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Abstract: High blood pressure (BP) is a significant contributor to the disease burden globally and
is emerging as an important cause of morbidity and mortality in the young as well as the old. The
well-established impact of high BP on neurodegeneration, cognitive impairment, and dementia is
widely acknowledged. However, the influence of BP across its full range remains unclear. This review
aims to explore in more detail the effects of BP levels on neurodegeneration, cognitive function, and
dementia. Moreover, given the pressing need to identify strategies to reduce BP levels, particular
attention is placed on reviewing the role of magnesium (Mg) in ageing and its capacity to lower
BP levels, and therefore potentially promote brain health. Overall, the review aims to provide a
comprehensive synthesis of the evidence linking BP, Mg and brain health. It is hoped that these
insights will inform the development of cost-effective and scalable interventions to protect brain
health in the ageing population.
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1. Introduction

The number of individuals aged 65 and over is projected to more than double globally
in the next decades, increasing from ~0.7 billion in 2019 to ~1.5 billion in 2050 [1]. This will
have significant implications for the prevalence of age-related diseases and the correspond-
ing burden of disease [2]. Dementia in particular poses a substantial challenge as there are
currently no effective treatments available. However, accumulating evidence suggests that
modifiable risk factors play a crucial role in the underlying pathological processes and may
be amenable to prevention and risk reduction strategies [3]. Although several modifiable
risk factors have been identified [4], a more precise understanding of their time course,
underlying biological mechanisms, and the extent of their impact is necessary.

This review focuses specifically on blood pressure (BP), which is known to be a
major contributor to cerebrovascular disease [5], neurodegeneration [6–8], cognitive im-
pairment [9,10], and dementia [11–13]. High BP is the leading risk factor for premature
death globally [14].

A large body of knowledge characterizing the role of high BP in cardiovascular disease
is available; however, a comprehensive understanding of its role in brain ageing requires
further investigation. Given the urgent need to identify strategies that effectively reduce
BP, which are affordable and scalable at the population level, and minimize its detrimental
effects on brain health, this review will also focus on magnesium (Mg), particularly dietary
Mg, as its antihypertensive properties are well-established [15–17]. Importantly, when
considered in the context of dietary intake, Mg has the potential to contribute to highly
scalable interventions in the population.

To contextualize the pathophysiological effects of BP and the protective effects of Mg,
we first briefly discuss the major ageing mechanisms that are likely to be implicated in the
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pathological processes underlying the effects of BP in neurodegeneration and cognitive
decline. We then summarize the typical brain and cognitive changes that occur with ageing.
The second part of this review then covers the epidemiology, measurement, mechanisms,
and impact of BP on brain ageing and cognitive decline. Finally, the third section focuses
on the contribution of Mg to the ageing processes, including its contribution to lowering
BP and its influence on brain health.

2. Ageing

This section provides a brief overview of major physiological mechanisms under-
lying the ageing process and the degree to which they contribute to brain ageing, and
cognitive decline.

2.1. Ageing Mechanisms

The ageing mechanisms can be broadly categorized into four main types: accumulation
of cellular damage linked to oxidative stress (OS) and inflammation, increasing genomic
instability, loss of proteostasis, and telomere shortening. OS arises when there is an imbal-
ance in the body’s capacity to neutralize reactive oxygen species (ROS), which are natural
by-products of cellular metabolism. Excessive production or insufficient buffering of ROS
results in increased OS, which in turn leads to the release of cytokines and the development
of a chronic pro-inflammatory state often referred to as “inflammaging” [18,19]. Chronic
low-grade inflammation, which involves a dysregulation of the immune system and a
low-grade but persistent increase in pro-inflammatory factors, contributes to accelerated
ageing [20]. This state promotes genomic instability, cellular senescence, apoptosis, and
ultimately contributes to biological ageing [18,19,21]. As organisms age, genetic alterations
accumulate, affecting cellular and tissue functions and impacting health [22]. DNA damage,
caused by free radicals (ROS that have not been buffered by anti-oxidants) and inadequate
repair mechanisms, disrupts gene regulation, leading to cell death or senescence [23–25].
Proteostasis, the maintenance of protein balance through synthesis, folding, trafficking, and
degradation, is crucial for cellular function [26], and is disrupted by OS. The consequent ac-
cumulation of misfolded proteins and aggregates impairs cellular function and contributes
to age-related decline and neurodegenerative diseases such as dementia [27]. Telomeres,
the protective DNA caps at chromosome ends, maintain genome integrity and as they
shorten with each cell division, their shrinkage is a hallmark of biological ageing [28,29].
OS, environmental (e.g., smoking), health (e.g., hypertension, and obesity), and poor diet
are factors known to accelerate this shortening, and impact cellular health and the ageing
process [25]. Moreover, shortened telomeres lead to replicative senescence, causing tissue
and organ decline [30].

2.2. Brain Ageing

The physiological changes associated with ageing occur throughout the body, and
in the brain result in neurodegeneration. The following sections summarize how the
age-related changes reviewed above impact the brain structure and function.

2.2.1. Age-Related Microscopic Changes

Age-related processes are closely linked to important microscopic changes within
the brain. Elevated OS and chronic inflammation (inflammaging) play pivotal roles in
the loss of neurons, glial cells, and myelin. In the brain, OS damages neurons, triggers
microglial activation, and releases pro-inflammatory cytokines including interleukin (IL)-
1β, IL-6, IL-17, IL-18, and Tumor Necrosis Factor-α (TNF-α) [20,31]. This cascade further
promotes chronic inflammation and OS, resulting in neuronal death, loss of dendritic
spines, dendritic tree atrophy, and shrinkage of the neuropil [18,19,21]. These inflammatory
processes also compromise the integrity of the axons’ myelin sheaths within white matter
(WM) tracts [32,33] and the maturation of oligodendrocyte precursor cells responsible for its
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replacement [34]. This progressive demyelination [35,36] results in Wallerian degeneration,
synaptic dysfunction, and compromised brain connectivity [37,38].

Additionally, OS-related DNA damage promotes neuronal dysfunction, and impaired
synaptic communication, while also hindering neurogenesis [39,40]. This structural and
functional damage is further aggravated by the accumulation of misfolded proteins and
aggregates, such as tau inside and amyloid beta (Aβ) around neurons, particularly in the
hippocampus, a vital region for memory and learning [27,41,42]. As these proteins are
neurotoxic, they interfere with normal neural function, and contribute to synaptic loss,
diminished connectivity, and ultimately neuronal death [43–45].

In addition to cellular damage, cerebral microvasculature dysfunction contributes to
impaired brain health. Animal studies show that elevated OS can compromise microvessel
endothelial function and disrupt the blood–brain barrier (BBB) integrity [46–49]. When the
BBB becomes compromised, leakage of fluids, proteins, and plasma into perivascular brain
tissue triggers pro-inflammatory processes, impairs vasodilation, disrupts blood flow, and
promotes chronic hypo-perfusion, brain oedema, and arterial stiffening. This cascade con-
tributes to secondary neurodegeneration [50], impedes the maturation of oligodendrocyte
precursor cells, and disrupts myelin repair [51].

2.2.2. Age-Related Macroscopic Changes

The accumulation of microscopic changes discussed above progressively leads to the
development of macroscopic changes across the brain [52]. At the population level the
average total brain volume shrinks relatively linearly between the ages of 20 and 80 years at
an rate of ~0.4% per year [53–55]. Simultaneously, ventricles tend to enlarge, at an average
annual rate of ~1.8% [53,56]. However, the extent of these changes varies across different
brain regions and between individuals.

Gray matter (GM) loss contributes most to brain shrinkage and its volume declines [54,55,57]
at an average rate of 3.8% per decade between the ages of 20 and 70 [57] and more so in
women [58]. The most vulnerable GM region is the hippocampus, which shrinks by approxi-
mately 2% by age 40, 8% by age 60, and up to 20% by age 80 in cognitively normal individuals [59].
Moreover, the annual rate of hippocampal atrophy is higher in mild cognitive impairment (MCI)
(2.53% per year) [60], and even more so in Alzheimer’s disease (AD) (4.66% per year) [61].

In contrast to GM, WM volume tends to remain relatively stable during young adult-
hood and reaches its peak in the mid-40s [62,63]. WM volume declines by approximately
0.39% per decade for those in their 40s, to 0.61% per decade for those in their 80s [53], and
more so in men than women [58]. One major contributor to WM loss is attributable to the
development of white matter lesions (WMLs), particularly in the subcortical WM [64,65].
WMLs are generally small and infrequent in younger individuals but increase notably with
age, especially in those above 55 years [66]. with annual increase rates varying between
4.4% and 37.2% per year [67]. Together, these macroscopic changes in the brain contribute
to a loss of function, progressive cognitive decline, and the development of dementia,
which are discussed next.

2.3. Cognitive Decline

Age-related micro- and macroscopic changes in the brain structure impact cogni-
tive functions and cause cognitive decline and the progression of neurological disorders,
including dementia. Cognitive functions undergo rapid improvement during develop-
ment [68,69]. As individuals transition into mid to late adulthood, most cognitive functions
exhibit a somewhat linear decline [70,71]. For example, average reaction time decreases by
approximately 15% between the early 20s and early 40s [72]. In order to develop strategies
to slow down or prevent cognitive decline, it is important to consider the factors that
contribute to changes in cognitive function as individuals age, which is the focus of the
next section.
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2.4. Factors Contributing to Brain Ageing and Cognitive Decline

Brain ageing and cognitive decline are influenced by genetic and environmental factors.
Genetics contribute to approximately 30% to 60% of the observed differences in cognitive
decline [73]. The remaining 40–70% is explained by modifiable environmental, health, and
lifestyle factors—such as low education, obesity, diabetes, cardiovascular disease, lack of
physical activity, and smoking [3,70].

Among these factors, cardiovascular disease is a major contributor to cognitive decline
and dementia, and BP is often used as an index of cardiovascular health. High BP has
been associated with increased Aβ deposition, neuroinflammation, WMLs, and brain
shrinkage [74–76], which are known to contribute to brain ageing and cognitive decline [9].
However, our understanding of when and to what extent high BP starts to influence
brain and cognitive functions remains incomplete. The next section reviews our current
understanding of these questions and identifies important knowledge gaps.

3. BP and Ageing
3.1. Definition

BP measures the force of blood against vessel walls during both systole and diastole,
andis expressed in millimeters of mercury (mmHg) [77]. There is incomplete agreement
as to what constitutes normal BP. The American Heart Association (AHA) defines normal
BP as a systolic BP (SBP) < 120 mmHg and a diastolic BP (DBP) < 80 mmHg, in the
absence of any antihypertensive medication use. Elevated BP is SBP from 120 to 129 mmHg
and DBP < 80 mmHg. Hypertension stage 1 is characterised by SBP ranging from 130 to
139 mmHg, and/or DBP ranging from 80 to 89 mmHg. Hypertension stage 2 is generally
defined as SBP ≥ 140 mmHg and/or DBP ≥ 90 mmHg [78]. However, guidelines differ.
For example, the European Society of Cardiology/European Society of Hypertension,
(ESC/ESH) defines optimal BP as a SBP < 120 mmHg and a DBP < 80 mmHg, in the absence
of medication; Normal BP as SBP between 120 and 129 mmHg and/or DBP between 80 and
84 mmHg; with high normal BP being characterised by SBP between 130 and 139 mmHg,
and/or DBP between 85 and 89 mmHg; and hypertension as SBP ≥ 140 mmHg and/or
DBP ≥ 90 mmHg [79].

Additionally, two other measures, mean arterial pressure (MAP) and pulse pressure
(PP), also provide important information about cardiovascular health. MAP represents the
average pressure within the arteries during a cardiac cycle, computed as (SPB + 2 * DBP)/3,
reflecting the perfusion pressure in organs and tissues [80]. PP, on the other hand, is the
difference between SBP and DBP, and provides information about arterial wall force and
stiffness [81].

3.2. BP Regulation

BP regulation involves both central and peripheral mechanisms to maintain optimal
blood flow and a stable BP.

3.2.1. Central BP Regulation

BP is centrally regulated in the medulla oblongata, which modulates blood vessel
contractility and heart function [82,83] via the sympathetic (SNS) and parasympathetic
(PNS) nervous systems [84,85]. The SNS increases BP by releasing norepinephrine and
epinephrine, while the PNS lowers BP through acetylcholine release, promoting vasodi-
lation and reduced heart rate. The balance between SNS and PNS activity maintains BP
homeostasis in response to various factors [85,86].
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3.2.2. Peripheral BP Regulation

Peripheral BP regulation involves mechanisms that adjust blood vessel contractility
and heart activity [87]. A key component is the baroreceptor reflex, where sensors in the
aortic arch and carotid arteries respond to BP changes and signal the medulla oblongata [88].
High BP triggers a decrease in heart rate and vasodilation, while low BP prompts an increase
in heart rate and vasoconstriction [89,90].

Another mechanism is the renin-angiotensin-aldosterone system (RAAS), which regu-
lates BP and fluid balance. When BP drops, renin converts angiotensinogen into angiotensin
I, which is then converted into angiotensin II, a vasoconstrictor that raises BP and stimulates
aldosterone release to retain sodium and water, further increasing BP [91,92].

In addition, the endothelium, the inner lining of blood vessels, also contributes to
BP regulation by releasing chemokines that affect vascular tone [87]. Activation of the
parasympathetic nervous system triggers the release of nitric oxide (NO), a vasodilator that
relaxes blood vessels and lowers BP [93,94]. The endothelium also interacts with the RAAS,
releasing renin to increase BP in response to low BP [95–97]. Thus, endothelial dysfunction
can lead to persistent BP elevation and increased cardiovascular disease risk, as discussed
in the next section [98].

Central and peripheral BP regulation systems are closely linked to the brain’s adaptive
mechanisms, which ensure optimal cerebral blood flow [99–102]. These adaptations involve
structural changes in cerebral arteries and arterioles, such as increased wall-to-lumen
ratio, to reduce vascular stress [103]. This remodelling includes alterations in cell growth,
migration, and extracellular matrix composition [5].

Additionally, adaptations to high BP include enhanced myogenic constriction in cere-
bral arteries and arterioles, which helps protect delicate microvessels from damage [103,104].
This constriction also plays a role in autoregulation, maintaining stable cerebral blood flow
during BP fluctuations [103,105].

3.3. Effect of Sex Hormones

Sex hormones have an important influence on the cardiovascular system, and in the
regulation of BP levels. For example, oestrogen particularly influence BP levels in women
by reducing renin release, which lowers angiotensin II production. This prevents exces-
sive vasoconstriction, helping to maintain lower BP in premenopausal women [106,107].
Conversely, reduced oestrogen levels during menopause are associated with elevated BP.
Research has consistently shown that postmenopausal women who undergo significant
reduction in oestrogen levels are at a higher risk of developing hypertension, with preva-
lence rates ranging from 36.76% to 44.1% [108–110]. Hence, the impact of sex on BP levels
is of particular relevance, underscoring the importance of accounting for sex-related factors
when assessing the effects of BP on health during the ageing process.

3.4. Measurement

Accurate BP measurement is an important tool in the assessment of cardiovascular
health and hypertension management. It can be measured invasively via central or periph-
eral catheters, or non-invasively with sphygmomanometers on the arm or forearm. Central
BP is more precise but less commonly used due to its invasive nature [111,112].

Central and peripheral BP measurements can differ, with brachial artery SBP being typ-
ically higher than central aortic SBP due to the amplification phenomenon. This difference
decreases with age as central arteries stiffen more rapidly than peripheral ones [113,114].
Peripheral BP can be measured manually with a cuff and stethoscope, which is prone
to observer errors [115,116], or with automated devices using the oscillometric method,
offering standardized measurements with less observer bias [111]. Automated devices,
while slightly less precise, are preferred for their consistency [117].
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BP can be measured in clinics or at home. Clinical measurements may be affected by
“white coat hypertension”, while home monitoring with validated devices helps track BP
over time and reduce the white coat effect [118]. The AHA recommends home monitoring
for reliable BP tracking [117].

3.5. Epidemiology

Epidemiological studies have consistently shown that different BP components un-
dergo distinct changes throughout an individual’s lifespan. The trajectories of SBP and DBP
exhibit a gradual increase from adolescence to adulthood [119,120]. This increase tends to
accelerate with advancing age until the age of 50 years [120–123]. The rise in both SBP and
DBP is largely attributable to the age-related changes in peripheral vascular resistance [120].
DBP typically reaches a peak in the 50s, and then slowly decreases from the age of 60s into
old age [121,124]. In contrast, SBP continues to increase beyond 50 years [120,125], mostly
due to ongoing arterial calcification and increased stiffness [119].

These age-related patterns in DBP and SBP contribute to significant increases in PP
and MAP over time [81,126,127]. This is particularly important because MAP is the main
determinant of blood flow in small blood vessels, which are particularly vulnerable in
organs such as the kidneys and the brain [128,129].

The increase in SBP/DBP contributes to the development of clinical hypertension,
which is a highly prevalent condition that affects 1.27 billion individuals worldwide [130].
However, hypertension prevalence varies by country, with higher rates in low- and middle-
income countries (31.5%) compared to high-income countries (28.5%) [131]. Ethnic dis-
parities are evident, with higher rates in Central and Eastern Europe (women 77%, men
63%), Latin America and the Caribbean (women 72%, men 57%), and Central Asia, the
Middle East, and North Africa (women 64%, men 47%) [130]. Hypertension prevalence
also varies by generation, age, and sex, with onset occurring at younger ages in newer
generations and exceeding 20% among older adolescents and young adults [132]. This
trend highlights the need to closely examine the impact of rising BP in younger individuals.
Hypertension diagnosed in late adolescence and young adulthood poses a long-term risk
for cardiovascular and cerebrovascular events and should be managed with the same
urgency as in older populations (Figure 1) [132].

Contrary to the belief that men generally have higher BP, studies show this is primarily
true at younger ages [124,133]. As individuals age, women tend to have higher BP, starting
as early as their thirties [120,133], and increasing further after menopause [108–110], leading
to a narrowing of the BP disparity between the sexes over time [134]. Importantly, a recent
study suggests that a higher number of women develop hypertension compared to men
after the age of 64 years [135], possibly due to the decline in oestrogen levels observed with
advancing age [136].

These epidemiological changes necessitate comprehensive research to evaluate po-
tential health implications effectively. Moreover, these epidemiological shifts are likely
influenced by changes in lifestyle, diet, and other environmental factors [130,137]. Conse-
quently, it is essential to consider the contribution of these risk factors when assessing the
impact of rising BP on health.

3.6. Risk Factors

Several genetic and environmental risk factors contribute to increasing BP and the
development of hypertension. Genetics contribute approximately 30% to 50% in BP vari-
ability in all stages of life [138–141]. Environmental factors including diet, obesity, physical
inactivity, excessive alcohol consumption, and smoking, as well as others, account for the
remaining variability in BP.



Int. J. Mol. Sci. 2024, 25, 11859 7 of 37

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 
 7 of 39 
 

 

 

 
Figure 1. The figure shows the global rise in brain ageing cases and the increasing incidence of 
dementia, highlighting the urgent need for prevention. A major risk factor is high blood pressure 
(BP), which shares several common risk factors with brain ageing. High BP affects a significant 
portion of the population worldwide, with recent findings indicating an earlier onset of 
hypertension in younger individuals. Higher magnesium intake is associated with reduced BP and 
improved cardiovascular health. Additionally, the protective effects of magnesium extend to 
lowering the risk of cognitive decline and brain ageing. 

3.6. Risk Factors 
Several genetic and environmental risk factors contribute to increasing BP and the 

development of hypertension. Genetics contribute approximately 30% to 50% in BP 
variability in all stages of life [138,139,140,141]. Environmental factors including diet, 
obesity, physical inactivity, excessive alcohol consumption, and smoking, as well as 
others, account for the remaining variability in BP. 

Diet quality is associated with an increased risk of hypertension in several ways. 
Increasing sodium intake in food from 3.5 g/day to 10.5 g/day is associated with increased 
SBP (+4.3 mmHg) and DBP (+2.3 mmHg) [142]. Moreover, diets rich in saturated fats 
elevate the risk of developing hypertension by about 12% [143]. A substantial body of 
evidence also indicates that insufficient intake of potassium and Mg is associated with 
increased BP levels [144,145]. Alcohol is another dietary component that contributes to 

Figure 1. The figure shows the global rise in brain ageing cases and the increasing incidence of
dementia, highlighting the urgent need for prevention. A major risk factor is high blood pressure
(BP), which shares several common risk factors with brain ageing. High BP affects a significant
portion of the population worldwide, with recent findings indicating an earlier onset of hypertension
in younger individuals. Higher magnesium intake is associated with reduced BP and improved
cardiovascular health. Additionally, the protective effects of magnesium extend to lowering the risk
of cognitive decline and brain ageing.

Diet quality is associated with an increased risk of hypertension in several ways.
Increasing sodium intake in food from 3.5 g/day to 10.5 g/day is associated with increased
SBP (+4.3 mmHg) and DBP (+2.3 mmHg) [142]. Moreover, diets rich in saturated fats elevate
the risk of developing hypertension by about 12% [143]. A substantial body of evidence
also indicates that insufficient intake of potassium and Mg is associated with increased
BP levels [144,145]. Alcohol is another dietary component that contributes to elevated BP
levels. Robust evidence indicates that high alcohol intake (>30 g/day) results in increased
SBP (+3.7 mmHg) and DBP (+2.4 mmHg) [146]. Interestingly, alcohol consumption can
lead to Mg deficiency, potentially contributing to elevated BP [147]. Ethanol, found in
alcoholic beverages, acts as a Mg diuretic, leading to Mg excretion and gradual depletion
with excessive and prolonged consumption [148].

In addition to diet quality, excessive energy intake also increases the risk of hyper-
tension. Being overweight or obese and leading a sedentary lifestyle are significantly
associated with elevated BP and hypertension. Around 40% of hypertension cases can
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be attributed to obesity [149]; however, this effect appears to be partly reversible. A
meta-analysis of 25 randomized controlled trials (RCT) involving 4874 participants demon-
strated that interventions combining calorie restriction and increased physical activity,
resulted in an average weight loss of 5.1 kg, and importantly led to significant reductions
in SBP (−4.44 mmHg) and DBP (−3.57 mmHg) [150]. Even light exercise such as walking
positively influences BP and reduces hypertension risk [151]. Another comprehensive meta-
analysis of 17 studies with 12,046 participants indicated that moderate-intensity leisure
time physical activities including walking, running, bicycling, and soccer lowered SBP
(by an average of −5.35 mmHg) and DBP (by an average of −4.76 mmHg) compared to a
control group [152].

Finally, smoking is a major, completely preventable risk factor for hypertension. A
follow-up of 13,529 men (mean age 51.2 years) over 14.5 years showed a clear link between
past/current smoking and an 8% and 15% higher risk of hypertension, respectively, compared
to non-smokers [153]. In the Women’s Health Study (n = 28,236 women), smoking exhibited
a clear association with hypertension risk. Former smokers (1–14 cigarettes/day) had a
3%, current smokers (1–14 cigarettes/day) a 2%, and those smoking ≥15 cigarettes/day
had an 11% increased risk of hypertension compared to never smokers, after adjusting for
multiple factors [154]. Unlike genetics, these factors are amenable to modification, offering an
opportunity for intervention and lifestyle adjustments that can positively impact BP levels
and overall cardiovascular health.

3.7. BP-Related Health Conditions

High BP often coexists with chronic conditions such as type 2 diabetes [155], car-
diovascular disease [156], chronic kidney disease (CKD) [157,158], and cerebrovascular
disease [159]. Furthermore, hypertension is a risk factor for these conditions and signifi-
cantly increases the risk of CKD and end-stage renal disease (ESRD), with risk increasing
continuously above 120 mmHg [156,157]. This connection highlights the importance of
BP-lowering interventions in reducing overall disease burden.

3.8. BP Treatment

Antihypertensive treatment includes non-pharmacological and pharmacological ap-
proaches. Non-pharmacological interventions include dietary modifications such as in-
creasing Mg intake. Mg helps relax blood vessels, leading to a reduction in BP [160]. Studies
have shown that increasing dietary Mg, either through supplements or Mg-rich foods,
can contribute to lowering SBP and DBP [161]. This approach, combined with regular
exercise, and weight loss, contributes to a comprehensive strategy for managing hyperten-
sion [162–164]. When non-pharmacological interventions are ineffective, pharmacological
interventions are recommended [165]. Indeed, medication plays a major role in reducing
the risk of cardiovascular disease and premature mortality in the population. In a meta-
analysis of six trials with 27,414 participants (mean age: 70 years; 56.3% female), intensive
BP treatment, targeting SBP below 140 mmHg, reduced major cardiovascular events by
21% for individuals with hypertension aged 60 years and older [166]. It demonstrated that
reducing SBP by 10 mmHg resulted in a decreased risk of 20% for major cardiovascular
events, 17% for ischemic heart disease, 27% for stroke, 28% for heart failure, and 13% for
all-cause mortality [167].

Thus, the prevention, treatment, and management of hypertension hold significant
implications for a number of diseases. However, what remains uncertain is whether
antihypertensive treatment is the most effective and desirable approach to mitigate the
impacts of the progressive increase in BP observed in ageing. Thus, the next section explores
the links between BP, antihypertensive treatment, and pathological ageing.

3.9. BP and Ageing Mechanisms

As individuals age, progressive endothelial damage leads to endothelial dysfunction
characterised by a decreased capacity for the vascular wall to relax due to decreased avail-
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ability of NO, and increased endothelium-derived contracting factors [168,169]. Research in
hypertensive rat models has demonstrated that increased OS deactivates NO, impairs NO
synthase isoforms, and further disrupts endothelial function [170], leading to a reduction
in the diameter of blood vessels and subsequently, an increase in BP levels [171,172].

In addition to localised effects, increased systemic inflammation is also linked to
higher BP levels. Consistent human findings demonstrate that elevated plasma levels of
pro-inflammatory cytokines, including IL-6 and C-reactive protein (CRP), in middle-aged
and older individuals without cardiovascular disease are associated with an increased
likelihood of developing hypertension [173]. Moreover, animal studies have shown that
proinflammatory cytokines, including IL-1β [174], TNF-α, IL-6 [175,176], and interferon-
gamma (IFN-γ) [177], are elevated in hypertensive animals, and that this cytokine release
leads to increased BP through enhanced sympathetic nerve activity. In contrast, mice
lacking certain proteins such as IL-6 [178], TNF-α [179], or IL-17 [180] exhibit lower BP when
exposed to a hypertensive dose of Angiotensin II (powerful vasoconstrictor) compared
to controls. Similar effects have also been shown in humans [181,182] and demonstrated
positive associations between higher serum TNF-α concentration, higher systolic BP, and
the development of hypertension [183–185].

Inflammation is also associated with atherosclerosis, a process in which fatty deposits,
cholesterol, and other substances accumulate and gradually form plaques that narrow and
harden the arteries, reducing blood flow and increasing BP [186,187]. Vascular calcification,
which involves the build-up of calcium (Ca) deposits within blood vessel walls, increases
with age. This calcification reduces blood vessel flexibility and contributes to higher BP and
hypertension [188]. Increased OS linked to endothelial dysfunction can initiate and advance
the development of atherosclerosis by oxidizing circulating low-density lipoproteins (LDL),
making them more prone to uptake by immune cells, especially macrophages in arterial
walls [189,190]. Increased production of OS and inflammation also contribute to vascular
calcification [186,191,192], by promoting the transformation of vascular smooth muscle cells
(VSMCs) into osteoblast-like cells [193], which contribute to the calcification process [194].
This further impairs endothelial function and further contributes to raising BP.

Impairment of central BP control mechanisms also contributes to accelerating the devel-
opment of hypertension. Indeed, increasing BP levels and other related pro-inflammatory
mechanisms contribute to neurodegeneration, which also affects the BP regulatory system
and leads to overstimulation of the vasomotor centre. This produces extended vasoconstric-
tion and increased blood vessel resistance, resulting in sustained high BP [82]. Moreover,
high BP also leads to an overactive sympathetic system, which raises heart rate and con-
tractility, and thus diminishes the effectiveness of the parasympathetic nervous system
in countering the action of sympathetic effects [85,86]. This leads to chronically high BP
and eventually hypertension due to persistent vasoconstriction, increased heart rate and
altered vascular tone [101,102], which compounds the effects of endothelial dysfunction,
atherosclerosis, vascular remodelling, and arterial stiffness [99].

In addition to systemic effects, the disruption of the BP regulatory system has a pro-
found impact on the adaptation mechanisms of the brain [99–102]. Over time, elevated BP
can lead to vascular remodelling in cerebral arteries and arterioles, resulting in increased
stiffness [35]. These changes lead to significant microscopic alterations in the brain, impact-
ing the BBB and promoting small vessel disease and neurodegeneration, detailed in the
next section.

3.10. BP and Brain Ageing

The previous section discussed the main mechanisms contributing to peripheral and
cerebrovascular damage, which frequently develop with ageing. This section summarises
the microscopic and macroscopic brain changes associated with elevated BP (Figure 2).
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Figure 2. Schematic overview of the relationship between blood pressure (BP), ageing mechanisms,
brain changes, and cognitive function. It depicts how increased BP adversely affects endothelial
function, leading to oxidative stress, inflammation, vascular atherosclerosis, and calcification, which
may further elevate BP. Chronically high BP is associated with microscopic changes in the brain,
including blood–brain barrier (BBB) disruption, microglia activation, pro-inflammatory responses,
demyelination, and the accumulation of amyloid plaques and tau protein. These microscopic al-
terations result in macroscopic changes such as larger white matter lesions and reduced brain size,
ultimately contributing to accelerated brain ageing and an increased risk of dementia.

3.10.1. BP-Related Microscopic Changes

High BP and hypertension are linked to neuronal dysfunction and microscopic alterations
in the brain microenvironment [105,195,196]. This strong association between high BP, OS,
and inflammation exerts detrimental effects on both neurons and glial cells. Experimental
models of hypertension consistently show that hypertension activates the microglia, increases
the production of pro-inflammatory cytokines, and increases OS in critical brain regions,
including the hippocampus, hypothalamus, amygdala, and stratum [197–199,199,200]. This
pro-inflammatory environment is known to contribute to neuronal damage, glial and dendritic
loss, potentially leading to neurodegenerative diseases [18,19,21]. Neuroinflammation in
hypertension also leads to myelin disruption in white matter tracts [38] as demonstrated by
altered diffusion imaging parameters in hypertensive individuals [201].

High BP impairs neurogenesis. Mice induced with hypertension through a four-
week angiotensin II infusion, displayed reduced synaptic density in the hippocampus’s
stratum radiatum [202]. Additionally, hypertension is associated with increased misfolded
protein accumulation, evidenced by Aβ deposits in hypertensive mice just four weeks after
induction [203]. Furthermore, hypertension promotes tauopathy independently of Aβ,
potentially through oxidative damage and increased brain inflammation [204].

In addition to the neuronal dysfunction, high BP may lead to microscopic changes
by affecting the cerebral micro–vasculature [205]. Elevated BP induces structural and
functional changes in microvessels, leading to vascular remodelling that impairs cerebral
blood flow, disrupts nutrient delivery, and compromises waste removal, contributing to
neuronal and glial cell stress and injury [205].

A key consequence of high BP-induced microvascular damage is the disruption of the
BBB, consequently contributing to neurodegeneration [35,103]. High BP disrupts the integrity
of the BBB by inducing endothelial dysfunction, promoting oxidative stress, and enhancing
inflammatory responses [205]. This disruption allows neurotoxic proteins and pro-inflammatory
molecules, such as fibrinogen, to enter the brain parenchyma [35,103,205], triggering inflam-
mation, cerebral oedema, demyelination, axonal damage and reduced fibre density [50,206].
Moreover, hypertension also increases the risk of vascular occlusions and ischemic events,
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promoting thrombosis and neuronal death. Over time, these changes can lead to chronic cere-
brovascular diseases, like small vessel disease, which contribute to neurodegeneration [207–209].

Additionally, the compromised cerebral microvasculature promotes cerebral microb-
leeds [210]. Chronic hypertension weakens the microvasculature, increasing the risk of
rupture and haemorrhage, particularly in deep brain regions [211]. These microbleeds ele-
vate the risk of stroke and neurodegeneration, exacerbating brain injury and inflammation
and creating a cycle of vascular and neural damage [50].

In summary, these findings underscore how elevated BP creates an environment
conducive to neurodegeneration, potentially initiating subsequent macroscopic changes in
the brain (Figure 2).

3.10.2. BP-Related Macroscopic Changes

The above microscopic changes result in macroscopic alterations across various brain
regions [76,212,213]. This includes global and regional brain atrophy [76,212,213], with a
notably strong impact observed in the hippocampus [76]. Importantly, the negative associa-
tion between higher BP and lower brain volumes is also observed below the hypertension
threshold [212,213]. Midlife high SBP and DBP above 130/80 mmHg are linked to a decrease
of −0.27% and −0.62%, respectively, in whole-brain volume later in life [213]. Considering
that BP tends to increase steadily with age [119,120], it may have a cumulative impact on brain
health over the lifespan. However, when and the extent to which non-hypertensive but high
BP contributes to brain health remains incompletely understood (Figure 2).

To address this question, we have recently performed a comprehensive systematic review
including 52 studies (n = 343,794; 53.2% female; mean age = 58.7 years). We found consistent
evidence indicating that higher BP levels are associated with smaller brain volumes, showing
a dose-dependent relationship. For every 10 mmHg increase in SBP above 120 mmHg, there
was an 11.2% increase in WML volume and a 1.3% reduction in hippocampal volume [7].
This aligns with a recent meta-analysis indicating that a one-standard-deviation increase
in SBP corresponds to a 10% increase in WML volume [214]. Importantly, this effect was
observed even below the hypertension and pre-hypertension threshold, suggesting that effects
due to increases in BP, which would typically not be considered clinically significant, may
significantly influence brain ageing over time. A notable concern is the decline in hippocampal
volume; high BP may contribute to an additional 2.6% volume reduction, potentially bringing
forward the onset of clinical dementia by up to one year [7]. Moreover, the negative impact of
BP levels extend to GM, WM, and the amygdala, indicating BP’s comprehensive influence on
overall brain health [7,76,212,213]. However, there were limited quantitative data available
to conduct a meta-analysis in these regions [7]. Therefore, further high-quality research is
needed to fully understand BP’s contribution to brain morphology.

The impact of BP on brain volumes exhibits an age-related variation, and midlife
has been proposed as a critical period where high BP initiates metabolic and macroscopic
changes which seed the processes that make a strong contribution to brain atrophy in later
life [212,213,215]. However, the precise timing of these initial stages remains unclear. In
contrast, at older ages, inconsistent associations are observed [212,215,216]. For instance,
BP levels below 130/80 mmHg are linked to smaller brain volumes and larger WMLs in the
elderly [7,212,213,215]; possibly due to inadequate cerebral perfusion and compromised
nutrient delivery associated with lower BP, this vascular compromise may contribute to
neurodegenerative processes. Conversely, we found that higher BP in individuals in their
60s is associated with smaller brain volume, and this association persists even into the
70s and above [7]. This is possibly due to chronic hypertensive effects which may lead
to arteriosclerosis, narrowing and stiffening the brain’s blood vessels, leading to reduced
blood flow and neurodegenerative changes [35].

Beyond age-related findings, considering the known cardiovascular health differences
between sexes [106,217], the link between BP and brain structure may also differ based on
sex. Indeed, a recent study found that BP levels are associated with a smaller hippocampus
volume, and changes in white matter integrity were more pronounced in men compared to
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women (n = 427; 60.6% female; and aged 50) [218]. Other studies have provided evidence in
the opposite direction, suggesting that higher BP may be associated with smaller regional
brain volumes in women (n = 266, aged 68–73 years) [219]. When combining the existing
evidence in our systematic review, weak sex-based differences were observed, though this
was potentially due to methodological factors such as analyses being controlled for sex
rather than conducted separately and stratified by sex [7]. This highlighted the need for
high-quality research to investigate this question with larger sample sizes.

To address this question, we recently examined the associations between BP levels and
brain volumes, as well as WMLs, in a large cohort from the United Kingdom (UK) Biobank study
(n = 36,000; female 54.2%; aged 37–73 years). We carefully stratified the sample by sex and age
groups (≤45, 46–55, 56–65, and >65 years), and investigated interactions with body mass index
(BMI) and antihypertensive medication use [8]. In line with previous research [7], we confirmed
that high BP is associated with lower brain volumes and larger WMLs and these associations were
evident across all BP levels, including within the normal range [8]. Importantly, the deleterious
effects of BP levels were apparent in all age groups, with a more pronounced association in 45
year olds with hypertension. This group exhibited a 0.7% lower GM and a 0.8% larger WMLs
volume, equivalent to 1–2 years of typical ageing [220]. Moreover, we demonstrated sex-related
differences, with a more noticeable adverse impact in women compared to men, suggesting
women are more vulnerable to the detrimental effects of elevated BP than men. This may be
attributable to the regulatory role of sex hormones, especially oestrogen, in BP levels because
oestrogen influences vascular tone and endothelial function [106,221], potentially impacting BP
regulation in women. Importantly, given the higher dementia prevalence in women globally,
these findings may suggest that closely monitoring BP levels in women may be particularly
beneficial and may help decrease dementia prevalence in this group.

Additionally, we found that the detrimental impact of BP on brain health is exacer-
bated by higher BMI. Indeed, overweight or obese individuals experienced an additional
~0.4% reduction in GM volume for every decade above 45 years, suggesting the impor-
tance of maintaining a normal weight to mitigate high BP-related pathologies [149,222].
This aligns with research showing that higher BMI is associated with lower brain and
hippocampal volumes [223]. This might be because high BMI is associated with increased
inflammation, and OS, and therefore contributes to cardiovascular disease and the brain’s
ageing process [224,225].

Interestingly, we also found that the use of antihypertensive medication can mitigate
the negative impact of BP on neurodegeneration and that it provides some neuroprotection.
SBP in participants taking antihypertensive medication was associated with (−1.2%) lower
WMLs in older individuals > 65 years [8]. This finding is in line with a meta-analysis
of seven studies including individuals aged 60 to 78 years, showing that maintaining
SBP within the 110 to 129 mmHg range with antihypertensive treatment is linked to a
significant reduction (SMD = −0.37 cm3) in WML progression, compared to controls [226].
Furthermore, we found that antihypertensive medication appears to preserve GM, WM,
and hippocampal volume in younger individuals ≤ 45 years [8]. This protective effect may
be attributed to the medication’s beneficial impact on reducing inflammation, improving
vascular health, thereby controlling BP. This, in turn, enhances cerebral blood flow and
mitigates neurodegeneration. Certain antihypertensives also modulate neurotransmitter
activity, indirectly influencing brain health [227,228]. However, contradictory evidence indi-
cates a lack of such a protective effect in older individuals regarding brain shrinkage [226].
This may suggest that initiation of antihypertensive treatment at a younger age may be
more effective in shielding the brain from the detrimental effects of elevated BP levels and
potentially in reducing the future risk of dementia (Figure 2).

3.11. BP and Cognitive Decline

The BP-related cerebral changes described in the previous section would be expected to
impact brain function and, indeed, robust evidence indicates that elevated BP seems to impact
cognitive performance across various domains in individuals without dementia (Table 1) [9,229].
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Table 1. Association between higher BP and ageing mechanisms, neurodegeneration, cognitive decline, and dementia.

Domain Type of Research Effects of ↑ BP Effects of ↑ SBP Effects of ↑ DBP Effects of ↑ MAP

↑ Endothelium dysfunction
[168–170].

↑ Proinflammatory cytokines,
including IL-1β [174], TNF-α,

IL-6 [175,176], and IFN-γ
[177], IL-17 [180].

↑ Plaque formation and
atherosclerosis [186,187]

Animal

↑ Calcium deposits and
vessel stiffness [188,191,192].

↑ Endothelial function
assessed by ↑ FMD [230].

↑ Pro-inflammatory cytokines
including IL-6 and CRP

[173,182,231,232].

↑ Atherosclerosis [233,234].

Ageing mechanisms

Human

↑ Calcium deposits and
vessel stiffness [114].

↑ Calcium deposits and
vessel stiffness [235].

↑ Glial and dendritic loss
[18,19,236].

↑ Myelin disruption [38].

↑ Vascular impairment
including ischemia [207–209].

↓ Synaptic density [202].

Animal

↑ Aβ-plaque deposition [204].
↑ Tauopathy [204].

Neurodegeneration

Human
↓ Brain volume, hippocampal

volume [212,213].
↑ WML volume [7,214].

↓ GM, WM, hippocampal
volume [7,212,213,237], and

amygdala volume [237].
↑ WML volume [7,214].

↓ GM, WM, hippocampal
volume [7,212,213,237] and

amygdala [237].
↑ WML volume [7,214].

↓ GM, WM, hippocampal
volume [7,237], and

amygdala [237].
↑ WML volume [7].
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Table 1. Cont.

Domain Type of Research Effects of ↑ BP Effects of ↑ SBP Effects of ↑ DBP Effects of ↑ MAP

Animal ↑ Cognitive decline [238].

Cognitive decline
Human

↓ Executive function,
memory, Motor speed, and

attention [9,239].
↑ Cognitive decline

[240,240–242].

↑ Cognitive decline [242,243].

Animal ↑ AD like pathology [244].

Dementia
Human

↑ Vascular dementia risk
[245].

↑ AD [246].

↑ Dementia risk [241,247].
↑ AD [247].

Abbreviation: AD: Alzheimer’s disease; Aβ-plaque: Beta-amyloid plaque; CRP: C-reactive protein; FMD: flow-mediated dilation; GM: gray matter; IL: interleukin; WM: white matter. ↑:
higher/increase; and ↓: lower/decrease. Colour reference: Green for aging mechanisms, pink for neurodegeneration, gray for cognitive decline, and blue for dementia incidence, with
light shades for animal studies and dark shades for human studies.
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This influence encompasses executive function, memory, motor speed, attention, and
varying degrees of cognitive decline, with particular significance in the elderly popula-
tion [9,239]. The observed association follows a dose-dependent relationship [13,243]. For
instance, findings from the Honolulu–Asia Aging Study (n = 3734; mean age 78 years)
revealed that a 10 mmHg increase in SBP over approximately 20 years is linked to a 9%
higher risk of cognitive decline [243]. Such an effect of high BP in midlife could lead to a
39% increased risk of developing dementia over about 25 years. Notably, this risk extends
even below the hypertensive range (BP ≥ 120/80 mmHg and <140/90 mmHg), with a 31%
increased risk of dementia [241] (Figure 2).

Given higher BP is associated with lower cognitive performance, it may be expected
that early treatment with antihypertensive medication would mitigate this effect, and
this is indeed what has been reported in the literature. Summary evidence from a recent
meta-analysis showed that antihypertensive drugs effectively lower BP and decrease
the likelihood of cognitive decline in individuals with hypertension [248]. Particularly,
these medications are associated with cognitive improvements in memory and attention,
with a less pronounced effect on the speed of processing or executive function [248].
Antihypertensive medication also reduces the risk of dementia. In a meta-analysis of
six studies (n = 31,000; age 55 years), controlling BP through medication was linked to a
12% decreased risk of dementia and a 16% lower risk of AD over 7 to 22 years of follow-
ups [249]. However, the protective effects of antihypertensive medication seems to diminish
in advanced age. This observation is supported by a meta-analysis of five RCTs involving
somewhat older individuals (average age 65.7 years; age range 63.0 to 80.5 years; n = 17,396;
40% female), which revealed no significant association with the onset of cognitive decline,
MCI and dementia [250]. This aligns with the broader evidence suggesting a more robust
protective effect of antihypertensive medication against neurodegeneration at younger
ages (Section 3.10). This could be attributed to the limited effectiveness of BP medication
on the brain when damage is already established. This supports the notion that damage
occurs in mid-life or earlier. Therefore, early pharmacological intervention, ideally before
hypertension develops, could significantly contribute to protecting the brain and reducing
the dementia burden in the population. Since the evidence in the previous section suggests
that the negative impact of BP is observed even in the non-hypertensive range, where
individuals may not be eligible for pharmaceutical interventions [78,251]. Thus, there
is a need for non-medicalized and highly scalable interventions applicable to a younger
population. In the following section, we will explore whether Mg supplementation may
contribute to such interventions.

4. Dietary Magnesium: Underlying Mechanisms and Possible Prevention Opportunity

Mg is an essential mineral that plays an important role in the ageing process. It has
been closely associated with improving vascular health, notably by diminishing vascular
atherosclerosis and calcification [252]. Recent meta-analyses of prospective cohort studies
and randomized controlled trials have consistently demonstrated a robust inverse rela-
tionship between higher Mg intake and lower BP levels, as well as a decreased risk of
developing hypertension [161]. Beyond cardiovascular health, the importance of Mg ex-
tends to brain health with several studies showing an association between higher Mg levels
and reduced brain lesions [253]. Additionally, increased Mg levels have been linked to
enhanced cognitive function and reduced risk of dementia [254–257], making it an impor-
tant element to consider in the context of overall brain health, since cardiovascular health
and high BP are important risk factors for neurodegeneration [7,8], cognitive decline [9],
and dementia [11]. Mg supplementation either through pharmaceutical preparations or
through dietary intake could be used in the population to lower BP levels and consequently
improve brain health. However, the precise contribution dietary Mg can make in relation to
brain health remains unclear and requires further investigation. The following section will
explore the potential role of Mg in moderating the ageing process, focusing on its impact
on BP regulation and its potential influence on brain health.
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4.1. Magnesium and Ageing Mechanisms

Research has revealed a strong link between Mg intake and the mechanical properties
of blood vessels [252]. In an animal study, rats fed a Mg-deficient diet exhibited thicker
intima-media layers within their blood vessels compared to rats on a Mg-supplemented
diet [258]. A reduction in the carotid intima-media thickness (CIMT) was also demon-
strated after a 24-week course of Mg supplementation (250 mg/day) in diabetic haemodial-
ysis patients, compared to a placebo (p = 0.004) [160]. This observed improvement in
CIMT could be attributed to Mg’s role in preventing the development of atherosclerotic
plaques [259–261]. A 6-month Mg supplementation (600 mg/day) significantly reduced
SBP in hypertensive women. Interestingly, the placebo group experienced an increase
in CIMT, indicating atherosclerosis progression [259]. The most likely mechanism is the
role of Mg in reducing lipid build-up in arterial walls [262]. Robust evidence indicates a
notable reduction in serum LDL levels (p = 0.006) with Mg supplementation, especially
at doses exceeding 300 mg/day, in individuals with type 2 diabetes. Additionally, a posi-
tive association was observed between higher Mg intake and an increase in HDL levels
(p = 0.026) [263].

Mg influences vascular contraction by regulating Ca levels, through a mild physiologic
Ca channel blocker action [264]. This action results in a decrease in both cardiac [265]
and aortic contractility [266]. Importantly, the regulatory influence of Mg extends to
preventing excessive Ca accumulation in arteries, thereby reducing the risk of vascular
calcification [266,267]. This effect was shown in the Framingham Heart Study (n = 2695;
mean age 54 years), revealing that higher dietary Mg intake (427 mg/day) is associated
with a 58% lower coronary artery calcium (CAC) in individuals without cardiovascular
disease compared to those with lower intake (258 mg/day) [268].

Importantly, these vascular effects contribute directly to lowering BP and reducing
the risk of hypertension. In a spontaneously hypertensive rat model, lower Mg serum and
tissue levels were observed [269,270]. Furthermore, Mg supplementation (650 mg/day
for 10 weeks) was shown to lower BP in young prehypertensive rats, but had no effect
in older rats [270]. Consistent findings from meta-analysis studies in humans have also
highlighted the effectiveness of Mg supplementation in reducing BP levels and preventing
the development of hypertension [161]. Indeed, Mg administration at doses ranging from
365 to 450 mg/day led to a substantial reduction of 4.18 mmHg in SBP, and 2.18 mmHg in
DBP with follow-ups ranging from 1 to 6 months [17]. Notably, these positive effects were
observed in individuals with insulin resistance or type 2 diabetes, suggesting the broad
applicability and potential benefits of Mg supplementation across diverse populations
and conditions [17]. Research indicates that even a slight decrease in BP is clinically
significant in lowering the risk of coronary heart disease and stroke [271]. Furthermore,
meta-analysis of 34 trials involving diverse populations found an inverse relationship
between Mg supplementation and BP [272]. Paradoxically, higher serum Mg concentration
have not been found to be associated with a reduced risk of hypertension [16]. However,
since Mg is primarily stored intracellularly, with only ~1% circulating in the bloodstream,
it is likely that serum Mg is a poor index of Mg intake and is most useful in detecting major
Mg deficiency [15]. This underscores the importance of focusing on dietary intake and
supplementation to assess Mg status more accurately.

To better understand the clinical significance of Mg supplementation, it is important to
consider the maximum potential increase in plasma Mg levels. Normal plasma Mg levels
typically range from 1.7 to 2.4 mg/dL. Toxicity symptoms have been reported at plasma Mg
levels between 7 and 12 mg/dL, and cardiorespiratory arrest may occur at levels exceeding
15 mg/dL [273]. While supplementation can raise plasma Mg levels, these increases are
usually small; for example, a recent meta-analysis including 41 RCT showed that a median
dose of 365 mg per day over a median period of 12 weeks, serum Mg levels increased by
only 0.12 mg/dL [274]. This underscores that while Mg supplementation leads to only
modest increases in plasma levels, its clinical benefits may still be significant due to its
effects on cellular and metabolic processes.
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In addition to direct vascular effects, Mg protects the brain from oxidative stress
by stabilizing mitochondrial membranes and supporting antioxidant enzymes, such as
glutathione peroxidase and superoxide dismutase (SOD), which neutralize ROS. This
preserves neuronal integrity and function, especially in ageing populations [275]. Mg
may contribute to improve brain health through anti-inflammatory effects [276]. Indeed,
low Mg levels promote microglia activation, and the release of IL-6, TNF-α, and nitric
oxide [277]. In contrast, Mg supplementation in rats has been found to reduce microglia
activation and inhibit TNF-α production [278]. Similarly, in humans, a recent meta-analysis
across 15 RCTs (n = 889 participants; females = 62.5%; mean age 46 years) revealed that
Mg supplementation compared to placebo significantly lowered CRP blood levels (SMD
= −0.356, 95% CI −1.224, 0.017). Mg supplementation also significantly reduced plasma
fibrinogen, TNF, and IL-1 [279]. Notably, Asbaghi et al. [263] suggested a link between
higher Mg levels and increased HDL levels (p = 0.026), potentially offering cardiovascular
benefits by increasing the anti-inflammatory effect of HDL [280] (Figure 3).
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Figure 3. Schematic overview illustrating the relationship between magnesium (Mg), ageing mech-
anisms, and micro- and macrostructural brain changes. It shows how higher dietary Mg intake
supports vascular health by improving endothelial function and regulating blood pressure (BP).
Mg also contributes to reducing inflammatory processes, thereby mitigating the harmful effects of
chronic inflammation on brain tissue. Additionally, Mg exhibits neuroprotective properties, such as
the ability to block NMDAR (N-methyl-D-aspartate receptors), which is involved in excitotoxicity—a
process that can damage neurons during ageing. These beneficial effects of Mg lead to a reduction
in various brain-ageing pathologies, including glial cell loss, microglia activation, oxidative stress,
neuroinflammation, demyelination, amyloid accumulation, and tau phosphorylation. By counter-
acting these pathological mechanisms, Mg intake may help preserve brain health and slow down
age-related brain degeneration, ultimately reducing the risk of cognitive decline.

In addition, Mg helps maintain the integrity of the BBB [281]. Low Mg levels have
been associated with BBB dysfunction, resulting in increased permeability and allowing
neurotoxic substances to enter the brain [281,282]. Mg also contributes to maintaining
neuronal function. It is essential in regulating the activity of N-methyl-D-aspartate (NMDA)
receptors, which are important for synaptic plasticity and memory function. Excessive
activation of NMDA receptors leads to an influx of Ca ions into neurons, resulting in
excitotoxicity and potential neuronal damage. Mg acts as a natural NMDA receptor
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antagonist, blocking excessive Ca influx and thereby protecting against synaptic loss and
maintaining synaptic function [263,283]. Inadequate Mg levels can result in the overactivity
of NMDA receptors, increasing Ca flow into neurons and leading to synaptic loss and
neuronal damage [284].

Finally, Mg acts as a cofactor in key enzymatic reactions for neurotransmitter synthesis,
including serotonin, dopamine, and gamma-aminobutyric acid (GABA) [285]. By regulating
these systems, Mg significantly influences mood, cognition, and stress responses. Therefore,
sufficient Mg levels are important for GABAergic activity, which helps prevent anxiety and
depression [286].

4.2. Magnesium and Brain Ageing

Glick [287] was amongst the first to hypothesise a protective effect of Mg against
age-related neurodegeneration. Subsequent research has explored underlying mechanisms
for this protective effect, including the important role of Mg ions in neuronal matura-
tion, and their physiological presence in the cerebrospinal fluid (CSF) and within brain
tissue [288]. This prompted several lines of research to investigate the potential benefits of
Mg supplementation.

In rats supplemented with Mg through diet, a 15% increase in CSF Mg levels and an
approximately 30% rise in the total Mg concentration was observed in the brain tissue [289].
This increase was shown to contribute to the protection of neuronal function, the preven-
tion of synaptic loss [289,290], and the proliferation of neuronal stem cells (NSC) in the
hippocampus, ultimately enhancing neurogenesis [291,292]. Importantly, these beneficial
effects on NSC was found to occur in both young and aged mice [292]. Additionally, high
Mg levels in the brain were found to be associated with a decrease in glial activation and
neuroinflammation [293–295]. This has been found to be protective for myelin and white
matter fibres [296,297], thereby maintaining good signal transmission between neurons
and improving learning and memory abilities [298]. In addition, Mg supplementation was
found to reduce Aβ accumulation [289,295,299], and tau hyperphosphorylation which [253],
given their role in AD and other dementias, is likely to contribute to a reduced risk of
developing these conditions.

Converging evidence consistent with Mg’s neuroprotective effects was also demon-
strated in humans, with accumulating evidence consistently demonstrating that serum Mg
levels appear to be associated with dementia. For example, lower Mg plasma concentra-
tions [300] in T-cells, blood cells [301], CSF [302,303], and hair [304,305] were reported in
individuals with AD. These variations in Mg levels across different biological markers indi-
cate a potential link between Mg and neurodegeneration. Post-mortem histological analyses
have consistently shown lower Mg levels in AD brains compared to those of healthy con-
trols [287,305], with differences being particularly salient in the hippocampus [306]. While
these observations consistently show lower Mg levels in neurodegenerative diseases, it is
crucial to recognize that these biological levels primarily reflect the current Mg state. To
achieve a more comprehensive understanding of Mg’s neuroprotective effects, investigating
dietary intake becomes imperative. This approach helps bridge the gap between biological
markers and dietary considerations, providing insights into the intricate relationship be-
tween Mg and brain health. However, a gap in knowledge exists concerning the impact of
Mg intake on neurodegeneration (Figure 3).

To address this, we recently investigated the associations between dietary Mg intake
and brain volumes, as well as WMLs, in a large cohort of cognitively healthy individuals
(n = 6001; 54.7% female; age range 40–70 years). Our findings showed that individuals
with a higher Mg intake (550 mg/day or more) had a 0.20% larger GM and a 0.46% larger
right hippocampal volume compared to those with a typical Mg intake of around 350 mg
per day [307]. This is a strong effect as this volumetric difference equates to approximately
one additional year of brain ageing [59]. These effects are particularly noteworthy because
they were observed in a general population with normal Mg levels (mean 355.35 mg),
and therefore are not attributable to Mg deficiency. Thus, if these results extend to other
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populations, a 41% increase in Mg intake could potentially have a substantial positive
impact on brain health and may contribute to preserving cognitive abilities and to reducing
the risk or delaying the onset of dementia [307] (Figure 3).

Interestingly, such effects have also been demonstrated in relation to cognitive function
and decreased dementia risk in epidemiological studies [308]. For example, in a Japanese
population, individuals with the highest Mg dietary intake (≥196 mg/day) exhibited a 37%
lower risk of all types of dementia compared to those with the lowest intake (≤174 mg/day)
in a large population (n = 1000; mean age 69 years) over a 17-year follow-up period [255].
This trend is consistent with another population study (n = 1406, 52% female, mean age
62.5 years) where higher Mg intake (≥434 mg) was associated with a 93% reduced risk of
transitioning to MCI [257]. Importantly, these benefits extend beyond clinical outcomes,
as higher Mg intake has also been linked to improved cognitive function in unimpaired
individuals [256]. Together, these findings suggest that Mg supplementation may have
broad benefits for cognitive health in mid to late life. However, a major knowledge gap
pertains to whether such effects can also be demonstrated at younger ages.

To address this question, we investigated the links between dietary Mg intake and
both brain volumes and WMLs in individuals aged 40 to 70 years. We found that the
protective effect of dietary Mg emerges at least as early as the 40s, and perhaps earlier [307].
This observation may be attributable to a broader body of evidence suggesting that factors
influencing both the risk and protection against brain ageing emerge in early life and
accumulate throughout the entire lifespan [204]. This aligns with the observations of
Ozawa et al. [255] and Lo et al. [254] who identified a positive relationship between dietary
Mg intake in middle age and the onset of dementia 17 to 20 years later. This suggests
that Mg is a crucial intervention for preserving and promoting brain health in the general
population, with a preference for implementation in younger age cohorts.

Beside age, the neuroprotective effects of dietary Mg also vary by sex. Tao et al. [256]
found a stronger positive association between high Mg intake and higher cognitive scores
in women compared to men. Similarly, we also observed a stronger relationships between
high Mg intake, larger brain volumes, and lower WMLs in women compared to men [307].
This may be attributable to hormonal factors, as oestrogen has been found to be protective
against neurodegeneration, and dementia [309]. To explore this hormonal hypothesis, we
contrasted pre- and post-menopausal women and contrary to our hypothesis, we observed
a stronger positive association between Mg intake and brain volumes in post-menopausal
women across various brain regions, as compared to pre-menopausal women [307]. Thus,
an alternative hypothesis is that the observed effect may be due to the anti-inflammatory
effects of Mg, as Chacko et al. [310] previously found lower inflammatory markers in post-
menopausal women with a higher dietary Mg intake. These are important findings because
it has been widely demonstrated that post-menopausal women experience more neuroin-
flammation and are exposed to more cardio-metabolic risk factors than pre-menopausal
women, and therefore may benefit more from Mg’s anti-inflammatory effects.

In summary, consistent evidence suggests that Mg has neuroprotective effects (Table 2).
This makes dietary Mg a potential agent for promoting brain health. However, the precise
mechanisms responsible for this protective effect are not fully understood and are explored
in the following section.
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Table 2. Association between magnesium and ageing mechanisms, neurodegeneration, cognitive decline, and dementia.

Domain Type of Research Effects of ↑ Mg (Serum) Effects of ↑ Mg (Dietary) Effects of ↑ Mg (Brain Levels)

↓ Thickness of intima-media layers
in blood vessels [258].

↓ Atherosclerosis [311,312].

↓ Plasma oxLDL

↓ Vascular calcification [313]

↓ BP levels [269,270]. ↓ BP levels [269].

↓ Expression of proinflammatory
cytokines including TNF-a and

IL-1B [294].

↓ Microglia activation inhibition
[314,315].

↓ Expression of pro-inflammatory
cytokines, including TNF-α, IL-1α,

IL-1β, and IL-6 [295,314,315].

Animal

↓ Blocking of cytotoxic effects of
NMDA [283].

↓ Carotid intima-media thickness
[316].

↓ Carotid intima-media thickness
[160].

↓ Atherosclerotic plaques [317,318]. ↓ Atherosclerotic plaques [259,261].

↓ LDL levels [319–322]. ↓ Serum LDL levels [263].
↑ HDL levels [263].

↓ Coronary artery calcium [268].
No effect on vascular calcification

[323].

No link between serum Mg
concentration and reduced risk of

hypertension [16].

↓ BP (e.g., SBP, DBP) levels
[16,17,324].

Ageing mechanisms

Human

↓ Chronic inflammation [276].
No link between serum Mg and
inflammation markers including

CRP and ESR [316].

↓ CRP levels [278,279,325]
↓ Blood levels of pro-inflammatory

cytokines, including IL-6 and
TNF-α [278,325].
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Table 2. Cont.

Domain Type of Research Effects of ↑ Mg (Serum) Effects of ↑ Mg (Dietary) Effects of ↑ Mg (Brain Levels)

↑ NSC [292].

↓ Synaptic loss [289,298,326]. ↑ Synaptic plasticity [253]
Animal

↓ Aβ-plaque deposition [289,293]. ↓ Aβ-plaque deposition [289,295].
↓ Tau hyperphosphorylation [253].

Neurodegeneration

Human

↑ Brain volumes including GM,
WM, and hippocampal volume

[307].
↓ WMLs [307].

Animal ↑ Learning and memory abilities
[289,298].

↑ Learning and memory abilities
[253].

Cognitive decline
Human ↑ Cognitive function [327]. ↓ Cognitive decline [256].

↓ Transition to MCI [254,257].

Animal ↑ Cognitive function in AD mic
[298].

Dementia
Human

↓ Plasma Mg in AD [300].
No association between plasma Mg

concentrations and AD [328].

↓ Dementia [254].
↓ Vascular dementia and AD and all

Dementia type [255].

Abbreviation: Aβ-plaque: Beta amyloid plaque; AD: Alzheimer’s disease; BP: blood pressure; CRP—C-reactive protein; DBP: diastolic blood pressure; ESR: Erythrocyte sedimentation
rate; GM: Gray matter; HDL: high-density lipoprotein; IL: interleukin; MCI: mild cognitive impairment; NMDA: N-methyl D aspartate; NSC: neural stem cells; oxLDL: oxidized low
density lipoprotein; SBP: systolic blood pressure; TNF-α: tumour necrosis factor-alpha; WMLs: white matter lesions; WM: white matter. ↑: higher/increase; and ↓: lower/decrease.
Colour reference: Green for aging mechanisms, pink for neurodegeneration, gray for cognitive decline, and blue for dementia incidence, with light shades for animal studies and dark
shades for human studies.
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4.3. Mechanisms Mediating Magnesium Effect on Brain Ageing/Cognitive Function

Relatively little research directly investigating the mechanism underlying the neuro-
protective effects of dietary Mg has been conducted. It is well-established that high BP
levels contribute to neurodegeneration [7,8,329], cognitive decline [9], and increase the risk
of dementia [11]. Since increased Mg intake decreases BP levels, a logical hypothesis is
that the association between higher Mg levels and reduced neurodegeneration, improved
cognitive function, and a lowered risk of dementia is attributable to its effect on BP. Surpris-
ingly, in a recent study testing this hypothesis, we did not find evidence supporting such a
mediation effect [307].

Thus, an alternative hypothesis is that since, as reviewed in Section 3.10.1, Mg’s
beneficial mechanisms also include downregulating the inflammatory response, it is pos-
sible that Mg’s anti-inflammatory effect mediates its neuroprotective effect. We recently
tested this hypothesis and found some evidence that inflammation mediates Mg’s neu-
roprotective effect. Specifically, higher Mg intake was associated with lower levels of
high-sensitivity CRP and this effect was found to partly explain the identified association
between higher dietary Mg intake and larger GM volume [330]. It is important to note that
this anti-inflammatory effect partially explained, but did not fully mediate, the Mg effect
on brain volumes. Therefore, another alternative mechanism may also be involved. This
may include an antihypertensive effect that may have occurred in the years or decades
before as the quality of dietary intake tends to remain relatively similar in adulthood [331].
Moreover, as suggested in Section 3.10.1, Mg may also potentially contribute to neuro-
protection by blocking NMDA receptors, and thus preventing some synaptic loss, and
maintaining synaptic function [254,283]. However, there is limited evidence available on
these associations in humans. Further studies are needed to explore and validate these
potential mechanisms, which may offer a more comprehensive understanding of Mg’s role
in preserving brain health (Figure 4).
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Figure 4. Schematic overview of mechanisms mediating the neuroprotective effects of magnesium on
brain ageing. The antihypertensive effect of magnesium may be linked to slower ageing, although recent
research by Alateeq et al. [307] found no significant effects in a large population sample. Emerging
evidence suggests that inflammation may partially mediate the association between magnesium intake
and brain volume, indicating that the anti-inflammatory properties of magnesium could help reduce
brain ageing. Furthermore, multiple pathways, such as NMDA receptor modulation, may play a role in
the neuroprotective effects of magnesium. While evidence from human studies on NMDA modulation
remains limited, further research is needed to fully elucidate these interconnected mechanisms.
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5. Conclusions

As a whole, the body of evidence presented above strongly suggests that high BP levels
are associated with neurodegeneration and cerebrovascular disease, cognitive decline, and
the development of dementia, and ultimately, premature death (Table 1). A key finding
is that these effects appear to occur across the entire BP spectrum and are observable
even in young individuals. This is highly relevant to population health as it suggests that
relatively small increases in BP across the whole life course may contribute to a substantial
disease burden.

Another important finding indicates that Mg intake promotes neuronal health, protects
against neurodegeneration, enhances cognitive function, and lowers the risk of dementia,
particularly among younger people (Table 2). Thus, incorporating and encouraging high
Mg intake in our diet or through supplements, beginning at a young age and across the
lifespan, represents a simple strategy to improve cognitive function and reduce the risk
of dementia in the population and should be considered as a focus of scalable population
health interventions.

An unexpected finding also emerged from this review. Our initial hypothesis postu-
lated that the predicted, and eventually confirmed, associations between Mg and brain
volumes would be mediated by a decrease in BP attributable to Mg’s widely demonstrated
antihypertensive effect. Intriguingly and contrary to expectations, we found no direct
evidence for such a mediation effect in the human population studied. Instead, some
limited evidence suggesting that reduced inflammation associated with Mg intake might
mediate its effect on brain health was identified. Nonetheless, it is still more likely than not,
based on the overall evidence in the literature, that the BP-lowering effect of Mg contributes
to better brain health. However, further research aimed at more specifically confirming this
is needed.

An important new insight from this review that needs to be further explored in future
research is that the anti-inflammatory action of Mg may play a role in promoting brain
health in humans. This is consistent with the limited converging animal evidence on this
topic, but future research should seek to more definitely address this question as it may
have important implications for chronic disease prevention and healthy lifestyle messaging.
Finally, this review has also identified a potential but under-researched alternative neuro-
protective mechanism whereby Mg may block NMDA-induced cytotoxicity, consequently
reducing synapse loss and preserving synaptic function which requires more attention.

In summary, this review contributes to the growing body of knowledge on the complex
interplay between BP levels, dietary Mg intake, inflammation, and its implication for
brain health. Since these effects are active across the lifespan, they present substantial
opportunities to implement risk-reduction strategies in younger individuals, which have
the potential to lower disease burden in the population over decades.
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Abbreviations
ACE Angiotensin-converting enzyme
AD Alzheimer’s disease
Aβ Amyloid beta
ANS Autonomic nervous system
BMI Body mass index
BBB Blood–brain barrier
CAC Coronary artery calcium
Ca Calcium
CKD Chronic kidney disease
CIMT Carotid intima-media thickness
CRP C-reactive protein
CSF Cerebrospinal fluid
DBP Diastolic blood pressure
ESRD End-stage renal disease
ESC/ESH European Society of Cardiology/European Society of Hypertension
HR Hazard ratio
IFN-γ Interferon-gamma
IL Interleukin
LDL Low-density lipoproteins
MAP Mean arterial pressure
Mg Magnesium
MCI Mild cognitive impairment
NMDA N-methyl-D-aspartate
NO Nitric oxide
OS Oxidative stress
PNS Parasympathetic nervous system
RAAS Renin-angiotensin-aldosterone system
RCT Randomized controlled trials
ROS Reactive oxygen species
SBP Systolic blood pressure
TNF-α Tumour necrosis factor-α
UK Biobank United Kingdom Biobank
VSMCs Vascular smooth muscle cells
WMLs White matter lesions
WM White matter
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