Application of Fetal Membranes and Natural Materials for Wound and Tissue Repair
Abstract
:1. Introduction
2. Role, Structure, and Biological Properties of Human Fetal Membranes
2.1. Role
2.2. Structure
2.2.1. Amnion
2.2.2. Chorion
2.3. Biological Properties
2.3.1. Immunomodulation
2.3.2. Antimicrobial Effect
2.3.3. Re-Epithelialization
2.3.4. Anti-Fibrotic Action
2.3.5. Angiogenesis
2.3.6. Analgesic Effect
3. Clinical Application of Fetal Membranes to Promote Wound Healing
3.1. Skin Repair
3.1.1. Burn Wounds
3.1.2. Skin Graft Donor Site
3.1.3. Diabetic Wounds
3.2. Ophthalmology
3.3. Orthopedics
3.4. Other Fields of Surgery
3.4.1. Nerve Repair
3.4.2. Maxillofacial and Oral Surgery
3.4.3. Gynecology
3.4.4. Other
4. Fetal Membranes and Natural Materials to Promote Healing
Material (Search Term) | All * | Excluded Articles | Included Articles | Combined Use with Fetal Membranes | Comparison with Fetal Membranes |
---|---|---|---|---|---|
Chitosan | 18 | 5 | 13 (Table 2) | 6 | 7 |
Hyaluronic acid | 51 | 43 | 8 (Table 3) | 5 | 3 |
PLAT platelet-derived growth factor | 36 | 34 | 2 (Table 4) | 1 | 1 |
Honey | 4 | 1 | 3 (Table 5) | 1 | 2 |
Epigallocatechin-3-gallate (EGCG) | 3 | 1 | 2 | 1 (used for AM preparation) | 1 |
Lysine | 37 | 36 | 1 | 1 (used for AM preparation) | 0 |
Aloe vera | 1 | 0 | 1 | 1 | 0 |
Dichloromethane | 2 | 2 | 0 | ||
Hexane | 6 | 6 | 0 | ||
Shikonin | 1 | 1 | 0 | ||
Lectin | 63 | 63 | 0 | ||
Carbohydrates | 22 | 22 | 0 | ||
Bilirubin | 15 | 15 | 0 | ||
Minerals | 15 | 15 | 0 | ||
Soybean | 12 | 12 | 0 | ||
Wheatgerm | 11 | 11 | 0 | ||
Oleic acid | 6 | 6 | 0 | ||
Resveratrol | 5 | 5 | 0 | ||
Carotenes | 4 | 4 | 0 | ||
Vitamin B | 4 | 4 | 0 | ||
Amino acids | 3 | 3 | 0 | ||
Beta-carotene | 3 | 3 | 0 | ||
Metformin | 3 | 3 | 0 | ||
Propolis | 3 | 3 | 0 | ||
Quercetin | 3 | 3 | 0 | ||
Alpha-chymotrypsin | 2 | 2 | 0 | ||
Astragali radix | 2 | 2 | 0 | ||
Caffeic acid | 2 | 2 | 0 | ||
Essential oil | 2 | 2 | 0 | ||
Thymol | 2 | 2 | 0 | ||
Anthocyanin | 1 | 1 | 0 | ||
Apigenin | 1 | 1 | 0 | ||
Apigenin-7-O-glucoside | 1 | 1 | 0 | ||
Baicalin | 1 | 1 | 0 | ||
Bromelain | 1 | 1 | 0 | ||
Carvacrol | 1 | 1 | 0 | ||
Catharanthus roseus | 1 | 1 | 0 | ||
Danggui buxue | 1 | 1 | 0 | ||
Eucalyptus | 1 | 1 | 0 | ||
Fenugreek | 1 | 1 | 0 | ||
Hexanoic acid | 1 | 1 | 0 | ||
Kaempferol | 1 | 1 | 0 | ||
Luteolin | 1 | 1 | 0 | ||
Oleanolic Acid | 1 | 1 | 0 | ||
Polyphenols | 1 | 1 | 0 |
4.1. Chitosan
Reference | Material | Intended Clinical Application | Type of Study | Model | Evaluation Time | Biological Properties | |
---|---|---|---|---|---|---|---|
A—Comparison of Chitosan and Amniotic Membranes | |||||||
AM | Chitosan | ||||||
Li et al., 2020 [124] | Fresh AM | IU injection | Prevention of IUAs | RCT | 100 patients | 3 months | AM: prevented adhesions (benefit compared to chitosan) and increased endometrial thickness |
Yeh L.K. et al., 2009 [125] | AM | Chitosan membrane | OS reconstruction | in vitro | Bovine corneal epithelial cells | 7 days | CM and AM: preserved phenotype, growth of corneal epithelial cells with minimal toxicity |
Feng Y. et al., 2014 [126]; Zhu et al., 2006 [127] | Gelatin–chitosan (GC) | OS reconstruction | in vitro | Rabbit conjunctival epithelial cells | 14 days | GC: proliferation of conjunctival fibroblasts and growth of the explants | |
Kamarul T. et al., 2014 [128] | AM | PVA/NOCC scaffold | Cutaneous wound | in vivo (animal model) | Rats –subcutaneous implementation (n = not available) | 15 days | AM and PVA: low signs of toxicity |
Dong R. et al., 2020 [129] | PCL-amnion nanofibrous membrane | Medical chitosan hydrogel | Nerve wrapping | in vivo (animal model) | Rats—sciatic nerve compression model (n = 90) | 12 weeks | AM: decreased adhesion and inflammation of nerve tissue Increased proliferation of Schwann cells, nerve growth factors |
Dong R. et al., 2022 [130] | PCL-amnion nanofibrous membrane | Medical chitosan hydrogel | Nerve wrapping | in vivo (animal model) | Rats—sciatic nerve compression model (n = 96) | 12 weeks | AM: decreased peripheral nerve adhesion of pro-inflammatory M1 macrophages, type I and III collagen Increased recovery of nerve conduction; Schwann cells, nerve growth factor |
Washburn S. et al., 2010 [131] | AM coated with halofuginone on both sides | AM coated with halofuginone and chitosan | Preventing peritoneal adhesions (wrapping) | in vivo (animal model) | Rats with uterine horn injury (n = 60) | 2 weeks | Equal: decreased % of animals with adhesions, % of animals with moderate and severe adhesions |
B—Combined use of Chitosan and Amniotic Membranes | |||||||
Dadkhah Tehrani F. et al., 2022 [132] | H2O2-loaded PLA microparticles chitosan hydrogel covered with a layer of dAM | Wound dressing with O2-generating capacity | in vitro | 3T3 cells | Up to 7 days | Stable, oxygen release for at least 7 days, supported cellular growth, adhesion, and morphology | |
Rana M.M. et al., 2020 [133] | dAM gel in association with a covering membrane composed of collagen and chitosan | Cutaneous burn | in vivo (animal model) | Rats—burn model (n = not available) | 19 days | Improved wound healing, re-epithelialization, and closure by wound contraction | |
Shabani A. et al., 2020 [134] | AM extract-loaded nanoparticles (dextran sulfate chitosan) | OS reconstruction | in vitro | endothelial cells | 10 days | Longer and significantly increased biological activity in vitro (anti-angiogenic effect) | |
Momeni M. et al., 2018 [135] | AM extract gel based on chitosan/PVP gel containing AM extract | Cutaneous burn | in vivo (animal model) | Rats—burn model (n = 42) | _ | Increased epidermal and dermal regeneration, formation of granulation tissue, fibroblast proliferation, blood capillary formation, developing collagen bundles | |
Bakhshandeh H. et al., 2021 [136] | AM extract nano-encapsulated in chitosan–dextran nanoparticles, decorated on artificial cornea | Corneal transplantation (artificial cornea) | in vitro | HUVE cells | Up to 5 days | Release of anti-angiogenic factors: thrombospondin-1, endostatin, and heparin sulfate proteoglycan | |
Bankoti K. et al., 2020 [137] | Carbon nanodot decorated with dAM extract, chitosan hydrogel, and associated with hAMSCs | Cutaneous wounds | in vitro | Scratch assay | 21 days | Promoted angiogenesis, collagen deposition, reepithelialization, and formation of organized dermal epidermal junctions |
4.2. Hyaluronic Acid
Reference | Material | Intended Clinical Application | Type of Study | Model | Evaluation Time | Biological Properties | |
---|---|---|---|---|---|---|---|
A—Comparison of Hyaluronic Acid and Amniotic Membranes | |||||||
Szabo A. et al., 2000 [148] | AM | Serafim | Preventing adhesion after mesh repair of abdominal wall hernia | in vivo (animal model) | Rat (n = 60) | 6 weeks | AM and Seprafilm were equally effective in preventing adhesions (area adhesion formation: AM: 0.96%, Seprafilm: 0%) |
Fiorica C. et al., 2011 [82] | Collagen gel | HA/PHEA-EDA films | Coating for contact lenses (able to release limbal cells) | in vitro | HCEC, RLEC, RLF | 14 days | Adhesion of primary rabbit limbal cells until 3 days, and then viable cells were released from the hydrogel surface |
Hortensius R.A. et al., 2016 [149] | CG scaffolds with AM | CG scaffolds with HA | Tendon wound repair | in vitro | Horse tenocytes | 7 days | Increased metabolic activity of tendon cells within AM scaffolds, AM, and HA tempered the expression of genes associated with the inflammatory response |
B—Combined use of Hyaluronic Acid and Amniotic Membranes | |||||||
Ozgenel G.Y. et al., 2004 [150] | Repair site wrapped with AM and HA injected into it | Tendon wound repair | in vivo (n = 144 tendons) | Chicken | 20 weeks | Effective in preventing adhesions of the flexor tendon | |
Zhang Y. et al., 2022 [140] | Adhesive hyaluronic acid hydrogel with AM-CM | Cutaneous wounds | in vitro and in vivo (n = not available) | HUVECs, db/db mice | 12 days | Enhanced healing by regulating macrophage polarization and promoting angiogenesis | |
Corrêa MEAB, 2022 [151] | dAM solubilized with HA | Cutaneous wounds | in vivo (n = 96) | Rats | 14 days | Reduced the acute inflammatory response with an earlier repair phase | |
Murphy S.V. et al., 2017 [8] | Solubilized AM-HA hydrogel | Cutaneous wounds | in vivo (n = not available) | Mice | 14 days | Accelerated wound closure, re-epithelialization, increased total number of blood vessels, and proliferating keratinocytes within the epidermis | |
Mohammad J.A. et al., 2000 [152] | AM tube nerve conduit delivering NGF-HA | Nerve regeneration | in vivo (n = not available) | Rabbits | 3 months | AM promoted biochemical factors, in combination with NGF/HA: enhanced nerve regeneration |
4.3. Platelet-Derived Growth Factors
Reference | Material | Clinical Application | Type of Study | Model | Evaluation Time | Clinical Results | |
---|---|---|---|---|---|---|---|
Mohammadi Tofigh A and Tajik M, 2022 [157] | Dehydrated AM | PDGF gel | DFU | RCT | Clinical study (n = 243) | 12 weeks | AM dressing: better healing rate (87.6%) |
Rosen PS et al., 2015 [158] | Application of recombinant PDGF and allograft of mesenchymal cells covered by amnion–chorion barrier | Mandibular Class III/IV furcations | Case series | Clinical study (n = 5) | 6–30 months | Complete closure in three patients; one patient had two furcation sites converted to Class I, and one patient was without improvement |
4.4. Honey
Reference | Material | Clinical Application | Type of Study | Number of Patients | Evaluation Time | Clinical Results | |
---|---|---|---|---|---|---|---|
Yang et al., 2021 [71] | AM | Other dressings: sulfadiazine, polyurethane membrane, and honey | Burn wounds | Meta-analysis (11 RCT) | n = 816 | _ | Honey > AM > conventional methods, silver sulfadiazine, and polyurethane membrane |
Rahman et al., 2019 [163] | Biological dressing | Non-biological dressing | Skin graft donor site | Meta-analysis (8 RCT) | _ | _ | Biological dressing > non-biological dressing |
Boyar and Galiczewski, 2018 [164] | Dehydrated AM allograft after autolytic debridement (active Leptospermum honey) | Deep neonatal wounds associated with extravasations | Case series | n = 3 | 2 months | AM: effective, safe, and easy-to-apply treatment leading to regeneration and healing |
4.5. Epigallocatechin-3-Gallate
4.6. Lysine
4.7. Aloe vera
5. Conclusions and Outlook
5.1. Main Content of the Article
5.2. Challenges in the Field and Future Development Directions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AM | amniotic membrane |
AM-CM | lyophilized amnion-derived conditioned medium |
AECs | amniotic epithelial cells |
AMCs | amniotic mesenchymal cells |
CG | collagen–glycosaminoglycan |
DFU | diabetic foot ulcers |
dAE | decellularized amnion extract |
EGCG | epigallocatechin-3-gallate |
ECM | extracellular matrix |
HA | hyaluronic acid |
HA/PHEA-EDA | hyaluronic acid chemically cross-linked with α,β-poly(N-2-hydroxyethyl) (2 aminoethylcarbamate)-d,l-aspartamide |
HCEC | human corneal epithelial cells |
HARE | hyaluronan receptor for endocytosis |
HMWHA | high molecular weight HA |
H2O2 | hydrogen peroxide |
HUVEC | human umbilical vein endothelial cells |
IUA | intrauterine adhesion |
LYVE-1 | lymphatic vessel endothelial receptor 1 |
LMWHA | low-molecular-weight HA |
MMP | matrix metalloproteinases |
NGF | nerve growth factors |
PCL | polycaprolactone |
PDGF | platelet-derived growth factor |
PLA | polylactic acid |
PVA/NOCC | poly (vinyl alcohol)/N, O-carboxymethyl chitosan |
RCT | randomized control trial |
RHAMM | receptor for hyaluronan-mediated motility |
RLEC | rabbit limbal epithelial cells |
RLF | rabbit limbal fibroblasts |
SOC | standard of care |
TIMPs | tissue inhibitors of matrix metalloproteinases |
TLR | Toll-like receptor |
3T3 cells | mouse embryonic fibroblasts |
References
- Peña, O.A.; Martin, P. Cellular and molecular mechanisms of skin wound healing. Nat. Rev. Mol. Cell Biol. 2024, 25, 599–616. [Google Scholar] [CrossRef] [PubMed]
- Eming, S.A.; Martin, P.; Tomic-Canic, M. Wound repair and regeneration: Mechanisms, signaling, and translation. Sci. Transl. Med. 2014, 6, 265sr6. [Google Scholar] [CrossRef] [PubMed]
- Nejad, A.R.; Hamidieh, A.A.; Amirkhani, M.A.; Sisakht, M.M. Update review on five top clinical applications of human amniotic membrane in regenerative medicine. Placenta 2021, 103, 104–119. [Google Scholar] [CrossRef] [PubMed]
- Munoz-Torres, J.R.; Martínez-González, S.B.; Lozano-Luján, A.D.; Martínez-Vázquez, M.C.; Velasco-Elizondo, P.; Garza-Veloz, I.; Martinez-Fierro, M.L. Biological properties and surgical applications of the human amniotic membrane. Front. Bioeng. Biotechnol. 2023, 10, 1067480. [Google Scholar] [CrossRef]
- Gulameabasse, S.; Gindraux, F.; Catros, S.; Fricain, J.-C.; Fenelon, M. Chorion and amnion/chorion membranes in oral and periodontal surgery: A systematic review. J. Biomed. Mater. Res. Part B Appl. Biomater. 2021, 109, 1216–1229. [Google Scholar] [CrossRef]
- Ingraldi, A.L.; Audet, R.G.; Tabor, A.J. The Preparation and Clinical Efficacy of Amnion-Derived Membranes: A Review. J. Funct. Biomater. 2023, 14, 531. [Google Scholar] [CrossRef]
- Roy, A.; Mantay, M.; Brannan, C.; Griffiths, S. Placental Tissues as Biomaterials in Regenerative Medicine. Biomed. Res. Int. 2022, 2022, 6751456. [Google Scholar] [CrossRef]
- Murphy, S.V.; Skardal, A.; Song, L.; Sutton, K.; Haug, R.; Mack, D.L.; Jackson, J.; Soker, S.; Atala, A. Solubilized Amnion Membrane Hyaluronic Acid Hydrogel Accelerates Full-Thickness Wound Healing. Stem. Cells Transl. Med. 2017, 6, 2020–2032. [Google Scholar] [CrossRef]
- Kafili, G.; Niknejad, H.; Tamjid, E.; Simchi, A. Amnion-derived hydrogels as a versatile platform for regenerative therapy: From lab to market. Front. Bioeng. Biotechnol. 2024, 12, 1358977. [Google Scholar] [CrossRef]
- Hajialyani, M.; Tewari, D.; Sobarzo-Sánchez, E.; Nabavi, S.M.; Farzaei, M.H.; Abdollahi, M. Natural product-based nanomedicines for wound healing purposes: Therapeutic targets and drug delivery systems. Int. J. Nanomed. 2018, 13, 5023–5043. [Google Scholar] [CrossRef]
- Trinh, X.-T.; Long, N.-V.; Van Anh, L.T.; Nga, P.T.; Giang, N.N.; Chien, P.N.; Nam, S.-Y.; Heo, C.-Y. A Comprehensive Review of Natural Compounds for Wound Healing: Targeting Bioactivity Perspective. Int. J. Mol. Sci. 2022, 23, 9573. [Google Scholar] [CrossRef] [PubMed]
- Solomon, A.; Rosenblatt, M.; Monroy, D.; Ji, Z.; Pflugfelder, S.C.; Tseng, S.C. Suppression of interleukin 1alpha and interleukin 1beta in human limbal epithelial cells cultured on the amniotic membrane stromal matrix. Br. J. Ophthalmol. 2001, 85, 444–449. [Google Scholar] [CrossRef] [PubMed]
- King, A.E.; Paltoo, A.; Kelly, R.W.; Sallenave, J.-M.; Bocking, A.D.; Challis, J.R.G. Expression of natural antimicrobials by human placenta and fetal membranes. Placenta 2007, 28, 161–169. [Google Scholar] [CrossRef] [PubMed]
- Buhimschi, I.A.; Jabr, M.; Buhimschi, C.S.; Petkova, A.P.; Weiner, C.P.; Saed, G.M. The novel antimicrobial peptide beta3-defensin is produced by the amnion: A possible role of the fetal membranes in innate immunity of the amniotic cavity. Am. J. Obstet. Gynecol. 2004, 191, 1678–1687. [Google Scholar] [CrossRef] [PubMed]
- Bourne, G. The Foetal Membranes: A Review of the Anatomy of Normal Amnion and Chorion and Some Aspects of Their Function; BMJ Publishing Group: London, UK, 1962. [Google Scholar] [CrossRef]
- Bourne, G.L. The microscopic anatomy of the human amnion and chorion. Am. J. Obstet. Gynecol. 1960, 79, 1070–1073. [Google Scholar] [CrossRef]
- Bourne, G.L.; Lacy, D. Ultra-structure of human amnion and its possible relation to the circulation of amniotic fluid. Nature 1960, 186, 952–954. [Google Scholar] [CrossRef]
- Bryant-Greenwood, G.D. The extracellular matrix of the human fetal membranes: Structure and function. Placenta 1998, 19, 1–11. [Google Scholar] [CrossRef]
- Pasquier, J.-C.; Doret, M. Fetal membranes: Embryological development, structure and the physiopathology of the preterm premature rupture of membranes. J. Gynecol. Obstet. Biol. Reprod. 2008, 37, 579–588. [Google Scholar] [CrossRef]
- Meinert, M.; Eriksen, G.V.; Petersen, A.C.; Helmig, R.B.; Laurent, C.; Uldbjerg, N.; Malmström, A. Proteoglycans and hyaluronan in human fetal membranes. Am. J. Obstet. Gynecol. 2001, 184, 679–685. [Google Scholar] [CrossRef]
- Moore, M.C.; Van De Walle, A.; Chang, J.; Juran, C.; McFetridge, P.S. Human Perinatal-derived Biomaterials. Adv. Healthc. Mater. 2017, 6, 20170034. [Google Scholar] [CrossRef]
- Hu, Z.; Luo, Y.; Ni, R.; Hu, Y.; Yang, F.; Du, T.; Zhu, Y. Biological importance of human amniotic membrane in tissue engineering and regenerative medicine. Mater. Today Bio 2023, 22, 100790. [Google Scholar] [CrossRef] [PubMed]
- McQuilling, J.P.; Vines, J.B.; Kimmerling, K.A.; Mowry, K.C. Proteomic Comparison of Amnion and Chorion and Evaluation of the Effects of Processing on Placental Membranes. Wounds 2017, 29, E36–E40. [Google Scholar] [PubMed]
- Hao, Y.; Ma, D.H.; Hwang, D.G.; Kim, W.S.; Zhang, F. Identification of antiangiogenic and antiinflammatory proteins in human amniotic membrane. Cornea 2000, 19, 348–352. [Google Scholar] [CrossRef] [PubMed]
- Koob, T.J.; Lim, J.J.; Zabek, N.; Massee, M. Cytokines in single layer amnion allografts compared to multilayer amnion/chorion allografts for wound healing. J. Biomed. Mater. Res. B Appl. Biomater. 2015, 103, 1133–1140. [Google Scholar] [CrossRef]
- Magatti, M.; Vertua, E.; Cargnoni, A.; Silini, A.; Parolini, O. The Immunomodulatory Properties of Amniotic Cells: The Two Sides of the Coin. Cell Transpl. 2018, 27, 31–44. [Google Scholar] [CrossRef]
- Shimmura, S.; Shimazaki, J.; Ohashi, Y.; Tsubota, K. Antiinflammatory effects of amniotic membrane transplantation in ocular surface disorders. Cornea 2001, 20, 408–413. [Google Scholar] [CrossRef]
- Wassmer, C.-H.; Berishvili, E. Immunomodulatory Properties of Amniotic Membrane Derivatives and Their Potential in Regenerative Medicine. Curr. Diab. Rep. 2020, 20, 31. [Google Scholar] [CrossRef]
- Akle, C.A.; Adinolfi, M.; Welsh, K.I.; Leibowitz, S.; McColl, I. Immunogenicity of human amniotic epithelial cells after transplantation into volunteers. Lancet 1981, 2, 1003–1005. [Google Scholar] [CrossRef]
- Tehrani, F.A.; Modaresifar, K.; Azizian, S.; Niknejad, H. Induction of antimicrobial peptides secretion by IL-1β enhances human amniotic membrane for regenerative medicine. Sci. Rep. 2017, 7, 17022. [Google Scholar] [CrossRef]
- Mao, Y.; Hoffman, T.; Singh-Varma, A.; Duan-Arnold, Y.; Moorman, M.; Danilkovitch, A.; Kohn, J. Antimicrobial Peptides Secreted from Human Cryopreserved Viable Amniotic Membrane Contribute to its Antibacterial Activity. Sci. Rep. 2017, 7, 13722. [Google Scholar] [CrossRef]
- Yadav, M.K.; Go, Y.Y.; Kim, S.H.; Chae, S.-W.; Song, J.-J. Antimicrobial and Antibiofilm Effects of Human Amniotic/Chorionic Membrane Extract on Streptococcus pneumoniae. Front. Microbiol. 2017, 8, 1948. [Google Scholar] [CrossRef]
- Bernabé-García, Á.; Liarte, S.; Moraleda, J.M.; Castellanos, G.; Nicolás, F.J. Amniotic membrane promotes focal adhesion remodeling to stimulate cell migration. Sci. Rep. 2017, 7, 15262. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Cañada, C.; Bernabé-García, Á; Liarte, S.; Insausti, C.L.; Angosto, D.; Moraleda, J.M.; Castellanos, G.; Nicolás, F.J. Amniotic membrane stimulates cell migration by modulating transforming growth factor-β signalling. J. Tissue Eng. Regen. Med. 2018, 12, 808–820. [Google Scholar] [CrossRef] [PubMed]
- Alcaraz, A.; Mrowiec, A.; Insausti, C.L.; Bernabé-García, Á.; García-Vizcaíno, E.M.; López-Martínez, M.C.; Monfort, A.; Izeta, A.; Moraleda, J.M.; Castellanos, G.; et al. Amniotic Membrane Modifies the Genetic Program Induced by TGFß, Stimulating Keratinocyte Proliferation and Migration in Chronic Wounds. PLoS ONE 2015, 10, e0135324. [Google Scholar]
- Ruiz-Cañada, C.; Bernabé-García, Á.; Liarte, S.; Rodríguez-Valiente, M.; Nicolás, F.J. Chronic Wound Healing by Amniotic Membrane: TGF-β and EGF Signaling Modulation in Re-epithelialization. Front. Bioeng. Biotechnol. 2021, 9, 689328. [Google Scholar] [CrossRef]
- Castellanos, G.; Bernabé-García, Á.; Moraleda, J.M.; Nicolás, F.J. Amniotic membrane application for the healing of chronic wounds and ulcers. Placenta 2017, 59, 146–153. [Google Scholar] [CrossRef]
- Espana, E.M.; He, H.; Kawakita, T.; Di Pascuale, M.A.; Raju, V.K.; Liu, C.-Y.; Tseng, S.C.G. Human keratocytes cultured on amniotic membrane stroma preserve morphology and express keratocan. Investig. Ophthalmol. Vis. Sci. 2003, 44, 5136–5141. [Google Scholar] [CrossRef]
- Li, W.; He, H.; Chen, Y.-T.; Hayashida, Y.; Tseng, S.C.G. Reversal of myofibroblasts by amniotic membrane stromal extract. J. Cell Physiol. 2008, 215, 657–664. [Google Scholar] [CrossRef]
- Song, Y.-S.; Joo, H.-W.; Park, I.-H.; Shen, G.-Y.; Lee, Y.; Shin, J.H.; Kim, H.; Shin, I.-S.; Kim, K.-S. Transplanted Human Amniotic Epithelial Cells Secrete Paracrine Proangiogenic Cytokines in Rat Model of Myocardial Infarction. Cell Transpl. 2015, 24, 2055–2064. [Google Scholar] [CrossRef]
- Kim, S.-W.; Zhang, H.-Z.; Guo, L.; Kim, J.-M.; Kim, M.H. Amniotic mesenchymal stem cells enhance wound healing in diabetic NOD/SCID mice through high angiogenic and engraftment capabilities. PLoS ONE 2012, 7, e41105. [Google Scholar] [CrossRef]
- Kim, H.G.; Choi, O.H. Neovascularization in a mouse model via stem cells derived from human fetal amniotic membranes. Heart Vessel. 2011, 26, 196–205. [Google Scholar] [CrossRef]
- Küçükerdönmez, C.; Akova, Y.A.; Altinörs, D.D. Vascularization is more delayed in amniotic membrane graft than conjunctival autograft after pterygium excision. Am. J. Ophthalmol. 2007, 143, 245–249. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.C.; Tseng, S.C. The effects on inhibition of corneal neovascularization after human amniotic membrane transplantation in severely damaged rabbit corneas. Korean J. Ophthalmol. 1995, 9, 32–46. [Google Scholar] [CrossRef] [PubMed]
- Niknejad, H.; Paeini-Vayghan, G.; Tehrani, F.A.; Khayat-Khoei, M.; Peirovi, H. Side dependent effects of the human amnion on angiogenesis. Placenta 2013, 34, 340–345. [Google Scholar] [CrossRef] [PubMed]
- Trelford, J.D.; Trelford-Sauder, M. The amnion in surgery, past and present. Am. J. Obstet. Gynecol. 1979, 134, 833–845. [Google Scholar] [CrossRef] [PubMed]
- de Rötth, A. Plastic repair of conjunctival defects with fetal membranes. Arch. Ophthalmol. 1940, 23, 522–525. [Google Scholar] [CrossRef]
- Johnson, E.L.; Marshall, J.T.; Michael, G.M. A comparative outcomes analysis evaluating clinical effectiveness in two different human placental membrane products for wound management. Wound Repair Regen. 2017, 25, 145–149. [Google Scholar] [CrossRef]
- Johnson, E.L.; Michael, G.M.; Tamire, Y.G. Placental Membranes for Management of Refractory Cutaneous Sinus Tracts of Surgical Origin: A Pilot Study. J. Am. Coll. Clin. Wound. Spec. 2016, 8, 31–38. [Google Scholar] [CrossRef]
- Harmon, K.A.; Kammer, M.; Avery, J.T.; Kimmerling, K.A.; Mowry, K.C. Retention of Key Characteristics of Unprocessed Chorion Tissue Resulting in a Robust Scaffold to Support Wound Healing. Int. J. Mol. Sci. 2023, 24, 15786. [Google Scholar] [CrossRef]
- Maskan Bermudez, N.; Sa, B.C.; Hargis, A.; Yaghi, M.; Mervis, J. Skin Grafting for Dermatologists: Past, Present, and Future. Curr. Derm. Rep. 2024, 13, 47–54. [Google Scholar] [CrossRef]
- Rahman, S.; Langridge, B.; Al-Hadad, A.; Khan, R.A.; Junejo, M.H.; Mosahebi, A. Biological versus non-biological dressings in the management of split-thickness skin-graft donor sites: A systematic review and meta-analysis. J. Wound Care 2020, 29, 604–610. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Zhou, L.; Yan, J. Amniotic membrane for treating skin graft donor sites: A systematic review and meta-analysis. Burns 2020, 46, 621–629. [Google Scholar] [CrossRef] [PubMed]
- Ilic, D.; Vicovac, L.; Nikolic, M.; Lazic Ilic, E. Human amniotic membrane grafts in therapy of chronic non-healing wounds. Br. Med. Bull. 2016, 117, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Abul, A.; Karam, M.; Rahman, S. Human Amniotic Membrane: A New Option for Graft Donor Sites—Systematic Review and Meta-analysis. Int. Wound J. 2020, 17, 547–554. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Chen, Y.; Wang, N.; Yin, G.; Wei, C.; Xu, W. Effectiveness and safety of human amnion/chorion membrane therapy for diabetic foot ulcers: An updated meta-analysis of randomized clinical trials. Wound Repair Regen. 2020, 28, 739–750. [Google Scholar] [CrossRef]
- Mohammed, Y.A.; Farouk, H.K.; Gbreel, M.I.; Ali, A.M.; Salah, A.A.; Nourelden, A.Z.; Gawad, M.M.A. Human amniotic membrane products for patients with diabetic foot ulcers. Do they help? A systematic review and meta-analysis. J. Foot. Ankle Res. 2022, 15, 71. [Google Scholar] [CrossRef]
- Lakmal, K.; Basnayake, O.; Hettiarachchi, D. Systematic review on the rational use of amniotic membrane allografts in diabetic foot ulcer treatment. BMC Surg. 2021, 21, 87. [Google Scholar] [CrossRef]
- Paggiaro, A.O.; Menezes, A.G.; Ferrassi, A.D.; De Carvalho, V.F.; Gemperli, R. Biological effects of amniotic membrane on diabetic foot wounds: A systematic review. J. Wound Care 2018, 27, S19–S25. [Google Scholar] [CrossRef]
- Feng, J.; Yao, Y.; Wang, Q.; Han, X.; Deng, X.; Cao, Y.; Chen, X.; Zhou, M.; Zhao, C. Exosomes: Potential key players towards novel therapeutic options in diabetic wounds. Biomed. Pharmacother. 2023, 166, 115297. [Google Scholar] [CrossRef]
- Eleftheriadou, I.; Samakidou, G.; Tentolouris, A.; Papanas, N.; Tentolouris, N. Nonpharmacological Management of Diabetic Foot Ulcers: An Update. Int. J. Low Extremity Wounds 2020, 20, 188–197. [Google Scholar] [CrossRef]
- Primous, N.R.; Elvin, P.T.; Carter, K.V.; Andrade, H.L.; La Fontaine, J.; Shibuya, N.; Biguetti, C.C. Bioengineered Skin for Diabetic Foot Ulcers: A Scoping Review. J. Clin. Med. 2024, 13, 1221. [Google Scholar] [CrossRef] [PubMed]
- Holmes, C.; Wrobel, J.S.; Maceachern, M.P.; Boles, B.R. Collagen-based wound dressings for the treatment of diabetes-related foot ulcers: A systematic review. Diabetes Metab. Syndr. Obes. 2013, 6, 17–29. [Google Scholar] [CrossRef] [PubMed]
- Lau, H.-C.; Kim, A. Pharmaceutical perspectives of impaired wound healing in diabetic foot ulcer. J. Pharm. Investig. 2016, 46, 403–423. [Google Scholar] [CrossRef]
- Massand, S.; Lewcun, J.A.; LaRosa, C.A. Clinical and cost efficacy of advanced wound care matrices in the treatment of venous leg ulcers: A systematic review. J. Wound Care 2021, 30, 553–561. [Google Scholar] [CrossRef]
- Lamel, S.A.; Kirsner, R.S. New approaches to enhanced wound healing: Future modalities for chronic venous ulcers. Drug Discov. Today Dis. Mech. 2013, 10, e71–e77. [Google Scholar] [CrossRef]
- Rasmussen, H.B. Fetal antigen 2 (FA2): The aminopropeptide of the alpha 1 chain of human type I procollagen. A study on skin, tumour biology and bone metabolism. APMIS Suppl. 1993, 39, 1–28. [Google Scholar]
- Norman, G.; Christie, J.; Liu, Z.; Westby, M.J.; Jefferies, J.M.; Hudson, T.; Edwards, J.; Mohapatra, D.P.; Hassan, I.A.; Dumville, J.C. Antiseptics for burns. Cochrane Database Syst. Rev. 2017, 7, CD011821. [Google Scholar] [CrossRef]
- Herndon, D.N.; Branski, L.K. Contemporary Methods Allowing for Safe and Convenient Use of Amniotic Membrane as a Biologic Wound Dressing for Burns. Ann. Plast. Surg. 2017, 78, S9–S10. [Google Scholar] [CrossRef]
- Tenenhaus, M. The Use of Dehydrated Human Amnion/Chorion Membranes in the Treatment of Burns and Complex Wounds: Current and Future Applications. Ann. Plast. Surg. 2017, 78, S11–S13. [Google Scholar] [CrossRef]
- Yang, C.; Xiong, A.B.; He, X.C.; Ding, X.B.; Tian, X.L.; Li, Y.; Yan, H. Efficacy and feasibility of amniotic membrane for the treatment of burn wounds: A meta-analysis. J. Trauma Acute Care Surg. 2021, 90, 744–755. [Google Scholar] [CrossRef]
- Glat, P.M.; Davenport, T. Current Techniques for Burn Reconstruction: Using Dehydrated Human Amnion/Chorion Membrane Allografts as an Adjunctive Treatment Along the Reconstructive Ladder. Ann. Plast. Surg. 2017, 78, S14–S18. [Google Scholar] [CrossRef] [PubMed]
- Martin, C.; Low, W.L.; Amin, M.C.I.M.; Radecka, I.; Raj, P.; Kenward, K. Current trends in the development of wound dressings, biomaterials and devices. Pharm. Pat. Anal. 2013, 2, 341–359. [Google Scholar] [CrossRef]
- Wenjie, L.; Aijia, Y.; Junli, Z.; Sujuan, F.; Chun, L. Effects of different dressings in the treatment of burn wounds: A network meta-analysis. Chin. J. Tissue Eng. Res. 2023, 27, 1141. [Google Scholar]
- Aldana, P.C.; Khachemoune, A. Diabetic Foot Ulcers: Appraising Standard of Care and Reviewing New Trends in Management. Am. J. Clin. Dermatol. 2020, 21, 255–264. [Google Scholar] [CrossRef] [PubMed]
- A Network Meta-Analysis of the Efficacy of New Medical Dressings for Diabetic Foot Ulcers. Available online: https://www.cjter.com/EN/10.12307/2022.258 (accessed on 24 June 2024).
- Saw, V.P.J.; Minassian, D.; Dart, J.K.G.; Ramsay, A.; Henderson, H.; Poniatowski, S.; Warwick, R.M.; Cabral, S.; the Amniotic Membrane Tissue User Group (AMTUG). Amniotic membrane transplantation for ocular disease: A review of the first 233 cases from the UK user group. Br. J. Ophthalmol. 2007, 91, 1042–1047. [Google Scholar] [CrossRef]
- Resch, M.D.; Schlo¨tzer-Schrehardt, U.; Hofmann-Rummelt, C.; Sauer, R.; Cursiefen, C.; Kruse, F.E.; Beckmann, M.W.; Seitz, B. Adhesion structures of amniotic membranes integrated into human corneas. Investig. Ophthalmol. Vis. Sci. 2006, 47, 1853–1861. [Google Scholar] [CrossRef]
- Tananuvat, N.; Martin, T. The results of amniotic membrane transplantation for primary pterygium compared with conjunctival autograft. Cornea 2004, 23, 458–463. [Google Scholar] [CrossRef]
- Khokhar, S.; Natung, T.; Sony, P.; Sharma, N.; Agarwal, N.; Vajpayee, R.B. Amniotic membrane transplantation in refractory neurotrophic corneal ulcers: A randomized, controlled clinical trial. Cornea 2005, 24, 654–660. [Google Scholar] [CrossRef]
- Tamhane, A.; Vajpayee, R.B.; Biswas, N.R.; Pandey, R.M.; Sharma, N.; Titiyal, J.S.; Tandon, R. Evaluation of amniotic membrane transplantation as an adjunct to medical therapy as compared with medical therapy alone in acute ocular burns. Ophthalmology 2005, 112, 1963–1969. [Google Scholar] [CrossRef]
- Fiorica, C.; Senior, R.A.; Pitarresi, G.; Palumbo, F.S.; Giammona, G.; Deshpande, P.; MacNeil, S. Biocompatible hydrogels based on hyaluronic acid cross-linked with a polyaspartamide derivative as delivery systems for epithelial limbal cells. Int. J. Pharm. 2011, 414, 104–111. [Google Scholar] [CrossRef]
- Wang, M.; Li, Y.; Wang, H.; Li, M.; Wang, X.; Liu, R.; Zhang, D.; Xu, W. Corneal regeneration strategies: From stem cell therapy to tissue engineered stem cell scaffolds. Biomed. Pharmacother. 2023, 165, 115206. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Shen, M.; Feng, P.; Qiu, H.; Wu, X.; Yang, L.; Zhu, Y. Various administration forms of decellularized amniotic membrane extract towards improving corneal repair. J. Mater. Chem. B 2021, 9, 9347–9357. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, T.; Hamuro, J.; Takaishi, M.; Simmons, S.; Maruyama, K.; Zaffalon, A.; Bentley, A.J.; Kawasaki, S.; Nagata-Takaoka, M.; Fullwood, N.J.; et al. LRIG1 inhibits STAT3-dependent inflammation to maintain corneal homeostasis. J. Clin. Investig. 2014, 124, 385–397. [Google Scholar] [CrossRef] [PubMed]
- Hanselman, A.E.; Lalli, T.A.J.; Santrock, R.D. Topical Review: Use of Fetal Tissue in Foot and Ankle Surgery. Foot Ankle Spec. 2015, 8, 297–304. [Google Scholar] [CrossRef]
- Zelen, C.M.; Serena, T.E.; Denoziere, G.; Fetterolf, D.E. A prospective randomised comparative parallel study of amniotic membrane wound graft in the management of diabetic foot ulcers. Int. Wound J. 2013, 10, 502–507. [Google Scholar] [CrossRef]
- Hanselman, A.E.; Tidwell, J.E.; Santrock, R.D. Cryopreserved human amniotic membrane injection for plantar fasciitis: A randomized, controlled, double-blind pilot study. Foot. Ankle. Int. 2015, 36, 151–158. [Google Scholar] [CrossRef]
- Nakagawa, H.; Sung, K.; Mautner, K.; May, T.; Sussman, W.I. Lateral Epicondylitis: Comparing Ultrasound-Guided Tenotomy with or without Amniotic Membrane Allograft Injection. Regen. Med. 2023, 18, 399–411. [Google Scholar] [CrossRef]
- Natali, S.; Farinelli, L.; Screpis, D.; Trojan, D.; Montagner, G.; Favaretto, F.; Zorzi, C. Human Amniotic Suspension Allograft Improves Pain and Function in Knee Osteoarthritis: A Prospective Not Randomized Clinical Pilot Study. J. Clin. Med. 2022, 11, 3295. [Google Scholar] [CrossRef]
- Liu, C.; Bai, J.; Yu, K.; Liu, G.; Tian, S.; Tian, D. Biological Amnion Prevents Flexor Tendon Adhesion in Zone II: A Controlled, Multicentre Clinical Trial. Biomed. Res. Int. 2019, 2019, 2354325. [Google Scholar] [CrossRef]
- Leppänen, O.V.; Karjalainen, T.; Göransson, H.; Hakamäki, A.; Havulinna, J.; Parkkinen, J.; Jokihaara, J. Outcomes After Flexor Tendon Repair Combined with the Application of Human Amniotic Membrane Allograft. J. Hand Surg. 2017, 42, e1–e474. [Google Scholar] [CrossRef]
- Maljaars, L.P.; Bendaoud, S.; Kastelein, A.W.; Guler, Z.; Hooijmans, C.R.; Roovers, J.-P.W.R. Application of amniotic membranes in reconstructive surgery of internal organs—A systematic review and meta-analysis. J. Tissue Eng. Regen. Med. 2022, 16, 1069–1090. [Google Scholar] [CrossRef] [PubMed]
- Riccio, M.; Marchesini, A.; Pugliese, P.; De Francesco, F. Nerve repair and regeneration: Biological tubulization limits and future perspectives. J. Cell Physiol. 2019, 234, 3362–3375. [Google Scholar] [CrossRef] [PubMed]
- Gaspar, M.P.; Abdelfattah, H.M.; Welch, I.W.; Vosbikian, M.M.; Kane, P.M.; Rekant, M.S. Recurrent cubital tunnel syndrome treated with revision neurolysis and amniotic membrane nerve wrapping. J. Shoulder Elb. Surg. 2016, 25, 2057–2065. [Google Scholar] [CrossRef]
- Meng, H.; Li, M.; You, F.; Du, J.; Luo, Z. Assessment of processed human amniotic membrane as a protective barrier in rat model of sciatic nerve injury. Neurosci. Lett. 2011, 496, 48–53. [Google Scholar] [CrossRef]
- Riccio, M.; Pangrazi, P.P.; Parodi, P.C.; Vaienti, L.; Marchesini, A.; Neuendorf, A.D.; Bottegoni, C.; Tos, P.; Geuna, S. The amnion muscle combined graft (AMCG) conduits: A new alternative in the repair of wide substance loss of peripheral nerves. Microsurgery 2014, 34, 616–622. [Google Scholar] [CrossRef]
- Fénelon, M.; Chassande, O.; Kalisky, J.; Gindraux, F.; Brun, S.; Bareille, R.; Ivanovic, Z.; Fricain, J.-C.; Boiziau, C. Human amniotic membrane for guided bone regeneration of calvarial defects in mice. J. Mater. Sci. Mater. Med. 2018, 29, 78. [Google Scholar] [CrossRef]
- Dawiec, G.; Niemczyk, W.; Wiench, R.; Niemczyk, S.; Skaba, D. Introduction to Amniotic Membranes in Maxillofacial Surgery-A Scoping Review. Medicina 2024, 60, 663. [Google Scholar] [CrossRef]
- Kesting, M.R.; Wolff, K.-D.; Nobis, C.P.; Rohleder, N.H. Amniotic membrane in oral and maxillofacial surgery. Oral. Maxillofac. Surg. 2014, 18, 153–164. [Google Scholar] [CrossRef]
- El-Shinnawi, U.; Soory, M. Periodontal Regenerative Materials and Their Applications: Mechanisms of Action. Recent Pat. Regen. Med. 2014, 4, 103–119. [Google Scholar] [CrossRef]
- Kumar, A.; Chandra, R.V.; Reddy, A.A.; Reddy, B.H.; Reddy, C.; Naveen, A. Evaluation of clinical, antiinflammatory and antiinfective properties of amniotic membrane used for guided tissue regeneration: A randomized controlled trial. Dent. Res. J. 2015, 12, 127–135. [Google Scholar]
- Kiany, F.; Moloudi, F. Amnion membrane as a novel barrier in the treatment of intrabony defects: A controlled clinical trial. Int. J. Oral. Maxillofac. Implant. 2015, 30, 639–647. [Google Scholar] [CrossRef] [PubMed]
- Temraz, A.; Ghallab, N.A.; Hamdy, R.; El-Dahab, O.A. Clinical and radiographic evaluation of amnion chorion membrane and demineralized bone matrix putty allograft for management of periodontal intrabony defects: A randomized clinical trial. Cell Tissue Bank. 2019, 20, 117–128. [Google Scholar] [CrossRef]
- Kothiwale, S.V. The evaluation of chorionic membrane in guided tissue regeneration for periodontal pocket therapy: A clinical and radiographic study. Cell Tissue Bank. 2014, 15, 145–152. [Google Scholar] [CrossRef]
- Kothiwale, S.; Ajbani, J. Evaluation of anti-inflammatory effect of chorion membrane in periodontal pocket therapy: A clinical and biochemical study. J. Indian Soc. Periodontol. 2018, 22, 433–437. [Google Scholar] [CrossRef]
- Kothiwale, S.; Rathore, A.; Panjwani, V. Enhancing gingival biotype through chorion membrane with innovative step in periodontal pocket therapy. Cell Tissue Bank. 2016, 17, 33–38. [Google Scholar] [CrossRef]
- The Effect of Amniotic Chorion Membrane on Tissue Biotype, Wound Healing and Periodontal Regeneration. Available online: https://europub.co.uk/articles/the-effect-of-amniotic-chorion-membrane-on-tissue-biotype-wound-healing-and-periodontal-regeneration-A-421682 (accessed on 9 August 2024).
- Gupta, N.; Kalaivani, M.; Tandon, R. Comparison of prognostic value of Roper Hall and Dua classification systems in acute ocular burns. Br. J. Ophthalmol. 2011, 95, 194–198. [Google Scholar] [CrossRef]
- Chakraborthy, S.; Sambashivaiah, S.; Kulal, R.; Bilchodmath, S. Amnion and Chorion Allografts in Combination with Coronally Advanced Flap in the Treatment of Gingival Recession: A Clinical Study. J. Clin. Diagn. Res. 2015, 9, ZC98–ZC101. [Google Scholar] [CrossRef]
- Pundir, A.J.; Agrawal, V.; Pundir, S.; Diwan, V.; Bodhi, S. Comparative Evaluation of the Efficacy of Human Chorion and Amnion with Coronally Advanced Flap for Recession Coverage: A Case Series. Clin. Adv. Periodontics 2016, 6, 118–126. [Google Scholar] [CrossRef]
- Velez, I.; Parker, W.B.; Siegel, M.A.; Hernandez, M. Cryopreserved amniotic membrane for modulation of periodontal soft tissue healing: A pilot study. J. Periodontol. 2010, 81, 1797–1804. [Google Scholar] [CrossRef]
- Vatsa, R.; Bharti, J.; Roy, K.K.; Kumar, S.; Sharma, J.B.; Singh, N.; Singhal, S.; Meena, J. Evaluation of amnion in creation of neovagina in women with Mayer-Rokitansky-Kuster-Hauser syndrome. Fertil. Steril. 2017, 108, 341–345. [Google Scholar] [CrossRef]
- Avsar, A.F.; Tas, E.E.; Keskin, H.L.; Yeğin, G.F. Vaginoplasty Using Human Amniotic Membranes A Report of Five Patients. J. Reprod. Med. 2016, 61, 483–488. [Google Scholar] [PubMed]
- Lau, H.-H.; Jou, Q.-B.; Huang, W.-C.; Su, T.-H. Amniotic Membrane Graft in the Management of Complex Vaginal Mesh Erosion. J. Clin. Med. 2020, 9, 356. [Google Scholar] [CrossRef] [PubMed]
- Ratto, C.; Parolini, O.; Marra, A.A.; Orticelli, V.; Parello, A.; Campennì, P.; De Simone, V.; Trojan, D.; Litta, F. Human Amniotic Membrane for the Treatment of Cryptoglandular Anal Fistulas. J. Clin. Med. 2022, 11, 1350. [Google Scholar] [CrossRef] [PubMed]
- Frigerio, I.; Bannone, E.; Trojan, D.; Montagner, G.; Bergamaschi, G.; Butturini, G. Implantation of amniotic membrane over pancreatic anastomosis after pancreaticoduodenectomy: Report of the first case. J. Surg. Case Rep. 2019, 2019, rjz097. [Google Scholar] [CrossRef] [PubMed]
- Buentello-Volante, B.; Molina-Medinilla, M.; Aguayo-Flores, E.; Magaña-Guerrero, F.S.; Garfias, Y. Comparison of amniotic membrane transplantation and carpal tunnel syndrome release surgery (CTRS) and CTRS alone: Clinical outcomes at 1-year follow-up. J. Tissue Eng. Regen. Med. 2020, 14, 714–722. [Google Scholar] [CrossRef]
- Faramarzi, M.; Shishegar, M.; Kazemi, T.; Tavakolpour Saleh, H.; Roosta, S. The effect of applying amniotic membrane on post-tonsillectomy pain and bleeding. Eur. Arch. Otorhinolaryngol. 2021, 278, 485–492. [Google Scholar] [CrossRef]
- Rinaudo, M. Chitin and chitosan: Properties and applications. Prog. Polym. Sci. 2006, 31, 603–632. [Google Scholar] [CrossRef]
- Ueno, H.; Yamada, H.; Tanaka, I.; Kaba, N.; Matsuura, M.; Okumura, M.; Kadosawa, T.; Fujinaga, T. Accelerating effects of chitosan for healing at early phase of experimental open wound in dogs. Biomaterials 1999, 20, 1407–1414. [Google Scholar] [CrossRef]
- Howling, G.I.; Dettmar, P.W.; Goddard, P.A.; Hampson, F.C.; Dornish, M.; Wood, E.J. The effect of chitin and chitosan on the proliferation of human skin fibroblasts and keratinocytes in vitro. Biomaterials 2001, 22, 2959–2966. [Google Scholar] [CrossRef]
- Chung, Y.-C.; Chen, C.-Y. Antibacterial characteristics and activity of acid-soluble chitosan. Bioresour. Technol. 2008, 99, 2806–2814. [Google Scholar] [CrossRef]
- Li, C.; Cai, A.; Sun, C.; Wu, B.; Chen, X.; Mao, Y.; Zhang, Y.; Gou, Y.; Yu, J.; Wang, Y.; et al. The study on the safety and efficacy of amnion graft for preventing the recurrence of moderate to severe intrauterine adhesions. Genes Dis. 2020, 7, 266–271. [Google Scholar] [CrossRef] [PubMed]
- Yeh, L.-K.; Chen, Y.-H.; Chiu, C.-S.; Hu, F.-R.; Young, T.-H.; Wang, I.-J. The phenotype of bovine corneal epithelial cells on chitosan membrane. J. Biomed. Mater. Res. A 2009, 90, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Borrelli, M.; Reichl, S.; Schrader, S.; Geerling, G. Review of alternative carrier materials for ocular surface reconstruction. Curr. Eye Res. 2014, 39, 541–552. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Beuerman, R.W.; Chan-Park, M.B.E.; Cheng, Z.; Ang, L.P.K.; Tan, D.T.H. Enhancement of the mechanical and biological properties of a biomembrane for tissue engineering the ocular surface. Ann. Acad. Med. Singap. 2006, 35, 210–214. [Google Scholar] [CrossRef] [PubMed]
- Kamarul, T.; Krishnamurithy, G.; Salih, N.D.; Ibrahim, N.S.; Raghavendran, H.R.B.; Suhaeb, A.R.; Choon, D.S.K. Biocompatibility and Toxicity of Poly(vinyl alcohol)/N,O-Carboxymethyl Chitosan Scaffold. Sci. World J. 2014, 2014, 905103. [Google Scholar] [CrossRef]
- Dong, R.; Liu, C.; Tian, S.; Bai, J.; Yu, K.; Liu, L.; Tian, D. Electrospun polycaprolactone (PCL)-amnion nanofibrous membrane prevents adhesions and promotes nerve repair in a rat model of sciatic nerve compression. PLoS ONE 2020, 15, e0244301. [Google Scholar] [CrossRef]
- Dong, R.; Tian, S.; Bai, J.; Yu, K.; Liu, C.; Liu, L.; Tian, D. Electrospun Polycaprolactone (PCL)-Amnion Nanofibrous Membrane Promotes Nerve Repair after Neurolysis. J. Biomater. Appl. 2022, 36, 1390–1399. [Google Scholar] [CrossRef]
- Washburn, S.; Jennell, J.L.; Hodges, S.J. Halofuginone- and chitosan-coated amnion membranes demonstrate improved abdominal adhesion prevention. Sci. World J. 2010, 10, 2362–2366. [Google Scholar] [CrossRef]
- Dadkhah Tehrani, F.; Shabani, I.; Shabani, A. A hybrid oxygen-generating wound dressing based on chitosan thermosensitive hydrogel and decellularized amniotic membrane. Carbohydr Polym. 2022, 281, 119020. [Google Scholar] [CrossRef]
- Rana, M.M.; Rahman, M.S.; Ullah, M.A.; Siddika, A.; Hossain, M.L.; Akhter, M.S.; Hasan, M.Z.; Asaduzzaman, S.M. Amnion and collagen-based blended hydrogel improves burn healing efficacy on a rat skin wound model in the presence of wound dressing biomembrane. Biomed. Mater. Eng. 2020, 31, 1–17. [Google Scholar] [CrossRef]
- Shabani, A.; Atyabi, F.; Khoshayand, M.R.; Mahbod, R.; Cohan, R.A.; Akbarzadeh, I.; Bakhshandeh, H. Design of Experiment, Preparation, and in vitro Biological Assessment of Human Amniotic Membrane Extract Loaded Nanoparticles. Curr. Pharm. Biotechnol. 2020, 21, 256–267. [Google Scholar] [CrossRef] [PubMed]
- Momeni, M.; Zarehaghighi, M.; Hajimiri, M.; Khorasani, G.; Dinarvand, R.; Nekookar, A.; Sodeifi, N.; Khosravani, P.; Shayanasl, N.; Ebrahimi, M. In vitro and in vivo investigation of a novel amniotic-based chitosan dressing for wound healing. Wound Repair. Regen. 2018, 26, 87–101. [Google Scholar] [CrossRef] [PubMed]
- Bakhshandeh, H.; Atyabi, F.; Soleimani, M.; Taherzadeh, E.S.; Shahhoseini, S.; Cohan, R.A. Biocompatibility improvement of artificial cornea using chitosan-dextran nanoparticles containing bioactive macromolecules obtained from human amniotic membrane. Int. J. Biol. Macromol. 2021, 169, 492–499. [Google Scholar] [CrossRef] [PubMed]
- Bankoti, K.; Rameshbabu, A.P.; Datta, S.; Roy, M.; Goswami, P.; Roy, S.; Das, A.K.; Ghosh, S.K.; Dhara, S. Carbon nanodot decorated acellular dermal matrix hydrogel augments chronic wound closure. J. Mater. Chem. B 2020, 8, 9277–9294. [Google Scholar] [CrossRef]
- Yazdanpanah, G.; Jabbehdari, S.; Djalilian, A.R. Emerging Approaches for Ocular Surface Regeneration. Curr. Ophthalmol. Rep. 2019, 7, 1–10. [Google Scholar] [CrossRef]
- Marinho, A.; Nunes, C.; Reis, S. Hyaluronic Acid: A Key Ingredient in the Therapy of Inflammation. Biomolecules 2021, 11, 1518. [Google Scholar] [CrossRef]
- Zhang, Y.; Zheng, Y.; Shu, F.; Zhou, R.; Bao, B.; Xiao, S.; Li, K.; Lin, Q.; Zhu, L.; Xia, Z. In situ-formed adhesive hyaluronic acid hydrogel with prolonged amnion-derived conditioned medium release for diabetic wound repair. Carbohydr. Polym. 2022, 276, 118752. [Google Scholar] [CrossRef]
- Abatangelo, G.; Vindigni, V.; Avruscio, G.; Pandis, L.; Brun, P. Hyaluronic Acid: Redefining Its Role. Cells 2020, 9, 1743. [Google Scholar] [CrossRef]
- Litwiniuk, M.; Krejner, A.; Speyrer, M.S.; Gauto, A.R.; Grzela, T. Hyaluronic Acid in Inflammation and Tissue Regeneration. Wounds 2016, 28, 78–88. [Google Scholar]
- Bourguignon, L.Y.; Zhu, H.; Shao, L.; Chen, Y.W. CD44 interaction with c-Src kinase promotes cortactin-mediated cytoskeleton function and hyaluronic acid-dependent ovarian tumor cell migration. J. Biol. Chem. 2001, 276, 7327–7336. [Google Scholar] [CrossRef]
- Vigetti, D.; Viola, M.; Karousou, E.; Rizzi, M.; Moretto, P.; Genasetti, A.; Clerici, M.; Hascall, V.C.; De Luca, G.; Passi, A. Hyaluronan-CD44-ERK1/2 regulate human aortic smooth muscle cell motility during aging. J. Biol. Chem. 2008, 283, 4448–4458. [Google Scholar] [CrossRef] [PubMed]
- Kotla, N.G.; Bonam, S.R.; Rasala, S.; Wankar, J.; Bohara, R.A.; Bayry, J.; Rochev, Y.; Pandit, A. Recent advances and prospects of hyaluronan as a multifunctional therapeutic system. J. Control. Release 2021, 336, 598–620. [Google Scholar] [CrossRef] [PubMed]
- Campo, G.M.; Avenoso, A.; Nastasi, G.; Micali, A.; Prestipino, V.; Vaccaro, M.; D’Ascola, A.; Calatroni, A.; Campo, S. Hyaluronan reduces inflammation in experimental arthritis by modulating TLR-2 and TLR-4 cartilage expression. Biochim. Biophys. Acta 2011, 1812, 1170–1181. [Google Scholar] [CrossRef] [PubMed]
- Hill, D.R.; Rho, H.K.; Kessler, S.P.; Amin, R.; Homer, C.R.; McDonald, C.; Cowman, M.K.; de la Motte, C.A. Human milk hyaluronan enhances innate defense of the intestinal epithelium. J. Biol. Chem. 2013, 288, 29090–29104. [Google Scholar] [CrossRef]
- Szabo, A.; Haj, M.; Waxsman, I.; Eitan, A. Evaluation of seprafilm and amniotic membrane as adhesion prophylaxis in mesh repair of abdominal wall hernia in rats. Eur. Surg. Res. 2000, 32, 125–128. [Google Scholar] [CrossRef]
- Hortensius, R.A.; Ebens, J.H.; Harley, B.A.C. Immunomodulatory effects of amniotic membrane matrix incorporated into collagen scaffolds. J. Biomed. Mater. Res. A 2016, 104, 1332–1342. [Google Scholar] [CrossRef]
- Ozgenel, G.Y. The effects of a combination of hyaluronic and amniotic membrane on the formation of peritendinous adhesions after flexor tendon surgery in chickens. J. Bone Joint Surg. Br. 2004, 86, 301–307. [Google Scholar] [CrossRef]
- Corrêa, M.E.A.B.; Mendes, C.; Bittencourt, J.V.S.; Takejima, A.; de Souza, I.C.; de Carvalho, S.C.D.; Orlandini, I.G.; de Andrade, T.A.M.; Guarita-Souza, L.C.; Silveira, P.C.L. Effects of the Application of Decellularized Amniotic Membrane Solubilized with Hyaluronic Acid on Wound Healing. Ann. Biomed. Eng. 2022, 50, 1895–1910. [Google Scholar] [CrossRef]
- Mohammad, J.A.; Warnke, P.H.; Pan, Y.C.; Shenaq, S. Increased axonal regeneration through a biodegradable amnionic tube nerve conduit: Effect of local delivery and incorporation of nerve growth factor/hyaluronic acid media. Ann. Plast. Surg. 2000, 44, 59–64. [Google Scholar] [CrossRef]
- Mahdavi, S.S.; Abdekhodaie, M.J.; Mashayekhan, S.; Baradaran-Rafii, A.; Djalilian, A.R. Bioengineering Approaches for Corneal Regenerative Medicine. Tissue Eng. Regen. Med. 2020, 17, 567–593. [Google Scholar] [CrossRef]
- Murphy, S.V.; Skardal, A.; Nelson, R.A., Jr.; Sunnon, K.; Reid, T.; Clouse, C.; Kock, N.D.; Jackson, J.; Soker, S.; Atala, A. Amnion membrane hydrogel and amnion membrane powder accelerate wound healing in a full thickness porcine skin wound model. Stem. Cells Transl. Med. 2020, 9, 80–92. [Google Scholar] [CrossRef] [PubMed]
- Andrae, J.; Gallini, R.; Betsholtz, C. Role of platelet-derived growth factors in physiology and medicine. Genes Dev. 2008, 22, 1276–1312. [Google Scholar] [CrossRef] [PubMed]
- Mihaylova, Z.; Tsikandelova, R.; Sanimirov, P.; Gateva, N.; Mitev, V.; Ishkitiev, N. Role of PDGF-BB in proliferation, differentiation and maintaining stem cell properties of PDL cells in vitro. Arch. Oral Biol. 2018, 85, 1–9. [Google Scholar] [CrossRef]
- Mohammadi Tofigh, A.; Tajik, M. Comparing the standard surgical dressing with dehydrated amnion and platelet-derived growth factor dressings in the healing rate of diabetic foot ulcer: A randomized clinical trial. Diabetes Res. Clin. Pract. 2022, 185, 109775. [Google Scholar] [CrossRef]
- Rosen, P.S.; Froum, S.J.; Cohen, D.W. Consecutive Case Series Using a Composite Allograft Containing Mesenchymal Cells with an Amnion-Chorion Barrier to Treat Mandibular Class III/IV Furcations. Int. J. Periodontics Restor. Dent. 2015, 35, 453–460. [Google Scholar] [CrossRef]
- Yupanqui Mieles, J.; Vyas, C.; Aslan, E.; Humphreys, G.; Diver, C.; Bartolo, P. Honey: An Advanced Antimicrobial and Wound Healing Biomaterial for Tissue Engineering Applications. Pharmaceutics 2022, 14, 1663. [Google Scholar] [CrossRef]
- Shamloo, A.; Aghababaie, Z.; Afjoul, H.; Jami, M.; Bidgoli, M.R.; Vossoughi, M.; Ramazani, A.; Kamyabhesari, K. Fabrication and evaluation of chitosan/gelatin/PVA hydrogel incorporating honey for wound healing applications: An in vitro, in vivo study. Int. J. Pharm. 2021, 592, 120068. [Google Scholar] [CrossRef]
- Rossiter, K.; Cooper, A.J.; Voegeli, D.; Lwaleed, B.A. Honey promotes angiogeneic activity in the rat aortic ring assay. J. Wound Care 2010, 19, 440, 442–446. [Google Scholar] [CrossRef]
- Rossi, M.; Marrazzo, P. The Potential of Honeybee Products for Biomaterial Applications. Biomimetics 2021, 6, 6. [Google Scholar] [CrossRef]
- Rahman, M.S.; Islam, R.; Rana, M.M.; Spitzhorn, L.-S.; Rahman, M.S.; Adjaye, J.; Asaduzzaman, S.M. Characterization of burn wound healing gel prepared from human amniotic membrane and Aloe vera extract. BMC Complement. Altern. Med. 2019, 19, 115. [Google Scholar] [CrossRef]
- Boyar, V.; Galiczewski, C. Efficacy of Dehydrated Human Amniotic Membrane Allograft for the Treatment of Severe Extravasation Injuries in Preterm Neonates. Wounds 2018, 30, 224–228. [Google Scholar] [PubMed]
- Dufficy, M.; Takashima, M.; Cunninghame, J.; Griffin, B.R.; McBride, C.A.; August, D.; Ullman, A.J. Extravasation injury management for neonates and children: A systematic review and aggregated case series. J. Hosp. Med. 2022, 17, 832–842. [Google Scholar] [CrossRef] [PubMed]
- Nagle, D.G.; Ferreira, D.; Zhou, Y.-D. Epigallocatechin-3-gallate (EGCG): Chemical and biomedical perspectives. Phytochemistry 2006, 67, 1849–1855. [Google Scholar] [CrossRef]
- Wong, S.L.; Wagner, D.D. Peptidylarginine deiminase 4: A nuclear button triggering neutrophil extracellular traps in inflammatory diseases and aging. FASEB J. 2018, 32, fj201800691R. [Google Scholar] [CrossRef]
- Fadini, G.P.; Menegazzo, L.; Rigato, M.; Scattolini, V.; Poncina, N.; Bruttocao, A.; Ciciliot, S.; Mammano, F.; Ciubotaru, C.D.; Brocco, E.; et al. NETosis Delays Diabetic Wound Healing in Mice and Humans. Diabetes 2016, 65, 1061–1071. [Google Scholar] [CrossRef]
- Mirza, R.E.; Fang, M.M.; Weinheimer-Haus, E.M.; Ennis, W.J.; Koh, T.J. Sustained inflammasome activity in macrophages impairs wound healing in type 2 diabetic humans and mice. Diabetes 2014, 63, 1103–1114. [Google Scholar] [CrossRef]
- Accipe, L.; Abadie, A.; Neviere, R.; Bercion, S. Antioxidant Activities of Natural Compounds from Caribbean Plants to Enhance Diabetic Wound Healing. Antioxidants 2023, 12, 1079. [Google Scholar] [CrossRef]
- Xu, F.-W.; Lv, Y.-L.; Zhong, Y.-F.; Xue, Y.-N.; Wang, Y.; Zhang, L.-Y.; Hu, X.; Tan, W.-Q. Beneficial Effects of Green Tea EGCG on Skin Wound Healing: A Comprehensive Review. Molecules 2021, 26, 6123. [Google Scholar] [CrossRef]
- Azimi-Bahnamiri, F.; Mokhtari, H.; Khalilollah, S.; Soltanahmadi, S.V.; Omraninava, M.; Disfani, R.A.; Mirzaie, M.S.; Ranjbaran, H.; Javan, R.; Shooraj, M.; et al. Decellularized human amniotic membrane loaded with epigallocatechin-3-gallate accelerated diabetic wound healing. J. Tissue Viability 2024, 33, 18–26. [Google Scholar] [CrossRef]
- Lakkireddy, C.; Vishwakarma, S.K.; Raju, N.; Ahmed, S.I.; Bardia, A.; Khan, M.A.; Annamaneni, S.; Khan, A.A. Fabrication of Decellularized Amnion and Chorion Scaffolds to Develop Bioengineered Cell-Laden Constructs. Cell Mol. Bioeng. 2022, 15, 137–150. [Google Scholar] [CrossRef]
- Allen, C.L.; Clare, G.; Stewart, E.A.; Branch, M.J.; McIntosh, O.D.; Dadhwal, M.; Dua, H.S.; Hopkinson, A. Augmented dried versus cryopreserved amniotic membrane as an ocular surface dressing. PLoS ONE 2013, 8, e78441. [Google Scholar] [CrossRef] [PubMed]
- Lai, J.-Y.; Wang, P.-R.; Luo, L.-J.; Chen, S.-T. Stabilization of collagen nanofibers with L-lysine improves the ability of carbodiimide cross-linked amniotic membranes to preserve limbal epithelial progenitor cells. Int. J. Nanomed. 2014, 9, 5117–5130. [Google Scholar] [CrossRef] [PubMed]
- Radha, M.H.; Laxmipriya, N.P. Evaluation of biological properties and clinical effectiveness of Aloe vera: A systematic review. J. Tradit. Complement. Med. 2014, 5, 21–26. [Google Scholar] [CrossRef] [PubMed]
- Picchietti, S.; Bernini, C.; Belardinelli, M.; Ovidi, E.; Taddei, A.; Guerra, L.; Abelli, L.; Fausto, A. Immune modulatory effects of Aloe arborescens extract on the piscine SAF-1 cell line. Fish Shellfish. Immunol. 2013, 34, 1335–1344. [Google Scholar] [CrossRef] [PubMed]
- Park, M.-Y.; Kwon, H.-J.; Sung, M.-K. Evaluation of aloin and aloe-emodin as anti-inflammatory agents in aloe by using murine macrophages. Biosci. Biotechnol. Biochem. 2009, 73, 828–832. [Google Scholar] [CrossRef]
- Pazhouhnia, Z.; Noori, A.; Farzin, A.; Khoshmaram, K.; Hoseinpour, M.; Ai, J.; Ebrahimi, M.; Lotfibakhshaiesh, N. 3D-bioprinted GelMA/gelatin/amniotic membrane extract (AME) scaffold loaded with keratinocytes, fibroblasts, and endothelial cells for skin tissue engineering. Sci. Rep. 2024, 14, 12670. [Google Scholar] [CrossRef]
- Tehrani, F.D.; Firouzeh, A.; Shabani, I.; Shabani, A. A Review on Modifications of Amniotic Membrane for Biomedical Applications. Front. Bioeng. Biotechnol. 2021, 8, 606982. [Google Scholar]
- Bupphathong, S.; Quiroz, C.; Huang, W.; Chung, P.-F.; Tao, H.-Y.; Lin, C.-H. Gelatin Methacrylate Hydrogel for Tissue Engineering Applications—A Review on Material Modifications. Pharmaceuticals 2022, 15, 171. [Google Scholar] [CrossRef]
- Elkhenany, H.; El-Derby, A.; Abd Elkodous, M.; Salah, R.A.; Lotfy, A.; El-Badri, N. Applications of the amniotic membrane in tissue engineering and regeneration: The hundred-year challenge. Stem. Cell Res. Ther. 2022, 13, 8. [Google Scholar] [CrossRef]
- Jafari, A.; Mirzaei, Y.; Mer, A.H.; Rezaei-Tavirani, M.; Jafari, Z.; Niknejad, H. Comparison of the effects of preservation methods on structural, biological, and mechanical properties of the human amniotic membrane for medical applications. Cell Tissue Bank. 2024, 25, 305–323. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rouzaire, M.; Blanchon, L.; Sapin, V.; Gallot, D. Application of Fetal Membranes and Natural Materials for Wound and Tissue Repair. Int. J. Mol. Sci. 2024, 25, 11893. https://doi.org/10.3390/ijms252211893
Rouzaire M, Blanchon L, Sapin V, Gallot D. Application of Fetal Membranes and Natural Materials for Wound and Tissue Repair. International Journal of Molecular Sciences. 2024; 25(22):11893. https://doi.org/10.3390/ijms252211893
Chicago/Turabian StyleRouzaire, Marion, Loïc Blanchon, Vincent Sapin, and Denis Gallot. 2024. "Application of Fetal Membranes and Natural Materials for Wound and Tissue Repair" International Journal of Molecular Sciences 25, no. 22: 11893. https://doi.org/10.3390/ijms252211893
APA StyleRouzaire, M., Blanchon, L., Sapin, V., & Gallot, D. (2024). Application of Fetal Membranes and Natural Materials for Wound and Tissue Repair. International Journal of Molecular Sciences, 25(22), 11893. https://doi.org/10.3390/ijms252211893