophagy modulation by aiming
at Mcl-1. Additionally, enhanced levels of miR-426-5p inhibit the fusion of autophagosome
and lysosome in tuberculosis conditions [75].

Another study was conducted on the Mtb protein, EIS (Enhanced Intracellular Survival),
and its role over autophagy. Studies revealed that this protein has a crucial role in modulating
host innate reactions in a ROS-dependent pathway. EIS is also critical for controlling inflam-
matory reactions in macrophages as well as the early production of reactive oxygen species.
The acetyltransferase moiety of the protein is what is responsible for these mechanisms [76].
The degree of histone H3 acetylation was markedly increased by this protein, EIS. The inter-
action was observed in the SP1 and STAT3 areas of the IL-10 promoter region. Consequently,
the protein might have regulated the promoter of histone H3 acetylation in order to increase
the transcription of the IL-10 gene. They found that the autophagy initiated by rapamycin
was suppressed by EIS, whereas the IL-10 expression stimulated the Akt/mTOR/p70S6K
pathway [57]. BRD4 (Bromodomain containing 4), a histone acetylation reader, has been
induced to be expressed by Mtb via the aid of Epidermal Growth Factor Receptor (EGFR)
signaling. Lipid-specific autophagy has been observed to be suppressed under this mecha-
nism. Increased autophagic flux was resulted when Egfr or Brd4 was knocked down [77].
Analyzing the impact of epigenetics on autophagy is an intriguing research area (Table 2).
By delving into specific mechanisms, better understanding can be gained over the interplay
between mycobacteria and the host’s autophagic machinery.

Table 2. An overview of epigenetic modifications induced by Mycobacterium tuberculosis and its role
in autophagy.

Epifactor Modification/Enzyme Mechanism Reference

Mtb Histone deacetylase 1
ZBTB25 gets incorporated with HDAC1 and Sin3a,

repressing the IL-12b transcription and thereby preventing the
activation of JAK/STAT pathway.

[66]

Mtb miR-23a-5p Downregulates the expression of TLR2
as well as the activity of TLR2/MyD88/NFκB. [70]

Mtb miR144 Targets DRAM2 (DNA- damage regulated autophagy modulator 2) [71]

Mtb miR-889 Downregulates the expression of
TWEAK leading to autophagy inhibition. [73]

Mtb miR-17 Targets the negative modulators of autophagy like Beclin-1, Mcl-1.
Elevated levels of this miRNA inhibit the PKCδ phosphorylation. [74]

Mtb miR-26A Targets at Mcl-1. [75]

Mtb miR-426-5p Inhibits the fusion of autophagosome and lysosome. [75]

Mtb EIS H3 acetylation Elevated levels of IL-10 followed by suppression of autophagy and
stimulation of Akt/mTOR/p70S6K pathway was observed. [57]

Mtb BRD4 Histone acetylation Expression through EGFR signaling
leads to suppression of lipid-specific autophagy. [77]
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3.4. Apoptosis

As an intrinsic defense mechanism, controlled apoptosis of cells is crucial for maintain-
ing organismal homeostasis [78]. In this regard, potent anti-apoptotic systems are essential
for intracellular infections to persist [79]. After the Mtb endures and multiplies within the
host cell, the infected macrophages ultimately undergo two prevalent cell death mechanisms
which include apoptosis as well as necrosis [80]. There exists a paradigm suggesting that the
apoptotic death favors the host, whereas the necrotic death is advantageous to the bacteria.
However, this paradigm lacks conclusive evidence, and more scientific outcomes must be
generated to support this notion [81]. Macrophage apoptotic inhibition is considered a
major survival mechanism exhibited by pathogenic Mtb to maintain a niche for replication,
providing deteriorating impacts over the host cells [80]. Many intracellular pathogens are
often destroyed via a process known as efferocytosis, the engulfment of apoptotic cells. The
underlying mechanism of bacterial effectors comprises the attachment of secreted proteins
and their inhibitory activities against the signaling pathways associated with apoptosis [78].
Macrophage apoptosis can suppress the infection induced by mycobacteria via triggering
innate as well as adaptive immune responses. When compared with highly virulent my-
cobacteria like Mtb H37Rv, moderately virulent strains like BCG and the innocuous strain
Mtb H37Ra are more effective at inducing macrophage apoptosis [82].

A histone methyl transferase called SET 8 or particularly histone H4 lysine 20 monomethy-
lase (H4K20me1) functions as an epigenetic modulator of NQO1 (NADPH dehydrogenase
quinone 1) and TRXR1 (thioredoxin reductase). This protein, in association with FoxO3a,
leads to an interplay among NQO1 and PGC1-α, which not only assists in macrophage polar-
ization to the M2 state but also promotes TRXR1-mediated apoptotic halt [49,83]. Mtb PE17
or Rv1646 functions through chromatin remodeling via H3K9me3. Through this, it can mod-
ulate macrophage apoptosis [84]. Mtb employs an enzyme complex, NADH dehydrogenase
1 (NDH-1), generally required for energy synthesis to combat the release of ROS by the host
cell via the control of the NADPH oxidase-2 (NOX-2) enzyme. Mtb mutant strains lacking
this complex were observed to show increased abundance of ROS within the macrophage,
thereby secreting TNF-α, leading to enhanced inflammation and apoptosis [85]. PPARγ, or
peroxisome proliferator-activated receptor γ, is a global transcriptional modulator known
with anti-inflammatory properties. Using PPARγ, Mtb suppresses apoptosis through the
modulation of Mcl-1 and Bax, where the former is considered a pro-survival factor and the
latter is pro-apoptotic. 15-lipoxygenase (15-LOX) is essential for the aforesaid activity [86].

The miRNAs are considered critical on this aspect as well. A negative modulator
of apoptosis in tuberculosis is miR-20a-5p. Reduced levels of this can lead to apoptotic
conditions, thereby initiating the mycobacterial clearance from the host, where JNK2 is the
target [87]. For apoptosis initiation, miR-20b-5p considers Mcl-2 as the target and Bcl2 for
miR-21-5p. The upregulation of miRNA-1281 also protects hosts’ macrophages, where it
targets Cyclophilin D [75]. Similarly, miR-579 possesses a significant impact over the damage
of host macrophages. The elevated levels of this microRNA can lead to the suppression
of Sirtuin 1–Phosphoinositide dependent protein kinase 1 (SIRT1-PDK1) expression and
thereby promote the activity of Mtb [88]. While the TLR2/MyD88/NF-κB signaling pathway
is necessary for the activation of miR-27b, its overexpression can lead to the inhibition of
NF-κB expression, thereby affecting the synthesis of pro-inflammatory cytokines. However,
via the p53-Reactive Oxygen Species pathway, miR-27b aids in the clearance of Mtb. Studies
have shown that miR-27b targets Bag2 (Bcl2 associated athanogene 2). This plays a dual
role in cellular signaling functioning as both a positive modulator of NF-κB and a negative
modulator of p53 signaling [89]. Another feature is the effect of miR-223, where it has been
reported that it downregulates the forkhead box O3 (FOXO3). The rate of apoptosis was
observed to be reduced where the levels of miR-223 were elevated. Studies have also proven
that upregulating FOXO3 can oppose the activity of miR-223 on apoptotic suppression [90].
In addition, Zhu et al. reported that the reduction in miR-18b levels during tuberculosis
promoted the expression of its target, HIF-1α, which in correspondence upregulated p38-
MAPK and NFκB p65 pathways. The latter raised the synthesis of pro-inflammatory factors,
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thereby challenging the bacterial survival [91]. This suggests that epigenetic mechanisms
play a significant role over apoptosis during tuberculosis. The modulation of host cells
via the various conditions discussed above highlights the potential of this area for further
research analysis.

4. Harnessing Epigenetic Modifications: A Pathway to Host Directed Therapies

Mycobacterium tuberculosis employs several mechanisms to combat host strategies,
among which epigenetic modifications play the most prominent role. Gaining a compre-
hensive awareness about these strategies is crucial for the early detection, treatment, and
prevention of tuberculosis. It will also provide new insights into the pathophysiology of tu-
berculosis and contribute to developing more potent vaccines and treatment approaches [46].
Provided the uncontrolled rise in the prevalence of antibiotic-resistant problems, including
the paucity of novel antibiotics, it is imperative to discover new strategies to combat the
existing issues. According to reports, the encounter between host and pathogen results in
chronic immunological changes that would confer survival advantage to the pathogen [92].
Through epigenetic intrinsic heterogeneity, the pathogen can alter the phenotypes of an-
timicrobial resistance without any mutation of genes [93]. Various mechanisms have been
reported, among which phase variation is a significant one. Individual gene expression can
be arbitrarily switched to develop a population with a variety of phenotypes that can adapt
to varying conditions [94]. Methylation of particular rRNA sites may culminate in antibiotic
resistance by preventing antibiotics from attaching to the desired targets [93]. Non-coding
RNAs have influence over antimicrobial resistance via plasmids with resistance genes. It is
critical to comprehend the rate at which horizontally transferred genes provide advantages
or detrimental effects to thoroughly understand the dissemination of such transgenes to the
natural microbial community as well as the influence of horizontal gene transfer over their
evolution [95].

Host-directed therapy is one such promising strategy to mitigate these issues [19].
HDAC inhibitors are extensively explored in connection to this concept. The use of resver-
atrol or SRT1720 for the activation of SIRT was observed to alter the inflammatory reac-
tions [96]. HDAC inhibition can lead to the suppression of cytokine release caused by the
Mtb infection, suggesting the impact of the incorporation of such inhibitors for the ther-
apy [10]. However, further investigations on this study are required to achieve better insights
into cytokine synthesis. It is important to have proper information on the cytokines and
chemokines responsible for both mycobacterial suppression as well as enhancement [97].
The FDA-approved HDAC inhibitor, suberoylanilide hydroxamic acid (SAHA), has been
observed to have an impact over the epigenetic reprogramming within the host macrophages,
thereby enhancing the release of IL-1β, which is a pro-inflammatory cytokine leading to the
clearance of Mtb. It also suppresses the synthesis of IL-10, which is an anti-inflammatory
cytokine [59]. Therefore, in the context of HDT, SAHA is considered an immune-augmenting
therapy [54]. NFκB signaling is also suggested as a potential target for promoting M1
macrophage polarization by in silico studies [98].

A recently established area of study is the use of miRNAs as novel categories of
pharmacological targets for the treatment of different diseases. One apparent strategy is
to directly use specific miRNAs that can combat the activity of Mtb [35]. Direct miRNA
administration can impact the process in different ways, resulting in upregulation as well
as downregulation. One instance of this is the administration of miR-223 nanoparticles,
which resulted in the transition of phenotypic changes [99]. Positive or negative regulation
can be exploited to modify miRNA expression for therapeutic objectives. Innovative ap-
proaches use miRNA mimics to obtain appropriate expression or anti-miRNA to prevent
inappropriately generated miRNAs [100]. Approaches that can encapsulate miRNAs and
transfer them to immune response cells, such as macrophages, are particularly intriguing in
the context of infectious disorders. This is because these cells naturally hold the capacity to
internalize foreign matters [101]. The miR-29a-3p has been observed to distinguish active
and latent tuberculosis, showing its potential in diagnosis [102]. Epigenetic concepts have
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also significance over vaccine development and mechanisms. Kleinnijenhuis et al. have
reported that Bacille Calmette-Guèrin (BCG) stimulates innate immune responses via an
interaction incorporating a NOD-2-mediated epigenetic alteration at the level of trimethyla-
tion of histone H3 at lysine 4 (H3K4me3). They also reported alteration in the methylation
profile of the specific cytokine promotors observed following the BCG vaccination over
circulating cells, as well as the suppression of in vitro training effects via methyltransferase
inhibitors. These findings demonstrate the possibility of epigenetic reprogramming in
human innate immune responses [103].

There exist many hurdles before the proper execution of epigenetic targeted therapy.
The development and administration of RNAi is hampered by technical issues such as
stability, off-target consequences, immune stimulation, and delivery concerns [104]. It is
apparent from reports that the expression of miRNA is variable and heterogenous dur-
ing the course of the disease due to several factors which include age, gender, and even
the platform that aids in profiling [40]. In addition, a serious concern is that epigenetic
therapies have the ability to result in unexpected results and may lead to accidental and
severe consequences, including adverse reactions, developmental anomalies, and also tu-
mor progression. To mitigate potential hazards and to ensure safe and efficient treatment,
extensive investigations are required [105]. Since these epigenetic inhibitors possess limited
safety tags, determining appropriate dose regimens is a necessary requirement [106]. Ap-
plication of multitargeting drugs can be considered as a potential approach to minimize
the adverse reactions, drug resistance, and to even optimize the treatment regimen [107].
However, researchers have worked on modifying the chemical makeup of such molecules,
thereby attempting to enhance bioavailability and safety [104]. A fundamental element of
the WHO’s milestone for 2035 as part of the “End TB Strategy” is the advanced detection
of TB via structured and standardized screening. In order to distinguish active and latent
tuberculosis, specific biomarkers can be designed and employed. Therefore, the application
of miRNAs as biomarkers is crucial [108].

5. Discussion

The role of epigenetics in various disease conditions, including tuberculosis, is being
explored lately. Numerous methods of survival have undoubtedly been produced by the
long-term coevolution of Mycobacterium tuberculosis with its human hosts, particularly inside
macrophages. Deciphering these strategies will facilitate the formulation of better treat-
ment approaches [109]. Tuberculosis is gaining more significance due to the impressive
exploration in the area of epigenetics and how such modulations can lead to the severity
of the disease. More extensive studies are necessary to back the insights with scientific
evidence. The ultimate strategy of the pathogen is, however, modulating the transcriptional
machinery of the host, which includes upregulation or downregulation of specific immune
genes, thereby affecting the immune response of the host. Constant research investiga-
tions are being proceeded for framing strong conclusions in this context, which thereby
brings innovative ideas to tackle this dire disease condition. Unraveling the mechanisms
involved in the interactions between the host and the pathogen, such as autophagy, apopto-
sis, and macrophage polarization, can expand the therapeutic potential of the concept of
host-directed therapy. Upregulation of the Mtb protein, enhanced intracellular survival (Eis),
has been reported to confer resistance against kanamycin. An Eis inhibitor, haloperidol,
has been observed to partially recover the kanamycin susceptibility, providing a significant
outcome. However, corresponding to the neurotoxic effects of the compound, further stud-
ies have to be considered [92,110]. In-depth investigations must be conducted on similar
compounds or inhibitors that can suppress the bacterial epigenomic mechanisms. Reports
suggest that complementary anti-miRNA can be used to suppress the elevated levels of
pro-mycobacterial miRNAs. Similarly, synthetic oligos can be employed for elevating
the downregulated anti-mycobacterial miRNAs [42]. An anti-miRNA previously reported
against hepatitis C infection, miravirsen, was observed to be effective, which shows the sig-
nificance of this strategy to be implemented against bacterial infections as well [111]. Drugs
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like DNA methyl transferase and histone deacetylase inhibitors can address abnormal gene
expressions relevant to various diseases. Preclinical research has shown promising potential
in this context [105]. Therefore, the practical application of epigenetics targeted therapy
against normal as well as drug- resistant tuberculosis involves the need of understanding
the epigenetic changes, proper targeting of epigenetic regulators, and implementation of
combination therapy. Host directed therapy can enhance immune modulation through
targeting specific pathways and personalizing therapies based on individual epigenetic
profiles to improve the outcome.

Considering the global prevalence, it is essential to implement efforts on identifying
novel therapeutic strategies, potent diagnostic methods, as well as preventive strategies.
More advances must be implemented to address the existing limitations in the field of host
epigenomics in tuberculosis. The prospects for epigenetics and host-directed therapy in
addition to the medications currently available appear promising, as many of the compli-
cated interactions between host and bacterial epigenomics are yet unexplored. Together,
these approaches can make differences in confronting this alarming disease.
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