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Abstract: Existing deep learning methods have shown outstanding performance in predicting drug–
target interactions. However, they still have limitations: (1) the over-reliance on locally extracted
features by some single encoders, with insufficient consideration of global features, and (2) the
inadequate modeling and learning of local crucial interaction sites in drug–target interaction pairs. In
this study, we propose a novel drug–target interaction prediction model called the Neural Fingerprint
and Self-Attention Mechanism (NFSA-DTI), which effectively integrates the local information of drug
molecules and target sequences with their respective global features. The neural fingerprint method
is used in this model to extract global features of drug molecules, while the self-attention mechanism
is utilized to enhance CNN’s capability in capturing the long-distance dependencies between the
subsequences in the target amino acid sequence. In the feature fusion module, we improve the
bilinear attention network by incorporating attention pooling, which enhances the model’s ability
to learn local crucial interaction sites in the drug–target pair. The experimental results on three
benchmark datasets demonstrated that NFSA-DTI outperformed all baseline models in predictive
performance. Furthermore, case studies illustrated that our model could provide valuable insights
for drug discovery. Moreover, our model offers molecular-level interpretations.

Keywords: drug–target interaction prediction; drug discovery; graph neural network; neural fingerprint;
self-attention; attention pooling; interpretability

1. Introduction

Despite significant advances in basic life sciences and biotechnology, the drug dis-
covery and development process is still limited by slow time and high costs [1]. The
average duration for creating a small-molecule medication is approximately 15 years, cost-
ing around USD 2 billion [2]. While clinical studies are widely acknowledged as a crucial
component of drug development, the greatest potential for time and cost savings lies in the
earlier discovery stage [3,4]. The prediction of drug–target interaction (DTI) plays a pivotal
role in guiding research and development efforts, making it an essential part of the drug
discovery process [5,6].

Recently, significant advancements in drug–target interaction prediction have been
achieved due to rapid progress in deep learning (DL)-based approaches [7–10]. Many of
these approaches seamlessly integrate the drug chemical space, protein sequence, and inter-
action information into a comprehensive end-to-end framework [11,12]. They approach DTI
prediction as a binary classification task and utilize various deep encoding and decoding
modules, such as graph neural networks [13–15], deep neural networks [16,17], or trans-
former architectures [18,19], to make predictions. With the advancements in deep learning
techniques, these models can automatically learn data-driven representations of drugs and
proteins from extensive DTI data instead of solely relying on predefined descriptors.

However, the current DL-based models, despite exhibiting decent performance, are
subject to two limitations. One limitation arises from the predominant focus on local feature
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extraction, neglecting the acquisition of global representation [13,14,16]. The prediction
of drug–target interaction necessitates comprehensive consideration of various aspects
pertaining to receptor and ligand information [20]. Therefore, focusing only on local
features tends to limit the modeling power and forecasting performance of the model.
The second limitation arises from the inability to explicitly model and learn the local key
interaction sites between the drug molecule and target protein. This limitation impedes the
ability to provide a more intuitive and molecular-level interpretability of the mechanisms
underlying drug–target interaction.

In recent years, the combination of molecular fingerprinting and deep learning models
has further improved the performance of models in dealing with complex molecular
structures [21]. For example, Zhu et al. [17] proposed a fingerprint-embedding framework
for drug–target binding affinity prediction (FingerDTA), which uses convolutional neural
networks (CNNs) to extract local patterns and utilizes fixed fingerprints to characterize
global information. Lee et al. [16] proposed a novel model called DeepConv-DTI, which
captures the local residue patterns by convolving amino acid subsequences of various
lengths, and it uses a fully connected neural network to encode the fixed ECFP4 [22] drug
fingerprint. On the one hand, these traditional fingerprints are usually generated based
on the local structure of the molecule (such as specific atoms or chemical substructures)
and rely on predefined rules, so they cannot effectively capture the overall topology of the
molecule [23]. In contrast, the neural fingerprint [24] based on a graph neural network can
gradually integrate local information into global information by recursively aggregating the
drug features of all nodes. On the other hand, the limitation of CNN as the protein encoder
is that the dependencies between distant amino acids in the protein sequence cannot be
captured well [25]. Fortunately, the self-attention mechanism can assign different weights
to each position in the sequence, allowing it to capture dependencies between positions
more effectively [26]. This offers the potential to enhance CNN’s capability in capturing
the global information within the sequence.

Building on the advantages of neural fingerprints, Duvenaud et al. [24] integrated
them into graph neural networks (GNNs) to propose the neural fingerprint graph neural
network (NFGNN). Originally designed for predicting molecular properties, NFGNN
has been shown through comparative experiments by Feldmann et al. [27] to enhance the
generalization ability of molecular property predictions, demonstrating robust performance
even for molecules that differ from the training set. Recently, the application of NFGNN
in DTI prediction has begun to make progress. For instance, Joshy et al. [28] employed
NFGNN in the search for drugs to treat orphan diseases, validating its effectiveness.
However, the application of NFGNN in DTI prediction is quite scarce. The full potential of
NFGNN in this area remains to be further explored.

In recent years, the self-attention mechanism has increasingly been incorporated into
prediction models in the DTI field due to its advantages [29]. For instance, compared to
DrugBAN developed by Bai et al. [14], CAT-DTI proposed by Zeng et al. [15] has intro-
duced further innovations in the protein encoder module. They integrate the transformer
architecture with CNN, enhancing the feature extraction capabilities of CNNs through
the self-attention mechanism. Although CAT-DTI demonstrates superior performance
compared to existing baseline models, the combination of these two architectures can
complicate the training process and hyperparameter tuning. Furthermore, CAT-DTI does
not adequately capture local site-specific interactions in drug–target pairs, which limits its
interpretability. Therefore, further research is needed to explore the scientific integration of
self-attention mechanisms into prediction models and to improve model interpretability.

Therefore, in order to address the aforementioned limitations and explore potential
areas for improvement, we propose a drug–target interaction prediction model (NFSA-
DTI) based on neural fingerprint and a self-attention mechanism. In conclusion, the key
contributions of our work can be summarized as follows:

• We propose an enhancing self-attention convolutional module (ESACM) that utilizes
the self-attention mechanism to enhance CNN’s ability in capturing the long-distance
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dependencies between the subsequences in the target amino acid sequence. ESACM
enables the protein encoder to comprehensively calculate the impact of subsequences
at different positions on the target sequence.

• We have successfully applied the neural fingerprint graph neural network (NFGNN)
to the drug–target interaction prediction task and verified its effectiveness. In contrast
to fixed fingerprints, which require extensive lookup tables to uniquely encode all
possible molecular structures, neural fingerprints can encode all molecular structures
using trainable parameters.

• We propose the integration of an attention pooling method into the bilinear attention
network and demonstrate its effectiveness. This pooling method can assign weights
to each element in the input matrix based on its importance, thereby augmenting the
model’s learning ability of the local pivotal binding sites within the drug–target pair.

2. Results and Discussion
2.1. Model Performance Comparison

We compared NFSA-DTI with seven baseline models in three benchmark datasets.
The results of the comparative experiments are presented in Table 1.

Table 1. Performance comparison with baseline models on the BindingDB, BioSNAP, and Human
dataset (Best).

Datasets Model AUROC AUPRC Accuracy Sensitivity Specificity

BindingDB SVM 0.939 0.928 0.825 0.781 0.866
RF 0.942 0.921 0.880 0.875 0.892
DeepConv-DTI 0.945 0.925 0.882 0.873 0.894
GraphDTA 0.951 0.934 0.888 0.882 0.897
MolTrans 0.952 0.936 0.887 0.877 0.902
DrugBAN 0.960 0.948 0.904 0.900 0.908
CAT-DTI 0.960 0.947 0.896 0.884 0.913
NFSA-DTI 0.965 0.957 0.907 0.908 0.906

BioSNAP SVM 0.862 0.864 0.777 0.711 0.841
RF 0.860 0.886 0.804 0.823 0.786
DeepConv-DTI 0.886 0.890 0.805 0.760 0.851
GraphDTA 0.887 0.890 0.800 0.745 0.854
MolTrans 0.895 0.897 0.825 0.818 0.831
DrugBAN 0.903 0.902 0.834 0.820 0.847
CAT-DTI 0.909 0.907 0.836 0.825 0.847
NFSA-DTI 0.909 0.909 0.839 0.819 0.858

Human SVM 0.913 0.905 0.838 0.782 0.830
RF 0.939 0.927 0.866 0.833 0.893
DeepConv-DTI 0.978 0.982 0.878 0.830 0.938
GraphDTA 0.965 0.955 0.908 0.912 0.904
MolTrans 0.981 0.976 0.941 0.949 0.939
DrugBAN 0.981 0.969 0.940 0.938 0.941
CAT-DTI 0.983 0.976 0.942 0.929 0.957
NFSA-DTI 0.988 0.984 0.945 0.944 0.955

In terms of AUROC, AUPRC, and accuracy, NFSA-DTI was better than the baseline
models according to the results in Table 1. In the BindingDB dataset, compared with
the currently best-performing CAT-DTI, AUROC, AUPRC, and accuracy of NFSA-DTI
were improved by 0.5, 1.0, and 1.1 percentage points, respectively. We believe that the
stronger global feature extraction capability, as well as the introduction of multiple at-
tention mechanisms, motivated NFSA-DTI to perform better than CAT-DTI. However,
the performance gap between NFSA-DTI and CAT-DTI in the BioSNAP dataset was not



Int. J. Mol. Sci. 2024, 25, 11818 4 of 17

particularly obvious. This phenomenon may be caused by the fact that on a balanced and
data-heavy BioSNAP dataset the model may be more prone to overfitting during training
because it must simultaneously process a large number of samples from various classes,
and the features between different classes may interfere with each other, thus affecting the
overall performance. To address this issue, we modified the number of neurons per layer
in both the NFGNN and CNN models, as well as adjusted their dropout rates, to reduce
the risk of potential overfitting. These modifications are intended to further narrow the
performance gap with the CAT-DTI model in terms of AUROC and AUPRC.

In terms of sensitivity and specificity, NFSA-DTI did not show complete advantages
over the baseline models. This may be because the model tended to predict a certain class of
samples, thus inevitably sacrificing a part of the sensitivity to the minority class or the speci-
ficity to the majority class. However, the model performed well on AUROC and AUPRC,
which indicated that the model could still effectively distinguish between positive and
negative samples in general. Overall, NFSA-DTI outperformed all baseline models under
most evaluation metrics, thus demonstrating the effectiveness of our proposed model.

2.2. Ablation Study

In order to verify the influence of each innovation module in NFSA-DTI on the model’s
performance, we designed several model variants to conduct ablation experiments. The
results are shown in Figure 1.

Figure 1. Ablation study on the Human and BioSNAP datasets.

The three ablation models are explained as follows:
(1) w/o ESACM: Protein encoder exclusively employs a three-layer CNN without the

addition of the self-attention enhancing unit (others same as NFSA-DTI).
(2) w/o NFGNN: Drug encoder employs a three-layer GCN instead of a three-layer

NFGNN (others same as NFSA-DTI).
(3) w/o Attention pooling: Sum pooling is used for the final pooling of the bilinear

attention network instead of attention pooling (others same as NFSA-DTI).
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According to the results in Figure 1, compared with w/o ESACM, NFSA-DTI achieved
a 1.18 percentage point increase in AUROC and a 1.68 percentage point increase in AUPRC
on the Human dataset, and a 1.73 percentage point increase in AUROC and a 1.92 percent-
age point increase in AUPRC on the BioSNAP dataset. This is because, compared with the
pure use of CNNs as the protein encoder, ESACM could use the self-attention mechanism to
effectively enhance the ability of CNNs to capture the long-distance dependencies between
the subsequences in the target amino acid sequence, thus further improving the perfor-
mance. Compared with w/o NFGNN and w/o Attention pooling, NFSA-DTI also had
relatively obvious advantages, which also indicated that compared with using GNN alone
as the drug encoder, NFGNN used the neural fingerprint encoding the entire molecular
structure as an additional global information supplement. In addition, compared with
the fixed fingerprint, the neural fingerprint could be obtained by parameter learning and
had more efficient retrieval advantages. Compared with sum pooling as the final pooling
operation of the bilinear attention network, attention pooling could enhance the model’s
ability to learn the local important binding sites in a drug–target pair.

2.3. Case Study

In order to verify our model’s ability to discover new drugs and new target proteins, we
constructed a new test dataset from the DrugBank online database, consisting of drug–target
pairs absent in the BindingDB dataset, and we used the model trained on the BindingDB
dataset to conduct the test. Taking Vascular Endothelial Growth Factor Receptor 2 and
Nortriptyline as examples, according to the interaction probability score p, the predicted
top 10 drug and target protein candidates are shown in Table 2 and Table 3, respectively.

Table 2. The predicted top 10 drug candidates for Vascular Endothelial Growth Factor Receptor 2
(P35968) in the newly constructed dataset.

Rank Drug Name DrugBank ID Evidence

1 Sorafenib DB00398 Iyer et al. [30]
2 Regorafenib DB08896 Southan et al. [31]
3 2-Aminobenzimidazole DB06938 Unknown
4 1-Naphthalenecarboxamide DB07274 Unknown
5 Ponatinib DB08901 Unknown
6 Sunitinib DB01268 Schoffski et al. [32]
7 Tyrosine Kinase-IN-1 DB05014 Unknown
8 Lenvatinib DB09078 Matsui et al. [33]
9 Fostamatinib DB12010 Unknown
10 RAF265 DB05984 Southan et al. [31]

Table 3. The predicted top 10 target protein candidates for Nortriptyline (DB00540) in the newly
constructed dataset.

Rank Protein Name Uniprot ID Evidence

1 Sodium-dependent noradrenaline trans-
porter

P23975 Kim et al. [34]

2 Alpha-2A adrenergic receptor P08913 Unknown
3 5-hydroxytryptamine receptor 2A P28223 Southan et al. [31]
4 5-hydroxytryptamine receptor 1A P08908 Southan et al. [31]
5 5-hydroxytryptamine receptor 1C P08909 Southan et al. [31]
6 5-hydroxytryptamine receptor 2C P28335 Southan et al. [31]
7 Alpha-1B adrenergic receptor P35368 Unknown
8 Sodium-dependent serotonin transporter P31645 Vaishnavi et al. [35]
9 Beta-1 adrenergic receptor P08588 Unknown
10 Muscarinic acetylcholine receptor M1 P11229 Unknown
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As can be seen in Tables 2 and 3, our model successfully predicted three drugs and
two proteins (marked in bold) that could be validated in the DrugBank online database
and two drugs and four proteins (marked with underline) that could be validated in the
TTD [36] online database. The pharmacological effects of other drug–target pairs in the
above two tables were currently unknown in the DrugBank and TTD databases and need
to be further verified. It is worth mentioning that the drug candidate or target protein
candidate with the highest prediction score in the table was consistent with the ranking
recorded in the DrugBank database.

Based on the unknown drug–target interaction pairs mentioned above, researchers can
discover new drug candidates that may have therapeutic potential, especially for those dis-
eases that have not been fully studied [37]. For example, in Table 2, 2-aminobenzimidazole
would potentially act on Vascular Endothelial Growth Factor Receptor 2 as a new drug.
Moreover, for already approved drugs, this will help to search for their possible new
mechanisms of action and new therapeutic applications, thereby helping researchers to
explore the potential of these drugs in the treatment of other diseases [38]. Similarly, in
Table 3, Nortriptyline may act as a repositioning drug on a new target Alpha-2A adrenergic
receptor. Although these unknown predictions require further experimental validation,
they provide new directions and possibilities for drug research.

2.4. Interpretability Analysis

Another advantage of NFSA-DTI is that it provides molecular-level interpretations
essential for drug design efforts. For example, in the Human test dataset, we randomly
selected a drug–target interaction pair and plotted the 2D visualization result of its drug
molecule as shown in Figure 2a, and we further verified our result by using the Protein
Data Bank (PDB) [39] online database, as shown in Figure 2b,c.

According to Figure 2a, our model accurately predicted the involvement of the car-
boxylate group of mycophenolic acid in receptor binding. This prediction was further
validated in Figure 2b, where both oxygen atoms of the carboxylate group were shown
to act as hydrogen bond acceptors. One oxygen atom interacts with the back-bone of
Ser275 and Ser276, while the other forms a specific interaction with the sidechain of Ser276.
Additionally, in Figure 2a, our model predicted that the hydroxyl and methyl groups on
the phenyl ring, as well as the carbonyl oxygen atom, are involved in receptor binding.
This prediction is confirmed in Figure 2b, where the hydroxyl and methyl groups act as
hydrogen bond donors, forming interactions with the sidechains of Thr333 and Asp274,
respectively. The carbonyl oxygen atom functions as a hydrogen bond acceptor, interacting
with the sidechains of Thr333 and Cys331. Unfortunately, the oxygen atom of the epoxy
group was mistakenly predicted to be involved in the receptor interaction. Nonetheless,
the overall interpretability of our model provides significant reference value.

In Figure 2b, the dark blue ligand exposure area is mostly concentrated near the
carboxylate group of mycophenolic acid. In addition, the light blue receptor exposure area
is mainly concentrated near Ser276. Combined with the orange area in Figure 2a indicating
possible interaction, it can be inferred that the carboxylate group’s oxygen negative ion and
the oxygen atom of the carboxylate group are the most important in this interaction. The
3D visualization of Figure 2c, as a supplement to the 2D visualization of Figure 2b, will help
researchers analyze the 3D structure of mycophenolic acid and inosine monophosphate
dehydrogenase acceptor and identify key pharmacophore and binding site.
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Figure 2. (a) The 2D visualization result of mycophenolic acids obtained from NFSA-DTI. The orange
highlights indicate possible local binding sites, with darker color and larger area indicating greater
likelihood. (b,c) The 2D and 3D diagrams of the interaction between mycophenolic acid and inosine
monophosphate dehydrogenase from the PDB online database, drawn by the software Molecular
Operating Environment (MOE 2019.0102) [40].

3. Materials and Methods
3.1. Datasets

We evaluated NFSA-DTI using three publicly available DTI datasets: BindingDB,
BioSNAP, and Human. Information about them is shown below.

• The BindingDB Dataset [41] is a large drug–target dataset, containing thousands of
small molecule drugs and protein targets. The targets also cover different species, but
mainly focus on human targets. It is worth mentioning that BindingDB is unbalanced
in terms of dataset distribution.

• The BioSNAP dataset, developed by Huang et al. [18] and Zitnik et al. [42] from the
DrugBank database [43], is a balanced dataset. It includes verified positive samples as
well as an equal number of randomly paired negative samples that have never been
encountered before. This dataset considers interactions between small chemical drugs
and target proteins, all of which have been experimentally validated via biological
experiments or formal pharmacological studies.

• The Human dataset, constructed by Liu et al. [44], is a balanced dataset, incorporating
high-confidence negative samples obtained through silicon screening methods.

Table 4 gives the detailed statistics of these three datasets. In the table, Interactions∗

are defined as the total number of interacting sample pairs and non-interacting sample
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pairs in the dataset. P2N represents the ratio of the number of interacting sample pairs to
non-interacting sample pairs in the dataset.

Table 4. Experimental datasets statistics.

Datasets Drugs Proteins Interactions* P2N

BindingDB 14,643 2623 49,199 0.725
BioSNAP 4510 2181 27,464 1.014
Human 2726 2001 6728 1

The positive samples in the three datasets are based on the literature and experimental
verification. However, due to the relative scarcity of experimentally verified negative
sample data, researchers usually need to adopt different strategies to construct negative
sample sets [9,16]. For the Human dataset, based on the existing biological data and
chemical characteristics, the researchers used silicon screening computing technology to
efficiently screen out the combinations with low correlation as negative samples, so as
to improve the confidence of negative samples. Regarding the BioSNAP dataset, using
the biological network construction method, the researchers identified pairs of nodes
that were not directly connected in the network and randomly selected negative samples
from them to ensure the confidence of the negative samples. For the BindingDB dataset,
researchers generated negative samples by excluding known drug–target binding pairs and
rigorously screened negative samples to ensure that these combinations did not overlap
with positive samples.

3.2. Baselines

In order to comprehensively evaluate the prediction performance of our model, we
chose seven representative baseline models, including two machine learning models
(SVM [45] and RF [46]), and five deep learning models (DeepConv-DTI [16], GraphDTA [13],
MolTrans [18], DrugBAN [14], and CAT-DTI [15]). Information about them is shown below.

• SVM: By learning the optimal hyperplane, the interaction between drugs and targets
can be effectively distinguished in the high-dimensional feature space, which has a
relatively strong classification ability and good generalization performance.

• RF: By integrating multiple decision trees, the interaction between drugs and targets is
predicted in a voting manner, which has strong anti-noise and robustness. It performs
well when dealing with high-dimensional data, but may be vulnerable to uneven
feature importance.

• DeepConv-DTI: By using a convolutional neural network, amino acid subsequences of
various lengths are convolved to capture local residue patterns, and a fully connected
neural network is used to encode the fixed ECFP4 drug fingerprint. It outperforms
previous models based on protein descriptors.

• GraphDTA: By representing drugs as graphs and using the graph neural network to
predict the affinity of the drug to the target, it can effectively process the topological
structure data of drug molecules and improve the prediction accuracy.

• MolTrans: By introducing the self-attention mechanism of the transformer, the drug
molecules and protein sequences are embedded into a unified vector space, in order to
effectively capture the interaction characteristics between them. It has high flexibility
and performance in dealing with complex molecular relationships.

• DrugBAN: By introducing a bilinear attention network, the interaction strength be-
tween the drug and the substructure of the target will be embedded into the bilinear
attention matrix for downstream prediction tasks. It can better capture the local feature
correlation and improve the performance of the model.

• CAT-DTI: By combining the graph convolutional neural network, a transformer archi-
tecture, and the cross-attention mechanism, it can effectively capture the information
of drug and target sequences and improve the prediction performance. It has an
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advantage when dealing with long target sequences and is better able to model com-
plex interactions.

3.3. Metrics

In our experiment, the AUROC (area under the receiver operating characteristic curve)
and AUPRC (area under the precision-recall curve) serve as primary metrics for assessing
model classification performance. AUROC measures the model’s ability to discriminate be-
tween positive and negative samples across different classification thresholds. It considers
both the true positive rate (sensitivity) and the false positive rate (1—specificity). A higher
AUROC value indicates better discriminative power and overall performance. AUPRC,
on the other hand, focuses on the trade-off between precision and recall. It measures the
model’s ability to correctly identify positive samples while minimizing false positives.
In addition, we adopted accuracy, sensitivity, and specificity under the optimal F1 score
threshold as additional evaluation metrics.

3.4. Implement Details

To optimize the implementation of NFSA-DTI, we randomly split each dataset into
train/validate/test sets at a ratio of 0.7/0.1/0.2. The test set is employed to evaluate
the model’s final performance and is entirely independent of the training and validation
processes, thereby ensuring the objectivity and accuracy of the evaluation results. Com-
pared to the 7:2:1 division, the 7:1:2 division enhances the reliability of the model’s final
evaluation. We used the Human dataset to train the NFSA-DTI model and determined the
initial combination of hyperparameters. Subsequently, we fine-tuned the parameters and
trained NFSA-DTI. When NFSA-DTI exhibited superior performance on the validation set
of each dataset, we determined the optimal values of the hyperparameters. The partial
learning curves for the BindingDB validation set are depicted in Figure 3, illustrating the
influence of varying certain hyperparameter values. The figure demonstrates that the
optimal performance of the model is achieved when the learning rate of the optimizer
reaches 5 × 10−5 and the number of attention heads in the bilinear attention network is
set to 2. The main hyperparameters configuration is shown in Table 5. In this study, we
conducted our experiments using Python 3.8 as the programming language. The deep
learning framework used is PyTorch version 1.12, and we trained the model using an RTX
4090 24 G, accelerating the computation using NVIDIA CUDA version 11.6.

Table 5. Hyperparameters configuration.

Module Hyperparameters Value

ESACM Initial amino acid embedding dimension 128
Kernel size [3, 6, 9]
Number of filters [128, 128, 128]
Heads of self-attention 2

NFGNN Initial atom embedding dimension 128
Hidden node dimensions [128, 128, 128]

Bilinear attention network Heads of bilinear attention 2
Bilinear embedding dimension 768
Attention pooling window size 3
Attention pooling stride 3

Fully connected decoder Number of hidden neurons 512

Optimizer Learning rate 5 × 10−5

Epoch 100

Mini-batch Batch size 64
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Figure 3. Learning curves of NFSA-DTI when changing some hyperparameters on the validation set
of the BindingDB dataset.

3.5. Methods

Figure 4A shows the framework of our proposed NFSA-DTI model.

Figure 4. (A) The framework of NFSA-DTI. It includes four stages. (I) The target protein’s amino
acid sequence is transformed into a feature matrix, while the drug molecule’s SMILES is processed
into graph structure data. (II) The 3-layer CNN processes the two-dimensional feature matrix and
obtains the protein representation after the self-attention enhancing unit. Correspondingly, the 3-layer
NFGNN processes the graph structure data and obtains the drug representation. (III) Interactions
between protein and drug representations are computed via a bilinear attention mechanism, thereby
producing a bilinear attention map. (IV) The joint representation obtained after pooling will be input
to the fully connected layer for computing the prediction score p. (B) The framework of ESACM.
It comprises three 1D convolutional layers, the corresponding 1D batch normalization layers, a
self-attention enhancing unit, and a linear layer. The self-attention enhancing unit consists of two
stages. (Stage I) Query, key, and value are computed based on the input matrix, in conjunction with
their respective weight matrices. (Stage II) The similarity between query and key is evaluated to
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derive the attention weights. Subsequently, the output is generated through a weighted summation
of the values, utilizing the computed attention weights. (C) The flowchart of NFGNN. Firstly, the
target node and neighbor nodes surrounding the target node in the molecular graph are integrated
and encoded into numerical features. Similar operations are then performed on subsequent nodes to
obtain the final neural fingerprint. Subsequently, after the message passing mechanism has completed
one iteration of the graph, the neural fingerprint serves as a fixed auxiliary input for updating the
graph after each NFlayer.

3.5.1. Problem Formulation and Prerequisites

The objective of DTI prediction is to develop a model M, which effectively maps the
combined feature representation space P × G of a protein sequence P and a drug molecular
graph G, yielding an interaction probability score p ∈ [0, 1].

The target protein is represented by one amino acid sequence denoted as P = (a1, . . . , an),
where each token corresponds to one of the 23 amino acids. The maximum length of P is
set to 1200, which is long enough to cover common amino acid sequences while remaining
computationally and storage efficient. Amino acid sequences that exceed this threshold are
truncated. For amino acid sequences that are not of length 1200, zeros will be padded at
the end of the sequence. The amino acid sequences [47] are a standardized representation
of proteins that can be expressed and processed in a computable way.

Major current deep learning methods for predicting drug–target interaction typically
use the simplified molecular input line entry system (SMILES) [48] as an input representa-
tion. The limitation of SMILES lies in its one-dimensional nature, which hinders its ability
to capture the intricate spatial arrangement of molecules, potentially resulting in the loss
of crucial chemical information. However, in our model, the input SMILES are converted
into the corresponding two-dimensional graph structure data G. It creates actual nodes
and edges based on the drug molecule’s atoms and chemical bonds, with virtual nodes and
self-loop edges filling in the rest. Node count is capped at 290.

3.5.2. Protein Feature Encoder

The conventional CNN architecture exhibits certain limitations in handling long-
distance dependencies of sequences due to the restricted receptive field of convolution
operations [49]. In contrast, the self-attention mechanism enables each position to interact
with all other positions within the tensor, granting access to comprehensive information
about the entire tensor [50]. Therefore, we propose ESACM to augment model perfor-
mance. ESACM integrates a self-attention mechanism that enhances the CNNs’ ability to
capture the long-distance dependencies between the subsequences in the target amino acid
sequence. The framework diagram of ESACM is shown in Figure 4B.

Building upon the concept of word embedding for amino acid sequences by Bai
et al. [14], the amino acids are initialized into a learnable embedding matrix Ep ∈ R23×Dp ,
where 23 is the number of amino acid types and Dp is the latent space dimension. By
looking up Ep, each protein sequence P can be initialized to the corresponding feature
matrix Xp ∈ RΘp×Dp , where the parameter Θp represents the maximum permissible length
of a protein sequence, which is generally 1200 in our experiment, and each row of the
matrix denotes a residue representation in the target amino acid sequence. In the initial
convolution layer, the feature matrix Xp will be input into the first CNN for one-dimensional
convolution to extract amino acid sequence features, and this process utilizes a convolution
kernel sized 3 × 1 and a stride of 1, such as “GSHMAS...PQQG” −→ “GSH”, “SHM”,
“HMA”, “MAS”, ..., “PQQ”, and “QQG”. The next two layers keep the same stride as the
first, but further enlarge the kernel size to acquire more features of local subsequences. The
convolutional operations can be expressed by the following formula:

H(l+1)
p = σ(CNN(W(l)

c , b(l)
c , H(l)

p )), (1)
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where H(l+1)
p is the l-th hidden protein representation and H(0)

p = Xp. σ(·) denotes ReLU(·).
W(l)

c and b(l)
c are learnable weight matrices (filters) and bias vector in the l-th CNN layer.

The output of the third convolutional layer will subsequently undergo computation in
the self-attention enhancing unit. Specifically, the self-attention enhancing unit consists of
two stages, corresponding to the following formulas.

Stage I:
q(l)

i,j = W(l)
q fi,j, k(l)

i,j = W(l)
k fi,j, v(l)

i,j = W(l)
v fi,j. (2)

Stage II:

pi,j =
N

∏
l=1

 ∑
a,b∈Nm(i)

A(q(l)
i,j , k(l)

a,b)v
(l)
a,b

. (3)

The specific formula is presented as follows:

pi,j =
N

∏
l=1

 ∑
a,b∈Nm(i)

A(W(l)
q fi,j, W(l)

k fa,b)W
(l)
v fa,b

, (4)

where pi,j is the value in row i and column j of the protein representation. ∏ is the
concatenation of the outputs of N attention heads. Nm(i) represents one column region
whose length is the maximum column length m of the feature matrix, and its abscissa is
i. A(W(l)

q fi,j, W(l)
k fa,b) is the corresponding attention weight with regard to the features

within Nm(i). W(l)
q , W(l)

k , and W(l)
v are the projection matrices for queries, keys, and values,

respectively. fi,j ∈ H(3)
p and H(3)

p denote the output matrix of the third CNN. The attention
weight is calculated as follows:

A(W(l)
q fi,j, W(l)

k fa,b) = softmax

 (W(l)
q fi,j)

⊤(W(l)
k fa,b)√

d

, (5)

where d is the feature dimension of W(l)
q fi,j.

3.5.3. Drug Feature Encoder

Graph neural network (GCN) [51] primarily updates node representations through
local neighborhood information propagation, its ability to model the global structure is
relatively limited. NFGNN, a type of neural network proposed by Duvenaud et al. [24],
was originally designed for predicting molecular properties and has been proven effective
in learning the representation of molecular graphs. Compared with GCN, NFGNN uses the
neural fingerprint as an additional global information supplement. Moreover, in contrast
to fixed fingerprints that necessitate a substantial number of lookup tables for encoding
all possible molecular structures uniquely, neural fingerprints of NFGNN can encode
the entirety of molecular structures using trainable parameters. Given the advantages of
NFGNN, we therefore introduce NFGNN as the drug encoder of NFSA-DTI.

The flowchart of NFGNN is illustrated in Figure 4C. Specifically, the construction
process of the neural fingerprint is represented by the following formulas:

ra = g(a), (6)

vi = ri +
N

∑
j=1

rj, j ∈ N (i), (7)

f =
M

∑
i=1

(softmax(σ(viHh)Wo)), (8)
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where a represents the node. g(·) is the encoding function of node features. vi represents
the sum of features about the i-th node and its neighbors. N (i) is the set of neighbor nodes
of the i-th node. Hh is the hidden weight, and Wo is the output weight. N denotes the
number of neighbor nodes of the i-th node, and M denotes the total number of nodes in the
graph. σ represents ReLU(·). The subsequent message passing process can be expressed
by the following formulas:

m(l)
ij = ρ(l)(h(l)

i , h(l)
j , h(l)

eij ), j ∈ N (i), (9)

m(l)
i = ζ(l)(m(l)

ij |j ∈ N (i)), (10)

h(l+1)
i = ϕ(l)(h(l)

i , m(l)
i , f), (11)

where ρ(·), ζ(·), and ϕ(·) are functions of message construction, message aggregation, and
vertex update of the l-th layer NFGNN, respectively. h(l)

i is the node feature of the i-th node

at the l-th layer, h(l)
j is its neighbor node feature, h(l)

eij is the corresponding edge feature,
and m is the message.

3.5.4. Bilinear Attention Network

We employ the bilinear attention network proposed by Bai et al. [14] and improve its
subsequent pooling operation. Specifically, we replace the summation pooling with an
attention pooling. The sum pooling method is relatively straightforward to implement
and incurs a low computational cost. However, it lacks the ability to retain the intensity
information of features, potentially compromising learning performance. To address this
limitation and enhance the model’s capacity in capturing important information between
drug substructures and target substructures, we employ an attention pooling approach
inspired by Er et al.’s [52] investigation on the importance of sentence components. The
attention pooling assigns weights based on the significance of each element in the input
matrix, generating an enhanced pooled representation. The enhanced pooled representation
promotes the model’s learning of the drug–target interaction modeling process, thereby
improving the overall interpretability of the model. The overall flowchart of the improved
bilinear attention network is shown in Figure 5.

Figure 5. The flowchart of the bilinear attention network. This module consists of two steps.
(Step 1) A bilinear interaction matrix is derived through the computation of protein and drug
representations. (Step 2) Subsequently, a joint representation is obtained by employing bilinear
pooling and attention pooling.

Given the protein representation and drug representation H(3)
p = {h1

p, h2
p, . . . , hM

p },

among them, h1
p = {p1,1, p1,2, . . . , p1,e}, . . ., hM

p = {pM,1, pM,2, . . . , pM,e}, and H(3)
d =

{h(3)
1 , h(3)

2 , . . . , h(3)
N } via the protein and drug encoders, where M represents the maximum

number of target protein substructures encoded by ESACM, N represents the maximum
number of nodes in the drug molecular graph, and e represents the embedding dimension
of the CNN. The bilinear interaction matrix I ∈ RN×M can be obtained as follows:
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I = ((1 · q⊤) ◦ σ((H(3)
d )⊤U)) · σ(V⊤H(3)

p ), (12)

where U and V are learnable weight matrices for drug and protein representations, q is a
learnable weight vector, 1 is a fixed all-ones vector, and the symbols ◦ and σ represent the
Hadamard (element-wise) product and ReLU(·). The elements in I represent the intensity
of interaction between drug–target substructures, indicating their potential binding sites.
In order to intuitively understand bilinear interaction, element Ii,j can be written as follows:

Ii,j = q⊤(σ(U⊤hi
d) ◦ σ(V⊤hj

p)), (13)

where hi
d is the i-th row of H(3)

d and hj
p is the j-th row of H(3)

p , respectively, denoting the
i-th and j-th substructural representations of the drug and protein.

In order to obtain the joint representation f
′
, the interaction matrix I is processed by a

bilinear pooling layer. Specifically, f
′

is computed as follows:

f
′
= σ((H(3)

d )⊤U)⊤ · I · σ((H(3)
p )⊤V), (14)

where the weight matrices U and V are shared with the preceding interaction matrix layer
to reduce the number of parameters and mitigate overfitting.

Subsequently, the final joint representation f will be obtained after the attention
pooling, which is represented by the following formulas:

Wi,j = Softmax(b⊤
a tanh(UaIi,j)), (15)

f =
N

∑
i=1

M

∑
j=1

(Wi,j · b
′
a)f

′
, (16)

where ba and b
′
a represent the bias vectors, Ua denotes the weight matrix, and Wi,j is the

attention weight vector.

3.5.5. Fully Connected Classification

The interaction probability is computed by feeding the joint representation f into
the decoder, which comprises a single fully connected classification layer followed by a
sigmoid function, as follows:

p = Sigmoid(Wof + bo), (17)

where Wo is the learnable weight matrix and bo is the bias vector.

3.5.6. Backpropagation

The backpropagation process aims to minimize the cross-entropy loss [53] in order to
optimize the model’s performance. The formula is presented as follows:

L = −∑
i
(yi log(pi) + (1 − yi) log(1 − pi)) +

λ

2
∥Θ∥2

2, (18)

where yi denotes the ground truth label for the i-th drug–target pair, pi represents its output
probability according to the model, Θ represents all the weight matrices and bias vectors
that can be learned, and λ is a hyperparameter used for L2 [54] regularization.

4. Conclusions

In this article, we propose a novel DTI prediction model called NFSA-DTI. In the pro-
tein encoder, ESACM captures the long-distance dependencies between the subsequences
in the target amino acid sequence while extracting the local features of the sequence. In the
drug encoder, NFGNN extracts features of the drug molecular graph via a message-passing
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mechanism, supplemented by the neural fingerprint as global information. In the feature
fusion module, the bilinear attention network generates an enhanced pooled representation
via attention pooling, improving the model’s ability to learn key local binding sites in the
drug–target pair. The experimental results on three benchmark datasets demonstrated that
NFSA-DTI outperformed all baseline models in terms of prediction performance. Further
case experiments showed that the model has provided valuable insights for drug discovery
efforts. Furthermore, the model provides more intuitive interpretability at the molecular
level. In the future, we plan to extend our study by using other benchmark datasets.
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