Maternal Dietary Improvement or Leptin Supplementation During Suckling Mitigates the Long-Term Impact of Maternal Obesogenic Conditions on Inflammatory and Oxidative Stress Biomarkers in the Offspring of Diet-Induced Obese Rats
Abstract
:1. Introduction
2. Results
2.1. Effects of Maternal Conditions and Leptin Treatment During Suckling on Phenotypic Traits in Adult Offspring
2.2. Effects of Maternal Conditions and Leptin Treatment During Suckling on Circulating Parameters in Adult Offspring
2.3. Effects of Maternal Conditions and Leptin Treatment During Suckling on rWAT Gene Expression in Adult Offspring
2.4. Effects of Maternal Conditions and Leptin Treatment During Suckling on Hepatic Gene Expression in Adult Offspring
2.5. Effects of Maternal Conditions and Leptin Treatment During Suckling on Hepatic Antioxidant Markers in Adult Offspring
2.6. Overall Effects of Maternal Conditions and Leptin Treatment During Suckling
3. Discussion
4. Materials and Methods
4.1. Animals and Experimental Design
4.2. Determination of Blood Parameters Under Ad Libitum Fed Conditions
4.3. Parameters Related to Oxidative Stress in Liver
4.4. RNA Extraction
4.5. Real-Time Quantitative Polymerase Chain Reaction (RT-qPCR) Analysis
4.6. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Monteiro, R.; Azevedo, I. Chronic inflammation in obesity and the metabolic syndrome. Mediat. Inflamm. 2010, 2010, 289645. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Yu, R.; Xiong, Y.; Du, F.; Zhu, S. A vicious circle between insulin resistance and inflammation in nonalcoholic fatty liver disease. Lipids. Health Dis. 2017, 16, 203. [Google Scholar] [CrossRef] [PubMed]
- Naomi, R.; Teoh, S.H.; Embong, H.; Balan, S.S.; Othman, F.; Bahari, H.; Yazid, M.D. The Role of Oxidative Stress and Inflammation in Obesity and Its Impact on Cognitive Impairments-A Narrative Review. Antioxidants 2023, 12, 1071. [Google Scholar] [CrossRef]
- Tilg, H.; Adolph, T.E.; Moschen, A.R. Multiple Parallel Hits Hypothesis in Nonalcoholic Fatty Liver Disease: Revisited After a Decade. Hepatology 2021, 73, 833–842. [Google Scholar] [CrossRef]
- Tosti, V.; Bertozzi, B.; Fontana, L. Health Benefits of the Mediterranean Diet: Metabolic and Molecular Mechanisms. J. Gerontol. A Biol. Sci. Med. Sci. 2018, 73, 318–326. [Google Scholar] [CrossRef]
- Clemente-Suárez, V.J.; Beltrán-Velasco, A.I.; Redondo-Flórez, L.; Martín-Rodríguez, A.; Tornero-Aguilera, J.F. Global Impacts of Western Diet and Its Effects on Metabolism and Health: A Narrative Review. Nutrients 2023, 15, 2749. [Google Scholar] [CrossRef]
- Feillet-Coudray, C.; Fouret, G.; Vigor, C.; Bonafos, B.; Jover, B.; Blachnio-Zabielska, A.; Rieusset, J.; Casas, F.; Gaillet, S.; Landrier, J.F.; et al. Long-Term Measures of Dyslipidemia, Inflammation, and Oxidative Stress in Rats Fed a High-Fat/High-Fructose Diet. Lipids 2019, 54, 81–97. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Twinn, D.S.; Ozanne, S.E. Early life nutrition and metabolic programming. Ann. N. Y. Acad. Sci. 2010, 1212, 78–96. [Google Scholar] [CrossRef]
- Hsu, C.N.; Hou, C.Y.; Hsu, W.H.; Tain, Y.L. Early-Life Origins of Metabolic Syndrome: Mechanisms and Preventive Aspects. Int. J. Mol. Sci. 2021, 22, 1872. [Google Scholar] [CrossRef]
- Parisi, F.; Milazzo, R.; Savasi, V.M.; Cetin, I. Maternal Low-Grade Chronic Inflammation and Intrauterine Programming of Health and Disease. Int. J. Mol. Sci. 2021, 22, 1732. [Google Scholar] [CrossRef]
- Segovia, S.A.; Vickers, M.H.; Gray, C.; Reynolds, C.M. Maternal obesity, inflammation, and developmental programming. Biomed. Res. Int. 2014, 2014, 418975. [Google Scholar] [CrossRef] [PubMed]
- Moraes-Souza, R.Q.; Vesentini, G.; Paula, V.G.; Sinzato, Y.K.; Soares, T.S.; Gelaleti, R.B.; Volpato, G.T.; Damasceno, D.C. Oxidative Stress Profile of Mothers and Their Offspring after Maternal Consumption of High-Fat Diet in Rodents: A Systematic Review and Meta-Analysis. Oxid. Med. Cell. Longev. 2021, 2021, 9073859. [Google Scholar] [CrossRef] [PubMed]
- Strain, J.; Spaans, F.; Serhan, M.; Davidge, S.T.; Connor, K.L. Programming of weight and obesity across the lifecourse by the maternal metabolic exposome: A systematic review. Mol. Aspects Med. 2022, 87, 100986. [Google Scholar] [CrossRef]
- Gorski, J.N.; Dunn-Meynell, A.A.; Hartman, T.G.; Levin, B.E. Postnatal environment overrides genetic and prenatal factors influencing offspring obesity and insulin resistance. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2006, 291, R768–R778. [Google Scholar] [CrossRef]
- Freeman, D.J. Effects of maternal obesity on fetal growth and body composition: Implications for programming and future health. Semin. Fetal. Neonatal. Med. 2010, 15, 113–118. [Google Scholar] [CrossRef] [PubMed]
- Pomar, C.; Castillo, P.; Palou, M.; Palou, A.; Picó, C. Implementation of a healthy diet to lactating rats attenuates the early detrimental programming effects in the offspring born to obese dams. Putative relationship with milk hormone levels. J. Nutr. Biochem. 2022, 107, 109043. [Google Scholar] [CrossRef]
- Palou, M.; Picó, C.; Palou, A. Leptin as a breast milk component for the prevention of obesity. Nutr. Rev. 2018, 76, 875–892. [Google Scholar] [CrossRef]
- Pico, C.; Oliver, P.; Sanchez, J.; Miralles, O.; Caimari, A.; Priego, T.; Palou, A. The intake of physiological doses of leptin during lactation in rats prevents obesity in later life. Int. J. Obes. 2007, 31, 1199–1209. [Google Scholar] [CrossRef]
- Szostaczuk, N.; Priego, T.; Palou, M.; Palou, A.; Pico, C. Oral leptin supplementation throughout lactation in rats prevents later metabolic alterations caused by gestational calorie restriction. Int. J. Obes. 2017, 41, 360–371. [Google Scholar] [CrossRef]
- Castillo, P.; Pomar, C.A.; Palou, A.; Palou, M.; Picó, C. Influence of Maternal Metabolic Status and Diet during the Perinatal Period on the Metabolic Programming by Leptin Ingested during the Suckling Period in Rats. Nutrients 2023, 15, 570. [Google Scholar] [CrossRef]
- Frühbeck, G.; Catalán, V.; Rodríguez, A.; Gómez-Ambrosi, J. Adiponectin-leptin ratio: A promising index to estimate adipose tissue dysfunction. Relation with obesity-associated cardiometabolic risk. Adipocyte 2018, 7, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Noeman, S.A.; Hamooda, H.E.; Baalash, A.A. Biochemical study of oxidative stress markers in the liver, kidney and heart of high fat diet induced obesity in rats. Diabetol. Metab. Syndr. 2011, 3, 17. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Zorita, S.; González-Arceo, M.; Trepiana, J.; Aguirre, L.; Crujeiras, A.B.; Irles, E.; Segues, N.; Bujanda, L.; Portillo, M.P. Comparative Effects of Pterostilbene and Its Parent Compound Resveratrol on Oxidative Stress and Inflammation in Steatohepatitis Induced by High-Fat High-Fructose Feeding. Antioxidants 2020, 9, 1042. [Google Scholar] [CrossRef] [PubMed]
- Di Majo, D.; Sardo, P.; Giglia, G.; Di Liberto, V.; Zummo, F.P.; Zizzo, M.G.; Caldara, G.F.; Rappa, F.; Intili, G.; van Dijk, R.M.; et al. Correlation of Metabolic Syndrome with Redox Homeostasis Biomarkers: Evidence from High-Fat Diet Model in Wistar Rats. Antioxidants 2022, 12, 89. [Google Scholar] [CrossRef]
- Bruce, K.D.; Cagampang, F.R.; Argenton, M.; Zhang, J.; Ethirajan, P.L.; Burdge, G.C.; Bateman, A.C.; Clough, G.F.; Poston, L.; Hanson, M.A.; et al. Maternal high-fat feeding primes steatohepatitis in adult mice offspring, involving mitochondrial dysfunction and altered lipogenesis gene expression. Hepatology 2009, 50, 1796–1808. [Google Scholar] [CrossRef]
- Greyslak, K.T.; Hetrick, B.; Bergman, B.C.; Dean, T.A.; Wesolowski, S.R.; Gannon, M.; Schenk, S.; Sullivan, E.L.; Aagaard, K.M.; Kievit, P.; et al. A Maternal Western-Style Diet Impairs Skeletal Muscle Lipid Metabolism in Adolescent Japanese Macaques. Diabetes 2023, 72, 1766–1780. [Google Scholar] [CrossRef]
- Nagagata, B.A.; Ajackson, M.; Ornellas, F.; Mandarim-de-Lacerda, C.A.; Aguila, M.B. Obese mothers supplemented with melatonin during gestation and lactation ameliorate the male offspring’s pancreatic islet cellular composition and beta-cell function. J. Dev. Orig. Health Dis. 2023, 14, 490–500. [Google Scholar] [CrossRef]
- Santos, M.; Rodríguez-González, G.L.; Ibáñez, C.; Vega, C.C.; Nathanielsz, P.W.; Zambrano, E. Adult exercise effects on oxidative stress and reproductive programming in male offspring of obese rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2015, 308, R219–R225. [Google Scholar] [CrossRef] [PubMed]
- Vega, C.C.; Reyes-Castro, L.A.; Bautista, C.J.; Larrea, F.; Nathanielsz, P.W.; Zambrano, E. Exercise in obese female rats has beneficial effects on maternal and male and female offspring metabolism. Int. J. Obes. 2015, 39, 712–719. [Google Scholar] [CrossRef]
- Liu, F.; He, J.; Wang, H.; Zhu, D.; Bi, Y. Adipose Morphology: A Critical Factor in Regulation of Human Metabolic Diseases and Adipose Tissue Dysfunction. Obes. Surg. 2020, 30, 5086–5100. [Google Scholar] [CrossRef] [PubMed]
- Chait, A.; den Hartigh, L.J. Adipose Tissue Distribution, Inflammation and Its Metabolic Consequences, Including Diabetes and Cardiovascular Disease. Front. Cardiovasc. Med. 2020, 7, 22. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.; O’Reilly, C.P.; Chapes, S.K.; Mora, S. Adiponectin and leptin are secreted through distinct trafficking pathways in adipocytes. Biochim. Biophys. Acta 2008, 1782, 99–108. [Google Scholar] [CrossRef] [PubMed]
- Vilariño-García, T.; Polonio-González, M.L.; Pérez-Pérez, A.; Ribalta, J.; Arrieta, F.; Aguilar, M.; Obaya, J.C.; Gimeno-Orna, J.A.; Iglesias, P.; Navarro, J.; et al. Role of Leptin in Obesity, Cardiovascular Disease, and Type 2 Diabetes. Int. J. Mol. Sci. 2024, 25, 2238. [Google Scholar] [CrossRef]
- Frühbeck, G.; Catalán, V.; Rodríguez, A.; Ramírez, B.; Becerril, S.; Salvador, J.; Colina, I.; Gómez-Ambrosi, J. Adiponectin-leptin Ratio is a Functional Biomarker of Adipose Tissue Inflammation. Nutrients 2019, 11, 454. [Google Scholar] [CrossRef]
- Michaud, A.; Pelletier, M.; Noël, S.; Bouchard, C.; Tchernof, A. Markers of macrophage infiltration and measures of lipolysis in human abdominal adipose tissues. Obesity 2013, 21, 2342–2349. [Google Scholar] [CrossRef]
- Blaser, H.; Dostert, C.; Mak, T.W.; Brenner, D. TNF and ROS Crosstalk in Inflammation. Trends Cell Biol. 2016, 26, 249–261. [Google Scholar] [CrossRef] [PubMed]
- Castillo, P.; Kuda, O.; Kopecky, J.; Pomar, C.A.; Palou, A.; Palou, M.; Picó, C. Reverting to a Healthy Diet during Lactation Normalizes Maternal Milk Lipid Content of Diet-Induced Obese Rats and Prevents Early Alterations in the Plasma Lipidome of the Offspring. Mol. Nutr. Food Res. 2022, 66, e2200204. [Google Scholar] [CrossRef]
- Lian, C.Y.; Zhai, Z.Z.; Li, Z.F.; Wang, L. High fat diet-triggered non-alcoholic fatty liver disease: A review of proposed mechanisms. Chem. Biol. Interact. 2020, 330, 109199. [Google Scholar] [CrossRef] [PubMed]
- Shin, S.K.; Cho, H.W.; Song, S.E.; Song, D.K. Catalase and nonalcoholic fatty liver disease. Pflugers. Arch. 2018, 470, 1721–1737. [Google Scholar] [CrossRef]
- Franco, R.; Schoneveld, O.J.; Pappa, A.; Panayiotidis, M.I. The central role of glutathione in the pathophysiology of human diseases. Arch. Physiol. Biochem. 2007, 113, 234–258. [Google Scholar] [CrossRef]
- Bouret, S.G.; Simerly, R.B. Development of leptin-sensitive circuits. J. Neuroendocrinol. 2007, 19, 575–582. [Google Scholar] [CrossRef]
- Bouret, S.G.; Draper, S.J.; Simerly, R.B. Trophic action of leptin on hypothalamic neurons that regulate feeding. Science 2004, 304, 108–110. [Google Scholar] [CrossRef] [PubMed]
- Priego, T.; Sanchez, J.; Palou, A.; Pico, C. Leptin intake during the suckling period improves the metabolic response of adipose tissue to a high-fat diet. Int. J. Obes. 2010, 34, 809–819. [Google Scholar] [CrossRef]
- Santoleri, D.; Titchenell, P.M. Resolving the Paradox of Hepatic Insulin Resistance. Cell Mol. Gastroenterol. Hepatol. 2019, 7, 447–456. [Google Scholar] [CrossRef]
- Shabalala, S.C.; Dludla, P.V.; Mabasa, L.; Kappo, A.P.; Basson, A.K.; Pheiffer, C.; Johnson, R. The effect of adiponectin in the pathogenesis of non-alcoholic fatty liver disease (NAFLD) and the potential role of polyphenols in the modulation of adiponectin signaling. Biomed. Pharmacother. 2020, 131, 110785. [Google Scholar] [CrossRef]
- Ouchi, N.; Parker, J.L.; Lugus, J.J.; Walsh, K. Adipokines in inflammation and metabolic disease. Nat. Rev. Immunol. 2011, 11, 85–97. [Google Scholar] [CrossRef]
- Matsuzawa-Nagata, N.; Takamura, T.; Ando, H.; Nakamura, S.; Kurita, S.; Misu, H.; Ota, T.; Yokoyama, M.; Honda, M.; Miyamoto, K.; et al. Increased oxidative stress precedes the onset of high-fat diet-induced insulin resistance and obesity. Metabolism 2008, 57, 1071–1077. [Google Scholar] [CrossRef]
- Ofosu-Boateng, M.; Shaik, F.; Choi, S.; Ekuban, F.A.; Gebreyesus, L.H.; Twum, E.; Nnamani, D.O.; Yeyeodu, S.T.; Yadak, N.; Collier, D.M.; et al. High-fat diet induced obesity promotes inflammation, oxidative stress, and hepatotoxicity in female FVB/N mice. Biofactors 2024, 50, 572–591. [Google Scholar] [CrossRef]
- Lubos, E.; Loscalzo, J.; Handy, D.E. Glutathione peroxidase-1 in health and disease: From molecular mechanisms to therapeutic opportunities. Antioxid. Redox. Signal. 2011, 15, 1957–1997. [Google Scholar] [CrossRef] [PubMed]
- Kamada, Y.; Matsumoto, H.; Tamura, S.; Fukushima, J.; Kiso, S.; Fukui, K.; Igura, T.; Maeda, N.; Kihara, S.; Funahashi, T.; et al. Hypoadiponectinemia accelerates hepatic tumor formation in a nonalcoholic steatohepatitis mouse model. J. Hepatol. 2007, 47, 556–564. [Google Scholar] [CrossRef] [PubMed]
- Furukawa, S.; Fujita, T.; Shimabukuro, M.; Iwaki, M.; Yamada, Y.; Nakajima, Y.; Nakayama, O.; Makishima, M.; Matsuda, M.; Shimomura, I. Increased oxidative stress in obesity and its impact on metabolic syndrome. J. Clin. Investig. 2004, 114, 1752–1761. [Google Scholar] [CrossRef] [PubMed]
- Peleg-Raibstein, D. Understanding the Link Between Maternal Overnutrition, Cardio-Metabolic Dysfunction and Cognitive Aging. Front. Neurosci. 2021, 15, 645569. [Google Scholar] [CrossRef] [PubMed]
- Zeiss, C.J. Comparative Milestones in Rodent and Human Postnatal Central Nervous System Development. Toxicol. Pathol. 2021, 49, 1368–1373. [Google Scholar] [CrossRef]
- Ibrahim, K.G.; Usman, D.; Bello, M.B.; Malami, I.; Abubakar, B.; Bello Abubakar, M.; Imam, M.U. Rodent models of metabolic disorders: Considerations for use in studies of neonatal programming. Br. J. Nutr. 2022, 128, 802–827. [Google Scholar] [CrossRef]
- Aebi, H. Catalase in vitro. In Oxygen Radicals in Biological Systems; Academic Press: Cambridge, MA, USA, 1984; Volume 105, pp. 121–126. [Google Scholar]
- Pfaffl, M.W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001, 29, e45. [Google Scholar] [CrossRef]
Males | Females | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
O-C | O-WD | O-Rev | ANOVA | O-C | O-WD | O-Rev | ANOVA | ANOVA | ||||||||
Veh | Lep | Veh | Lep | Veh | Lep | 2-way | Veh | Lep | Veh | Lep | Veh | Lep | 2-way | 3-way | ||
Body weight (g) | SD | 434 ± 11 | 423 ± 11 | 455 ± 10 | 470 ± 18 | 423 ± 10 | 400 ± 12 | MD A-B-A | 246 ± 6 | 249 ± 4 | 259 ± 4 | 258 ± 6 | 240 ± 7 | 249 ± 9 | - | SxMD |
WD | 513 ± 14 | 535 ± 19 | 546 ± 19 | 570 ± 23 | 528 ± 26 | 507 ± 19 | - | 283 ± 7 | 291 ± 7 | 280 ± 11 | 292 ± 10 | 276 ± 11 | 271 ± 6 | - | S, MD A-B-C | |
Fat mass (%) | SD | 13.6 ± 1.2 | 11.3 ± 1.1 | 12.0 ± 1.0 | 13.2 ± 1.0 | 12.2 ± 0.9 | 10.1 ± 0.5 * | - | 13.8 ± 1.1 | 13.6 ± 0.6 | 13.6 ± 0.7 | 11.9 ± 0.8 | 13.1 ± 0.9 | 12.0 ± 0.9 | - | L |
WD | 22.4 ± 1.3 | 24.3 ± 1.9 | 27.8 ± 2.3 | 27.9 ± 2.2 | 24.9 ± 2.3 | 23.9 ± 1.0 | - | 22.6 ± 0.9 | 24.2 ± 1.6 | 21.7 ± 2.2 | 23.8 ± 2.4 | 20.5 ± 2.0 | 19.4 ± 1.4 | - | S | |
rWAT weight (g) | SD | 8.6 ± 0.8 | 7.3 ± 0.7 | 9.2 ± 0.8 | 9.9 ± 0.9 | 8.3 ± 0.9 | 6.7 ± 0.6 | MD A-B-A | 3.4 ± 0.3 | 3.0 ± 0.1 | 3.1 ± 0.3 | 2.9 ± 0.2 | 3.0 ± 0.3 | 2.4 ± 0.2 * | L | SxMD |
WD | 18.8 ± 1.4 | 22.7 ± 1.3 | 22.4 ± 1.7 | 25.9 ± 3.1 | 24.1 ± 2.6 | 21.1 ± 2.0 | - | 5.7 ± 0.3 | 6.7 ± 0.5 | 6.5 ± 0.8 | 6.4 ± 0.7 | 5.6 ± 0.4 | 5.2 ± 0.4 | - | S | |
Liver weight (g) | SD | 12.3 ± 0.5 | 12.5 ± 0.4 | 13.2 ± 0.5 | 13.8 ± 0.8 | 12.4 ± 0.4 | 11.6 ± 0.6 | MD A-B-A | 6.6 ± 0.3 | 6.5 ± 0.3 | 7.6 ± 0.3 | 7.4 ± 0.3 | 6.9 ± 0.3 | 7.3 ± 0.4 | MD A-B-AB | S, MD A-B-A |
WD | 17.3 ± 0.6 | 17.9 ± 0.9 | 17.9 ± 0.9 | 18.3 ± 1.1 | 17.7 ± 0.9 | 16.5 ± 1.1 | - | 8.3 ± 0.1 | 8.4 ± 0.5 | 7.5 ± 0.5 | 7.8 ± 0.3 | 8.4 ± 0.3 | 7.9 ± 0.2 | - | S |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pomar, C.A.; Trepiana, J.; Besné-Eseverri, I.; Castillo, P.; Palou, A.; Palou, M.; Portillo, M.P.; Picó, C. Maternal Dietary Improvement or Leptin Supplementation During Suckling Mitigates the Long-Term Impact of Maternal Obesogenic Conditions on Inflammatory and Oxidative Stress Biomarkers in the Offspring of Diet-Induced Obese Rats. Int. J. Mol. Sci. 2024, 25, 11876. https://doi.org/10.3390/ijms252211876
Pomar CA, Trepiana J, Besné-Eseverri I, Castillo P, Palou A, Palou M, Portillo MP, Picó C. Maternal Dietary Improvement or Leptin Supplementation During Suckling Mitigates the Long-Term Impact of Maternal Obesogenic Conditions on Inflammatory and Oxidative Stress Biomarkers in the Offspring of Diet-Induced Obese Rats. International Journal of Molecular Sciences. 2024; 25(22):11876. https://doi.org/10.3390/ijms252211876
Chicago/Turabian StylePomar, Catalina Amadora, Jenifer Trepiana, Irene Besné-Eseverri, Pedro Castillo, Andreu Palou, Mariona Palou, Maria P. Portillo, and Catalina Picó. 2024. "Maternal Dietary Improvement or Leptin Supplementation During Suckling Mitigates the Long-Term Impact of Maternal Obesogenic Conditions on Inflammatory and Oxidative Stress Biomarkers in the Offspring of Diet-Induced Obese Rats" International Journal of Molecular Sciences 25, no. 22: 11876. https://doi.org/10.3390/ijms252211876
APA StylePomar, C. A., Trepiana, J., Besné-Eseverri, I., Castillo, P., Palou, A., Palou, M., Portillo, M. P., & Picó, C. (2024). Maternal Dietary Improvement or Leptin Supplementation During Suckling Mitigates the Long-Term Impact of Maternal Obesogenic Conditions on Inflammatory and Oxidative Stress Biomarkers in the Offspring of Diet-Induced Obese Rats. International Journal of Molecular Sciences, 25(22), 11876. https://doi.org/10.3390/ijms252211876