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Abstract: Gyrophoric acid (GA) is a secondary metabolite of various lichens. It exhibits various
biological activities in vitro, but only one study has been carried out in vivo. Because our previous
study showed that GA stimulates neurogenesis in healthy rats, the current study aimed to explore the
potential of GA during stress-induced depressive-like states in male Wistar rats. In the experiment,
pregnant females were used. In the last week of pregnancy, females were subjected to restraint
stress. After birth, progeny aged 60 days were stressed repeatedly. The males were divided into
three groups: control animals (CTR; n = 10), males with a depression-like state (DEP; n = 10), and
GA-treated animals (GA; n = 10). GA males were treated with GA (per os 10 mg/kg) daily for one
month, starting from the 60th postnatal day. Our results indicate that GA acts as an antioxidant, as
shown by a lowered ROS level in leukocytes (p < 0.01). Moreover, it prolonged the time spent in open
arms in the elevated plus maze (p < 0.001). Concomitantly, the stimulation of proliferative activity in
hippocampal regions was seen (hilus p < 0.01; subgranular zone p < 0.001) when compared with DEP
males. Additionally, the number of mature neurons in the CA1 region of the hippocampus increased
markedly (p < 0.01), indicating the role of GA in the maturation process of neurons. Thus, our study
points to the potential anxiolytic/antidepressant activity of GA. However, future studies are needed
in this complex area.

Keywords: gyrophoric acid; antioxidant; Wistar rats; depression-like behavior; neurogenesis; mature
neurons; hippocampus; anxiolytic activity

1. Introduction

There has been an “explosion” in anxiety disorders over the last decade worldwide. In
the last year, anxiety disorders have affected 301 million people [1]. Their onset is usually
in adolescence or early adulthood. The affected patients often develop further mental or
somatic illnesses (sequential comorbidity) [2]. Moreover, mental health disorders represent
an enormous cost to society and are related to economic outcomes [3].

Gyrophoric acid (GA) is a well-known lichen secondary metabolite which has been
intensively studied in recent years. After its positive biological effects were revealed, the
interest in it increased significantly.

GA is a tridepside from lichen of the genera Umbilicaria [4], Austromelanelixia [5],
Dactylina [6,7], Ochrolechia [8], Stereocaulon [9], Placopsis [10], Lecaimeria, Immersaria [11],
Biatora [12,13], Parmelia [14], Psilolechia [15], Cryptothecia [16], etc. GA is also produced by
Streptomyces sp. IB 2014/I/ 78-8 [17], Humicola sp. FO-2942, and Humicola sp. FO-5962 [18].
Instead of a tridepside, GA was thought to be a didepside until this was disproved in 1925
and the structure was approved in 1933 [19]. The chemical structure of GA consists of
three four-hydroxybenzoic acids connected by ester groups. Similarly, depsides consist
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of two four-hydroxybenzoic acids connected by ester groups, and tetradepsides consist
of four four-hydroxybenzoic acids connected by ester groups (Figure 1) [20]. A study
according to Singh (2022) identified the putative biosynthetic gene cluster of GA, the same
cluster as that of hiascic and umbilicaric acid [21]. Among the main studied effects of GA
are, for example, antimicrobial [22–28], UV-protective [29–32], antidiabetic [18,33,34], and
anti-proliferative/cytostatic/cytotoxic activities [31,35–39], all in vitro.

GA has been shown to possess antioxidant activities. Firstly, GA has a strong scav-
enging activity, as revealed using the Nishimiki method [40]. On the other hand, GA may
serve as a prooxidant, as it is able to induce reactive oxygen species (ROS) production in
HeLa cells, resulting in the launching of pro-apoptotic cascades [41].

Our previous research revealed that GA may change the behavior of healthy labo-
ratory rats [42]. Because this is the only in vivo study, we decided to use the same dose
of GA as used previously. As one lichen secondary metabolite, atranorin, acts as an
anxiolytic/antidepressant compound, the aim of our study was to monitor the potential
anxiolytic effects of GA at a dose of 10 mg/kg in Wistar rats.
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Figure 1. Chemical structure of gyrophoric acid modified according to [43].

2. Results
2.1. Animal Behavior Analysis

Because the elevated plus maze (EPM) is a standard test for testing anxiety and
depression-like behavior, we used it to measure the effects of GA during stress-induced
depression. As shown in Figure 2, DEP animals spent markedly less time in the open arms
of the apparatus. However, GA significantly increased the time spent in the open arms
compared to the DEP group (p < 0.001). The other parameters in the tests were not affected
(Table 1).
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Figure 2. The time spent in the open arms in individual groups of control animals (CTR), animals
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Table 1. The parameters of elevated plus maze test (frequency) in individual groups of control
animals (CTR), animals with depression-like behavior (DEP), and gyrophoric acid-treated animals
(GA).

CTR DEP GA

Center crossings 3.24 ± 3.05 3.57 ± 3.00 3.32 ± 2.54
Washing 4.76 ± 2.72 4.75 ± 2.68 4.68 ± 2.83
Rearing 13.80 ± 6.30 14.32 ± 5.69 13.32 ± 6.53

Defecation 0.22 ± 0.99 0.20 ± 0.95 0.21 ± 0.94

2.2. The Level of Hippocampal Neurogenesis

A decrease in the number of Ki67 proliferating cells was observed in the DEP group
compared to the CTR group in the hilus (Figure 3A) and subgranular zone (SGZ) (Figure 3B)
of the hippocampus. The number of Ki67 proliferating cells was significantly increased
in the GA group compared to the DEP group (p < 0.01) in the hilus of the hippocampus
(Figure 3A), and similarly, the increase in the number of Ki67 proliferating cells was
significant (p < 0.001) in the SGZ of the hippocampus (Figure 3B).
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Figure 3. The number of proliferative Ki67-positive cells in the hilus (A) and SGZ (B) in individual
groups of control animals (CTR), animals with depression-like behavior (DEP), and GA-treated
animals (GA). Values are given as arithmetic mean ± SD. Significance is indicated by * p < 0.05,
** p < 0.01, and *** p < 0.001.

2.3. Analysis of the Number of Neun-Positive Mature Neurons

The number of NeuN-positive mature neurons in the DEP group stayed unchanged
compared to the level of the neurons in the CTR group in the CA1 region and hilus and
slightly decreased in granular cell layer (GCL). However, in the GA group, the number of
NeuN-positive mature neurons was not increased compared to the DEP group in the hilus
and in the GCL (Figure 4). In the GA group, the number of NeuN-positive mature neurons
in the CA1 region was significantly increased (p < 0.01) compared to the DEP group.
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CoV-2 in vitro [52]. Positive effects are also shown by the combination of GA with usnic 
acid, which supports tissue regeneration [37]. Lichens can also be toxic [53], but because 

Figure 4. Number of NeuN-positive cells in the CA1 region (A), hilus (B), and granular cell layer (C)
in individual groups of control animals (CTR), animals with depression-like behavior (DEP), and
gyrophoric acid-treated animals (GA). Values are presented as arithmetic mean ± SD. Significance is
indicated by ** p < 0.01.

2.4. Reactive Oxygen Species Levels in Leukocytes

GA significantly reduced ROS (p < 0.01) in blood leukocytes compared to the DEP
group. In the DEP group, there was a nonsignificant increase in ROS in blood leukocytes
compared to the CTR group (Figure 5).
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3. Discussion

Currently, the secondary metabolites of lichens are being tested for their medicinal
potential mainly in vitro [7,36,44] but also in vivo [45,46]. Among the studied are the
(mentioned above) antimicrobial, antibacterial, antifungal [22–28], UV-protective [29–32],
anti-proliferative/cytostatic/cytotoxic [31,35–39], antioxidant [7,26,40,41,44,47–49], antidi-
abetic [18,33,34], and antiviral activities [50,51]—they have also shown activity against
SARS-CoV-2 in vitro [52]. Positive effects are also shown by the combination of GA with
usnic acid, which supports tissue regeneration [37]. Lichens can also be toxic [53], but
because of the lack of in vivo reports, only one study has shown no hepatotoxicity after
chronic GA consumption at a dose of 10 mg/kg [42].
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3.1. Animal Behavior Analysis

After analyzing the behavior of the rats, our results showed increased time spent in the
open arms in the GA group compared to the DEP group (Figure 2). Time spent in the open
arms is the most important point of the test because it focuses on the anxiety of the animals.
This is consistent with previously published data (the only in vivo study) showing that
GA may increase not only the time spent in the open arms but also the rearing frequency
and/or locomotor activity (as the number of center crossings) in healthy animals [42]. In
our current experiment, other forms of behavior were not changed in the EPM (Table 1).
This could be influenced by the unpredictability of the behavior of the animals.

Another lichen secondary metabolite, atranorin, has been studied in relation to de-
pression [46]. This study demonstrated the antidepressant effect of atranorin at a dose
of 10 mg/kg by increasing the time spent in the open arms in the EPM compared to the
depressed group of males, which is similar to the results of the current study (Figure 1).
In another study, the time spent in the open arms in the EPM was increased after the
administration of the lichen metabolite atranorin to healthy animals at a concentration
of 10 mg/kg compared to the control untreated group of animals of both sexes [45]. The
time spent in the open arms of the EPM is one of the parameters used in the assessment
of anxiety [54]. However, due to the high comorbidity of anxiety and depression, it is
often not possible to separate their symptoms [55]. The EPM is highly sensitive to phar-
macological and behavioral treatments [54]. Anxious and depressive behavior has been
confirmed in animals and humans [56,57]. Our results show a decrease in exploratory
behavior, expressed by the time spent in the open arms in the EPM in DEP animals. In a
study in depressed patients, a reduction in exploratory behavior was also observed [58].
In the studies, the metabolites of lichens were administered orally [42,45,46]. One in vitro
study found that the gastrointestinal absorption of GA, salazinic acid, and fumarpro-
tocetraric acid was low, and GA had a low bioavailability score (predicts the fraction
of an orally administered compound that reaches systemic circulation), which was 0.11.
GA fulfills Lipinski’s five rules. In contrast, gastrointestinal absorption was high for the
compounds usnic acid, cryptostictinolide, variolaric acid, and norstictic acid [52]. The
di-methylated analogue of GA—tenuiorin—showed the prevention of the neurodegenera-
tive disease Alzheimer’s disease by inhibiting tau protein aggregation at a concentration
of 75 and 100 µM [59]. In a model of Alzheimer’s disease in vivo (exposed to peptide
Aβ1-42—400 pmol/mouse—intracerebroventricular), following the oral administration of
25, 50, and 100 mg/kg of different enantiomers (R)-(+)-UA and (S)-(- )-UA of usnic acid,
after 24 h, cognitive deficits, the consequences of inflammation, and the action of lipid
hydroperoxides were improved. The enantiomers of usnic acid improved memory and
learning in mice, reduced the activity of lipid hydroperoxides and myeloperoxidase in
the cortex and hippocampus, and reduced the levels of IL-1β in the hippocampus [60].
These studies together with our results indicate that depsides, including GA, may have
neurotrophic, neuroprotective, anxiolytic, or antidepressant effects.

3.2. Analysis of the Number of Proliferative Ki67 Cells and Mature Neun-Positive Neurons

Exploratory behavior is dependent, among other brain structures, on the medial tem-
poral lobe and hippocampus, which links spatial conceptions from its function with general
memory-based approaches to hippocampal function [61,62]. The neurogenic hypothesis
establishes a connection between depression and neurogenesis. The consequence of depres-
sion, according to the hypothesis, is a reduction in neurogenesis, which can be restored
by antidepressants [63]. A decrease in hippocampal neurogenesis, memory impairment,
and an increase in the activity of the hypothalamus–pituitary gland also occur after the
exposure of rats and monkeys to prenatal stress, which results in an increase in anxiety
and depression during their lifetime [64,65]. In our study, the number of proliferative
Ki67-positive cells in the hilus of the hippocampus was evaluated, as this is where the
precursors of proliferating cells are located [66,67]. In the hilus, the number of proliferative
Ki67-positive cells was reduced in the DEP group compared to the CTR group (Figure 3).
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Thus, the repeated prenatal and postnatal stress was sufficient to induce anxiety- and
depression-like states in this study. Increased levels of glucocorticoids could reduce prolif-
erative activity after chronic stress [68,69]. During mitosis, neural stem/progenitor cells
(NPCs) do not express glucocorticoids (GRs) and mineralocorticoid receptors (MRs). GRs
are expressed 24 h and MRs 2 weeks (after migration to the GCL and cell division) after
mitosis [70]. Increased levels of GRs may be a consequences of increased glutamate levels,
and subsequently, glutamate may reduce cell proliferation [71–73]. Concomitantly with the
changed behavior of the animals after GA consumption, our results demonstrate that GA
also increased the level of neurogenesis in the hippocampus (Figure 3). Moreover, GA was
also able to increase the number of mature neurons in the CA1 region, which decreased
after depression, as shown in the DEP group (Figure 4). The CA1 area is sensitive to
metabolic stress in various diseases such as ischemia, hypoglycemic encephalopathy, limbic
encephalitis, multiple sclerosis, epilepsy, and transient global amnesia. The mechanism of
sensitivity is poorly understood and includes oxidative stress and genetically determined,
glutamate-dependent, and calcium-mediated mechanisms of neuronal excitotoxicity [74].

As we know, mature neurons can differentiate from proliferative cells in the hip-
pocampus [75]. Antidepressants and exercise can accelerate the maturation of neurons [76].
Increased NeuN-positive cells in the GCL and CA1 area of the hippocampus were also
found in our previous study after the application of atranorin [46]. A neuroprotective,
neurotrophic, and proneurogenic effect was also confirmed in other lichen metabolites,
such as with perlatolic acid, which induces a higher level of neutrophic factors than
BDNF and NGF, resulting in neurite outgrowth in vitro at 0.5 µM. Other depsides, such
as atranorin and physodic acid, have shown potential neuroprotective and neurotrophic
activity. BDNF and NGF production activity is related to the increased histone H3 and
H4 acetylation in a mouse neuroblastoma cell line (Neuro2A). Perlatolic acid strongly
inhibits acetylcholinesterase (AChE) in vitro [77]. Usnic acid also interacted with AChE in
a mouse model of Parkinson’s disease [60]. Similarly, atranorin was proneurogenic and
neurotrophic at a concentration of 5 µM, resulting in neurite outgrowth in Neuro 2A cells.
Atranorin stimulated the expression of neurotrophic genes for BDNF and NGF [78]. BDNF
deficiency causes neuroinflammation, which can lead to symptoms of major depressive
disorder [79]. Through a mechanism dependent on the Ras/ERK pathway, BDNF increases
synaptic spine density. Synaptic plasticity is impaired in depression by the dysfunction
of or reduction in BDNF levels, reduction in excitatory neurons, and glutamate [80]. In
addition, BDNF also plays an important role in neurogenesis and neuronal development. It
stimulates NPCs [81–83]. NPCs give rise to glial and neuronal cells in the CNS [84]. BDNF
stimulates hippocampal neurogenesis after intrahippocampal injection and peripheral
injection [83,85,86]. The mechanism of neurogenesis was confirmed in the dentate gyrus via
BDNF-LTP (long-term potentiation). The induction of BDNF-LTP and the proneurogenic
effect is blocked by the inhibition of activity-regulated cytoskeleton-associated protein (Arc)
translation [87]. The mechanisms remain to be investigated, but acute BDNF injection in
adult rodents is associated with the induction of Arc-dependent LTP [88].

3.3. Reactive Oxygen Species Levels in Leukocytes

As the pathophysiology of neurodegenerative diseases, including depression, involves
oxidative stress [7], we decided to monitor the levels of ROS in circulating blood. Indeed,
a slight increase in ROS level in leukocytes was revealed in DEP animals. However, GA
decreased their level to the control level (Figure 5).

Previously, GA significantly reduced ROS in human melanoma A375 cells at a con-
centration of 50 µM for 72 h [89]. Our results indicate an antioxidant effect of GA. The
depsidone chemical structure of GA with hydroxyl groups that interact with enzymatic
active sites and aromatic rings is responsible for its antioxidant activity and scavenging of
free radicals [20,90–92]. The redox nature of lichens depends not only on their structure
but also on the system in which they are found. It is considered that it may also depend on
the concentration of the given metabolite, but there is no direct evidence for this yet [10].
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Lichen metabolites induced the expression of antioxidant enzymes [93–95], playing a key
role in various diseases [96,97]. In silico, GA demonstrated a strong affinity for the GPCR
receptor [98], which links various cellular responses to neurotransmitters and hormones,
e.g., taste, vision, and olfaction [99]. A recent study noted that the depsidone structure
of GA strongly scavenges hydroxyl and superoxide anions in a polar environment but
weakly scavenges peroxyl radical scavengers [100]. In vitro, the antioxidant property of GA
was recorded using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity
method at a GA concentration of 0.1–5 mg/L [22], and another in vitro study confirmed
the DPPH radical scavenging activity and also that GA (62.5–1000 µg/mL) achieved the
highest values in superoxide anion scavenging IC50 compared to ascorbic acid (vitamin
C) [101]. However, a similar study compared to the previous study points to a lower
antioxidant effect of GA in DPPH radical scavenging activity and in the scavenging of
superoxide anions compared to ascorbic acid. The antioxidant effect was 4–13%, and the
uptake of superoxide anions was 51–63%. The percentages demonstrate the marginal effect
of other secondary metabolites of lichens as well. Separate efficiency percentages for GA
are not specified in the study [40]. GA in reduction power (the value of an antioxidant
in donating an electron to a free radical for its neuralization, the mechanism of phenolic
antioxidants) reached the highest values (at a concentration of 62.5–1000 µg/mL) among
the tested samples; it exceeded ascorbic acid [102,103]. Another depside, atranorin, showed
an antioxidant effect dependent on free radicals such as superoxide, hydroxyl radicals,
H2O2, and NO in in vitro studies at a concentration of 100 µg/mL [104,105] and scavenged
superoxide anion at an IC50 concentration of 169.65 µg/mL [106].

It remains unclear how GA stimulates the process of neurogenesis in the brain. Some
natural substances such as resveratrol, quercetin, and lovastatin pass into the CNS by
passive transport [107,108], but some secondary metabolites of lichen such as phyzodic
acid and atranorin can also pass through the blood–brain barrier (BBB) [109]. Evernic
acid and physodic acid pass through the BBB as a pure substance but also in extract form.
However, salazinic acid is not able to pass through the BBB as a pure substance or in
the form of an extract, which may indicate a difference in the chemical structure of the
bioactive substances [110,111]. In rats, it has been shown that GA passes through the BBB
in a low manner [42]. However, another in vitro study found out that GA does not [52].
Thus, more studies are needed to clarify this question. Concomitantly with our previous
study, showing the potential of GA passing the BBB [42], in the chemical structure of
some lichen secondary metabolites, there are alkyl chains that can improve the affinity to
receptors, increase the lipophilic properties of the molecules, and thus improve the passage
through the BBB [78]. However, our findings of the GA stimulation of neurogenesis and
alteration of spatiotemporal regulation indicate that GA may influence the brain structures
and concomitantly also behavior.

Our results describe the anxiolytic/antidepressant effect of GA in a model of restraint-
stress-induced depression. They provide the first evidence of the effects of GA during
depression. Based on our observations, the lichen secondary metabolite GA has potential in
the treatment of depression or other neurodegenerative disorders and should be considered
in future studies.

4. Materials and Methods
4.1. Experimental Design and Laboratory Animals

In this study, a parental generation including 2 Wistar males and 4 Wistar females
was used (Department of Toxicology and Laboratory Animal Breeding ÚEFT SAV, Dobrá
Voda, Slovakia). The animals were housed in standard vivarium conditions, with a room
temperature of 21–24 ◦C, a relative humidity of 50–65%, and a 12/12 light/dark regimen.
The animals had access to tap water and pelleted food (Velaz, Únetice, Prague, Czech
Republic) ad libitum, following EU regulations and guidance on animal feeding. Parental
females were mated with parental males, and male progeny were selected for subsequent
experiments. The animals were managed according to the guidelines set forth in Law No.
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377 and 436/2012 of the Slovak Republic for the Care and Use of Laboratory Animals,
which were approved by the State Veterinary and Food Administration of the Slovak
Republic (Approval Number: Ro-2866/16-221, Ro-2219/19-221/3).

At the end of the experiment, transcardial lavage under deep anesthesia (400 mg/kg
of chloral hydrate, administered intraperitoneally) was used to euthanize the laboratory
animals. Perfusion through the left ventricle began with a saline wash of the blood ves-
sels, followed by perfusion with a 4% freshly prepared paraformaldehyde solution. Sub-
sequently, the brains were removed, weighed, and post-fixed in the same fixative for
24 h, after which they were transferred to a 30% sucrose solution for cryoprotection. Then,
33 µm coronal sections of the brain were cut using a cryostat at the level of the bregma
−3.3 ± 0.2 mm.

4.2. Induction of Depression-like Behavior in Animals

During the experiment, pregnant females were divided into two groups: the first
group was a control group of healthy females, and the second group was subjected to
restraint stress. The second group of pregnant females was subjected to restraint stress using
immobilization boxes in the last week of pregnancy for three consecutive days, three times
a day for 45 min according to a scheme that was previously used by other authors [46,112].
The progeny of the males were kept with their mothers for 30 days. Subsequently, the
male progeny were divided into three groups: CTR—progeny of control mothers (n = 10);
DEP—progeny of mothers subjected to restraint stress (n = 10); GA—progeny of mothers
subjected to restraint stress and which were treated with GA extract (n = 10). GA at a dose
of 10 mg/kg was perorally administered daily for one month, starting after postnatal stress.
The secondary metabolite GA was provided by doc. RNDr. Michal Goga, PhD (isolated
in the laboratory of the Department of Botany, UPJŠ). Briefly, Umbilicaria hirsute (Sw. Ex
Westr.) was collected from extrusive igneous volcanic rocks Sninský kameň (48◦55′46′′ N
22◦11′23′′ E) in Vihorlat Mountains (Prešov, Slovakia). The lichen thalli were quickly
washed with distilled water and carefully removed from the rock surface. Extraction of
lichen material was performed using acetone as described previously [41].

4.3. Elevated Plus Maze Test

The EPM was used to observe depression-like behavior and determine the anxi-
olytic effect of GA. The apparatus consisted of a cross-shaped maze with two open and
two closed arms, each 80 cm in length, and a central square measuring 15 × 15 cm. The
maze was positioned 75 cm above the ground. The level of depression and anxiety was as-
sessed based on the time spent in the open arms of the maze and the frequency of defecation.
Exploratory activity was measured by counting the number of rearing behaviors, while
comfort behaviors were quantified by counting the number of washing acts. Locomotor
activity was recorded by noting the number of passes through the center of the maze. By
default, each animal was tested for 5 min.

4.4. Collection of Blood

At the end of the experiment, blood samples were obtained from the vena saphena of
each animal. The blood was collected into microtubes containing an appropriate volume
of heparin.

4.5. Assessment of Reactive Oxygen Species in Leukocytes

Blood samples (100 µL) were collected from rats in heparin-treated tubes. Using red
blood cell lysis buffer (150 mM NH4CI, 10 mM KHC03, 0.1 mM EDTA, pH 7.4), red blood
cells were lysed for 3 min. Samples were centrifuged at 200× g for 6 min, and the pellet was
washed with 1 mM PBS-EDTA. Subsequently, each sample was divided in half; one half
was stained, and the other half was used as an unstained autofluorescent control. Whole
blood samples were stained with 10 µM 3 dihydrorhodamine-123 (DHR 123, Fluka, Buchs,
Switzerland) for 20 min at room temperature in the dark, following previously established
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protocols [35]. The samples were evaluated by a BD FACSCalibur (BD) flow cytometer
(Becton Dickinson, San Jose, CA, USA) with a 488 nm argon-ion excitation laser. Debris
was eliminated by forward scattering and side scattering (FSC × SSC). Fluorescence was
detected using a 530/30 bandpass filter (FL-1) and quantified using FlowJo software (Tree
Star, Inc., Ashland, OR, USA). The level of ROS in leukocytes was expressed as the ratio of
the median fluorescence of DHR 123 to the autofluorescence of unstained samples.

4.6. Immunohistochemical Staining of Ki-67-Positive Cells in the Hippocampus

Ki67 is a reliable proliferation marker of neoplastic and/or normal cells, according to
Gerdes et al. (1984) [113] and Kee et al. (2002) [114]. Immunohistochemical staining was per-
formed on free-floating coronal sections. Briefly, sections were incubated in blocking buffer
and then incubated at 4◦C overnight with primary antibody (Ki-67 (D3B5) rabbit mAb,
#12202; dilution 1:400; Cell Signaling Technology, Danvers, MA, USA). The incubation of
sections was performed with goat anti-rabbit IgG secondary antibody (Vector Laboratories,
1:200) for 1 h. The incubation was performed with a dilution of 1:400. Subsequently, the in-
cubation of sections in avidin–biotin–peroxidase complex (Vector Laboratories, Burlingame,
CA, Vestastain ABC kit) was performed for 1 h at room temperature, and DAB (12 mmol L−1

concentration in PBS with 0.003% H2O2, Sigma-Aldrich, St Louis, MO) application lasted
10 min. After the dehydration protocol, they were sprinkled with Permount (Fischer
Scientific, Pittsburg, PA, USA).

4.7. Immunohistochemical Staining of Neun-Positive Mature Neurons in the Hippocampus

Immunohistochemical staining was performed on free-floating coronal sections. Briefly,
sections were incubated with anti-NeuN antibody (MAB377, 1:500; Millipore, Bedford, MA,
USA) in 0.1 mol/L PBS (pH 7.4) with 0.3% Triton at 4 ◦C overnight. Sections were washed
with 0.1 mol/ L PBS (pH 7.4) with 0.2% Triton, and then, a secondary anti-mouse IgG
antibody (BA-2000, 1:200) was applied at room temperature for 90 min. The application
of ABC Elite (Vector Laboratories, Burlingame, CA, USA) for 90 min was performed
after washing the sections, followed by rinsing the sections with PBS and applying DAB
(0.1 mol/L Tris, 0.04% DAB, 0.033% H2O2); the reaction was stopped with phosphate
buffer. This was followed by the dehydration of the sections, followed by the application
of Permount (Fischer Scientific, Pittsburg, PA, USA) and the cover-slipping of the sections
for analysis [115].

4.8. Assessment of Cell Number

Photomicrographs of brain sections were obtained using a light microscope (Leica
DM2500) and analyzed using ImageJ (ImageJ, Bethesda, MD, USA). The quantification of
cell number was performed on every sixth cryostat hippocampal section. The number of
NeuN-positive cells was counted in different areas of the hippocampus: in the CA1 area, its
mid-linear part (at 200× magnification), in the total hilus area (at 100× magnification), and
in the GCL area (at 200-fold magnification), as previously described [116]. The absolute
number of cells for a selected 400 µm section of each examined section represents data on
NeuN-positive cells in the CA1 and GCL regions. The number of Ki67-positive cells was
counted in the whole region of the hilus and SGZ DG at 100× magnification.

4.9. Statistical Evaluation

GraphPad Prism 8.0.1 (GraphPad Software, Inc., San Diego, CA, USA) was used for
all statistical analyses. All data were assessed for normal distribution, and appropriate
statistical tests were applied. The results are presented as mean ± standard deviation (SD).

5. Conclusions

The antioxidant and anxiolytic effect of GA simultaneously with the behavior and
neurogenesis of the hippocampus points to its potential importance in the research of
mental diseases. The positive effect of GA on behavior during depression-like behavior and
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the increased neurogenesis of the hippocampus support one of the many hypotheses about
the effect of anxiolytics and antidepressants—the neurogenic hypothesis. The reduced ROS
level in the blood after GA application supports the claim of the involvement of oxidative
stress in the anxiolytic effect of GA during depression-like behavior. GA should be included
in future research in the development of anxiolytics and antidepressants.
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