Early Detection of Both Pyrenophora teres f. teres and f. maculata in Asymptomatic Barley Leaves Using Digital Droplet PCR (ddPCR)
Abstract
:1. Introduction
2. Results and Discussion
2.1. Primers and Probe Design for P. teres Detection Using a K-Mer Approach
2.2. Efficiency, Specificity, and Limit of Detection (LOD) of Primers/Probe Designed
2.3. Detection of Ptt and Ptm Using ddPCR Assay Before Symptoms Appear
3. Conclusions
4. Materials and Methods
4.1. Microorganisms: Isolation of Moroccan Fungal Strains
4.2. Plant Infection
4.3. DNA Extraction
4.4. Primers/Probe Design Using K-Mer Analysis
4.5. Specificity
4.6. qPCR Assay
4.7. ddPCR Assay
4.8. Data Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Poehlman, J.M. Adaptation and Distribution. In Barley; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 1985; pp. 1–17. ISBN 978-0-89118-219-1. [Google Scholar]
- Çelik Oğuz, A.; Karakaya, A. Genetic Diversity of Barley Foliar Fungal Pathogens. Agronomy 2021, 11, 434. [Google Scholar] [CrossRef]
- Backes, A.; Guerriero, G.; Ait Barka, E.; Jacquard, C. Pyrenophora Teres: Taxonomy, Morphology, Interaction with Barley, and Mode of Control. Front. Plant Sci. 2021, 12, 614951. [Google Scholar] [CrossRef] [PubMed]
- Smedegård-Petersen, V. Pathogenesis and Genetics of Net-Spot Blotch and Leaf Stripe of Barley Caused by Pyrenophora Teres and Pyrenophora Graminea; DSR Forlag: Copenhagen, Danmark, 1976. [Google Scholar]
- McLean, M.S.; Howlett, B.J.; Hollaway, G.J. Epidemiology and Control of Spot Form of Net Blotch (Pyrenophora teres f. maculata) of Barley: A Review. Crop Pasture Sci. 2009, 60, 303–315. [Google Scholar] [CrossRef]
- Liu, Z.; Ellwood, S.R.; Oliver, R.P.; Friesen, T.L. Pyrenophora Teres: Profile of an Increasingly Damaging Barley Pathogen. Mol. Plant Pathol. 2011, 12, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Van Etten, J.; Stephens, T.G.; Bhattacharya, D. A K-Mer-Based Approach for Phylogenetic Classification of Taxa in Environmental Genomic Data. Syst. Biol. 2023, 72, 1101–1118. [Google Scholar] [CrossRef]
- Anyansi, C.; Straub, T.J.; Manson, A.L.; Earl, A.M.; Abeel, T. Computational Methods for Strain-Level Microbial Detection in Colony and Metagenome Sequencing Data. Front. Microbiol. 2020, 11, 1925. [Google Scholar] [CrossRef]
- Renny-Byfield, S.; Baumgarten, A. Repetitive DNA Content in the Maize Genome Is Uncoupled from Population Stratification at SNP Loci. BMC Genom. 2020, 21, 98. [Google Scholar] [CrossRef]
- Liu, S.; Zheng, J.; Migeon, P.; Ren, J.; Hu, Y.; He, C.; Liu, H.; Fu, J.; White, F.F.; Toomajian, C.; et al. Unbiased K-Mer Analysis Reveals Changes in Copy Number of Highly Repetitive Sequences During Maize Domestication and Improvement. Sci. Rep. 2017, 7, 42444. [Google Scholar] [CrossRef]
- Pajuste, F.-D.; Remm, M. GeneToCN: An Alignment-Free Method for Gene Copy Number Estimation Directly from next-Generation Sequencing Reads. Sci. Rep. 2023, 13, 17765. [Google Scholar] [CrossRef]
- Aylward, A.J.; Petrus, S.; Mamerto, A.; Hartwick, N.T.; Michael, T.P. PanKmer: K-Mer-Based and Reference-Free Pangenome Analysis. Bioinformatics 2023, 39, btad621. [Google Scholar] [CrossRef]
- Peever, T.L.; Milgroom, M.G. Genetic Structure of Pyrenophora teres Populations Determined with Random Amplified Polymorphic DNA Markers. Can. J. Bot. 1994, 72, 915–923. [Google Scholar] [CrossRef]
- Peltonen, S.; Jalli, M.; Kammiovirta, K.; Karjalainen, R. Genetic Variation in Drechslera Teres Populations as Indicated by RAPD Markers. Ann. Appl. Biol. 1996, 128, 465–477. [Google Scholar] [CrossRef]
- Williams, K.J.; Smyl, C.; Lichon, A.; Wong, K.Y.; Wallwork, H. Development and Use of an Assay Based on the Polymerase Chain Reaction That Differentiates the Pathogens Causing Spot Form and Net Form of Net Blotch of Barley. Australas. Plant Pathol. 2001, 30, 37–44. [Google Scholar] [CrossRef]
- Frazzon, A.P.G.; Matsumura, A.T.S.; Van Der Sand, S.T. Morphological Characterization and Genetic Analysis of Drechslera teres Isolates. Genet. Mol. Biol. 2002, 25, 235–241. [Google Scholar] [CrossRef]
- Wu, H.-L.; Steffenson, B.J.; Zhong, S.; Li, Y.; Oleson, A.E. Genetic Variation for Virulence and RFLP Markers in Pyrenophora teres. Can. J. Plant Pathol. 2003, 25, 82–90. [Google Scholar] [CrossRef]
- Rau, D.; Brown, A.H.D.; Brubaker, C.L.; Attene, G.; Balmas, V.; Saba, E.; Papa, R. Population Genetic Structure of Pyrenophora teres Drechs. the Causal Agent of Net Blotch in Sardinian Landraces of Barley (Hordeum vulgare L.). Theor. Appl. Genet. 2003, 106, 947–959. [Google Scholar] [CrossRef]
- Leišova, L.; Minarǐḱova, V.; Kučera, L.; Ovesná, J. Genetic Diversity of Pyrenophora teres Isolates as Detected by AFLP Analysis. J. Phytopathol. 2005, 153, 569–578. [Google Scholar] [CrossRef]
- Keiper, F.J.; Grcic, M.; Capio, E.; Wallwork, H. Diagnostic Microsatellite Markers for the Barley Net Blotch Pathogens, Pyrenophora teres f. maculata and Pyrenophora teres f. teres. Australas. Plant Pathol. 2008, 37, 428–430. [Google Scholar] [CrossRef]
- Bates, J.A.; Taylor, E.J.A.; Kenyon, D.M.; Thomas, J.E. The Application of Real-Time PCR to the Identification, Detection and Quantification of Pyrenophora Species in Barley Seed. Mol. Plant Pathol. 2001, 2, 49–57. [Google Scholar] [CrossRef]
- Leisova, L.; Minarikova, V.; Kucera, L.; Ovesna, J. Quantification of Pyrenophora teres in Infected Barley Leaves Using Real-Time PCR. J. Microbiol. Methods 2006, 67, 446–455. [Google Scholar] [CrossRef]
- Rau, D.; Attene, G.; Brown, A.H.D.; Nanni, L.; Maier, F.J.; Balmas, V.; Saba, E.; Schäfer, W.; Papa, R. Phylogeny and Evolution of Mating-Type Genes from Pyrenophora teres, the Causal Agent of Barley “Net Blotch” Disease. Curr. Genet. 2007, 51, 377–392. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.; Platz, G.J.; Edwards, M.C.; Friesen, T.L. Mating Type Locus-Specific Polymerase Chain Reaction Markers for Differentiation of Pyrenophora teres f. teres and P. teres f. maculata, the Causal Agents of Barley Net Blotch. Phytopathology 2010, 100, 1298–1306. [Google Scholar] [CrossRef] [PubMed]
- Poudel, B.; Ellwood, S.R.; Testa, A.C.; McLean, M.; Sutherland, M.W.; Martin, A. Rare Pyrenophora teres Hybridization Events Revealed by Development of Sequence-Specific PCR Markers. Phytopathology 2017, 107, 878–884. [Google Scholar] [CrossRef] [PubMed]
- Morcia, C.; Ghizzoni, R.; Delogu, C.; Andreani, L.; Carnevali, P.; Terzi, V. Digital PCR: What Relevance to Plant Studies? Biology 2020, 9, 433. [Google Scholar] [CrossRef]
- Venbrux, M.; Crauwels, S.; Rediers, H. Current and Emerging Trends in Techniques for Plant Pathogen Detection. Front. Plant Sci. 2023, 14, 1120968. [Google Scholar] [CrossRef]
- Xu, T.; Yao, Z.; Liu, J.; Zhang, H.; Din, G.M.U.; Zhao, S.; Chen, W.; Liu, T.; Gao, L. Development of Droplet Digital PCR for the Detection of Tilletia laevis, Which Causes Common Bunt of Wheat, Based on the SCAR Marker Derived from ISSR and Real-Time PCR. Sci. Rep. 2020, 10, 16106. [Google Scholar] [CrossRef]
- Ren, Z.; Chen, R.; Muhae-Ud-Din, G.; Fang, M.; Li, T.; Yang, Y.; Chen, W.; Gao, L. Development of Real-Time PCR and Droplet Digital PCR Based Marker for the Detection of Tilletia caries Inciting Common Bunt of Wheat. Front. Plant Sci. 2022, 13, 1031611. [Google Scholar] [CrossRef]
- Morcia, C.; Tumino, G.; Gasparo, G.; Ceresoli, C.; Fattorini, C.; Ghizzoni, R.; Carnevali, P.; Terzi, V. Moving from qPCR to Chip Digital PCR Assays for Tracking of Some Fusarium Species Causing Fusarium Head Blight in Cereals. Microorganisms 2020, 8, 1307. [Google Scholar] [CrossRef]
- Wang, S.; Cui, H.; Chen, M.; Wu, Y.; Wang, S. Quantitative PCR Assays for the Species-Specific Detection of Fusarium graminearum Sensu Stricto and Fusarium asiaticum in Winter Wheat Growing Regions in China. Int. J. Food Microbiol. 2023, 387, 110061. [Google Scholar] [CrossRef]
- Knight, N.L.; Moslemi, A.; Begum, F.; Dodhia, K.N.; Covarelli, L.; Hills, A.L.; Lopez-Ruiz, F.J. Detection of Ramularia Collo-Cygni from Barley in Australia Using Triplex Quantitative and Droplet Digital PCR. Pest Manag. Sci. 2022, 78, 1367–1376. [Google Scholar] [CrossRef]
- Shi, G.; Dai, Y.; Zhou, D.; Chen, M.; Zhang, J.; Bi, Y.; Liu, S.; Wu, Q. An Alignment- and Reference-Free Strategy Using k-Mer Present Pattern for Population Genomic Analyses. Mycology 2024, 1–15. [Google Scholar] [CrossRef]
- Syme, R.A.; Martin, A.; Wyatt, N.A.; Lawrence, J.A.; Muria-Gonzalez, M.J.; Friesen, T.L.; Ellwood, S.R. Transposable Element Genomic Fissuring in Pyrenophora teres Is Associated with Genome Expansion and Dynamics of Host-Pathogen Genetic Interactions. Front. Genet. 2018, 9, 130. [Google Scholar] [CrossRef] [PubMed]
- Barragan, A.C.; Latorre, S.M.; Malmgren, A.; Harant, A.; Win, J.; Sugihara, Y.; Burbano, H.A.; Kamoun, S.; Langner, T. Multiple Horizontal Mini-Chromosome Transfers Drive Genome Evolution of Clonal Blast Fungus Lineages. Mol. Biol. Evol. 2024, 41, msae164. [Google Scholar] [CrossRef] [PubMed]
- Wyatt, N.A.; Richards, J.K.; Brueggeman, R.S.; Friesen, T.L. A Comparative Genomic Analysis of the Barley Pathogen Pyrenophora teres f. teres Identifies Subtelomeric Regions as Drivers of Virulence. Mol. Plant-Microbe Interact. 2020, 33, 173–188. [Google Scholar] [CrossRef]
- Ellwood, S.R.; Liu, Z.; Syme, R.A.; Lai, Z.; Hane, J.K.; Keiper, F.; Moffat, C.S.; Oliver, R.P.; Friesen, T.L. A First Genome Assembly of the Barley Fungal Pathogen Pyrenophora teres f. teres. Genome Biol. 2010, 11, R109. [Google Scholar] [CrossRef]
- Ellwood, S.R.; Syme, R.A.; Moffat, C.S.; Oliver, R.P. Evolution of Three Pyrenophora Cereal Pathogens: Recent Divergence, Speciation and Evolution of Non-Coding DNA. Fungal Genet. Biol. 2012, 49, 825–829. [Google Scholar] [CrossRef]
- Moolhuijzen, P.M.; Muria-Gonzalez, M.J.; Syme, R.; Rawlinson, C.; See, P.T.; Moffat, C.S.; Ellwood, S.R. Expansion and Conservation of Biosynthetic Gene Clusters in Pathogenic pyrenophora spp. Toxins 2020, 12, 242. [Google Scholar] [CrossRef]
- Compeau, P.E.C.; Pevzner, P.A.; Tesler, G. How to Apply de Bruijn Graphs to Genome Assembly. Nat. Biotechnol. 2011, 29, 987–991. [Google Scholar] [CrossRef]
- Williams, D.; Trimble, W.L.; Shilts, M.; Meyer, F.; Ochman, H. Rapid Quantification of Sequence Repeats to Resolve the Size, Structure and Contents of Bacterial Genomes. BMC Genom. 2013, 14, 537. [Google Scholar] [CrossRef]
- Guo, L.T.; Wang, S.L.; Wu, Q.J.; Zhou, X.G.; Xie, W.; Zhang, Y.J. Flow Cytometry and K-Mer Analysis Estimates of the Genome Sizes of Bemisia tabaci B and Q (Hemiptera: Aleyrodidae). Front. Physiol. 2015, 6, 144. [Google Scholar] [CrossRef]
- Neupane, A.; Tamang, P.; Brueggeman, R.S.; Friesen, T.L. Evaluation of a Barley Core Collection for Spot Form Net Blotch Reaction Reveals Distinct Genotype-Specific Pathogen Virulence and Host Susceptibility. Phytopathology 2015, 105, 509–517. [Google Scholar] [CrossRef] [PubMed]
- Skou, J.P.; Haahr, V. Field Screening for Resistance to Barley Net Blotch. Ann. Appl. Biol. 1987, 111, 617–627. [Google Scholar] [CrossRef]
- Hill, R.A.; Lacey, J. Penicillium Species Associated with Barley Grain in the U.K. Trans. Br. Mycol. Soc. 1984, 82, 297–303. [Google Scholar] [CrossRef]
- Felšöciová, S.; Kowalczewski, P.Ł.; Krajčovič, T.; Dráb, Š.; Kačániová, M. Effect of Long-Term Storage on Mycobiota of Barley Grain and Malt. Plants 2021, 10, 1655. [Google Scholar] [CrossRef]
- Bustin, S.A.; Benes, V.; Garson, J.A.; Hellemans, J.; Huggett, J.; Kubista, M.; Mueller, R.; Nolan, T.; Pfaffl, M.W.; Shipley, G.L.; et al. The MIQE Guidelines: Minimum Information for Publication of Quantitative Real-Time PCR Experiments. Clin. Chem. 2009, 55, 611–622. [Google Scholar] [CrossRef]
- Raguseo, C.; Gerin, D.; Pollastro, S.; Rotolo, C.; Rotondo, P.R.; Faretra, F.; De Miccolis Angelini, R.M. A Duplex-Droplet Digital PCR Assay for Simultaneous Quantitative Detection of Monilinia fructicola and Monilinia laxa on Stone Fruits. Front. Microbiol. 2021, 12, 747560. [Google Scholar] [CrossRef]
- Wang, D.; Wang, S.; Du, X.; He, Q.; Liu, Y.; Wang, Z.; Feng, K.; Li, Y.; Deng, Y. ddPCR Surpasses Classical qPCR Technology in Quantitating Bacteria and Fungi in the Environment. Mol. Ecol. Resour. 2022, 22, 2587–2598. [Google Scholar] [CrossRef]
- Hudecova, I. Digital PCR Analysis of Circulating Nucleic Acids. Clin. Biochem. 2015, 48, 948–956. [Google Scholar] [CrossRef]
- Lu, Y.; Zhang, H.; Zhao, Z.; Wen, C.; Wu, P.; Song, S.; Yu, S.; Luo, L.; Xu, X. Application of Droplet Digital PCR in Detection of Seed-Transmitted Pathogen Acidovorax citrulli. J. Integr. Agric. 2020, 19, 561–569. [Google Scholar] [CrossRef]
- Amoia, S.S.; Minafra, A.; Ligorio, A.; Cavalieri, V.; Boscia, D.; Saponari, M.; Loconsole, G. Detection of Xylella Fastidiosa in Host Plants and Insect Vectors by Droplet Digital PCR. Agriculture 2023, 13, 716. [Google Scholar] [CrossRef]
- Chen, Y.; Long, H.; Feng, T.; Pei, Y.; Sun, Y.; Zhang, X. Development of a Novel Primer–TaqMan Probe Set for Diagnosis and Quantification of Meloidogyne enterolobii in Soil Using qPCR and Droplet Digital PCR Assays. Int. J. Mol. Sci. 2022, 23, 11185. [Google Scholar] [CrossRef] [PubMed]
- Dupas, E.; Legendre, B.; Olivier, V.; Poliakoff, F.; Manceau, C.; Cunty, A. Comparison of Real-Time PCR and Droplet Digital PCR for the Detection of Xylella fastidiosa in Plants. J. Microbiol. Methods 2019, 162, 86–95. [Google Scholar] [CrossRef] [PubMed]
- Bouhouch, Y.; Esmaeel, Q.; Richet, N.; Ait Barka, E.; Backes, A.; Steffenel, L.A.; Hafidi, M.; Jacquard, C.; Sanchez, L. Deep Learning Based Barley Disease Quantification for Sustainable Crop Production. Phytopathology 2024, 114, 2045–2054. [Google Scholar] [CrossRef]
- Jebbouj, R.; El Yousfi, B. An Integrated Multivariate Approach to Net Blotch of Barley: Virulence Quantification, Pathotyping and a Breeding Strategy for Disease Resistance. Eur. J. Plant Pathol. 2010, 127, 521–544. [Google Scholar] [CrossRef]
- Lightfoot, D.J.; Able, A.J. Growth of Pyrenophora teres in Planta during Barley Net Blotch Disease. Australas. Plant Pathol. 2010, 39, 499–507. [Google Scholar] [CrossRef]
- Ronen, M.; Sela, H.; Fridman, E.; Perl-Treves, R.; Kopahnke, D.; Moreau, A.; Ben-David, R.; Harel, A. Characterization of the Barley Net Blotch Pathosystem at the Center of Origin of Host and Pathogen. Pathogens 2019, 8, 275. [Google Scholar] [CrossRef]
- Stefanova, P.; Taseva, M.; Georgieva, T.; Gotcheva, V.; Angelov, A. A Modified CTAB Method for DNA Extraction from Soybean and Meat Products. Biotechnol. Biotechnol. Equip. 2013, 27, 3803–3810. [Google Scholar] [CrossRef]
- Di Tommaso, P.; Chatzou, M.; Floden, E.W.; Barja, P.P.; Palumbo, E.; Notredame, C. Nextflow Enables Reproducible Computational Workflows. Nat. Biotechnol. 2017, 35, 316–319. [Google Scholar] [CrossRef]
- Heumos, S.; Heuer, M.F.; Hanssen, F.; Heumos, L.; Guarracino, A.; Heringer, P.; Ehmele, P.; Prins, P.; Garrison, E.; Nahnsen, S. Cluster Efficient Pangenome Graph Construction with Nf-Core/Pangenome. Bioinformatics 2024, btae609. [Google Scholar] [CrossRef]
- Blin, K.; Shaw, S.; Augustijn, H.E.; Reitz, Z.L.; Biermann, F.; Alanjary, M.; Fetter, A.; Terlouw, B.R.; Metcalf, W.W.; Helfrich, E.J.N.; et al. antiSMASH 7.0: New and Improved Predictions for Detection, Regulation, Chemical Structures and Visualisation. Nucleic Acids Res. 2023, 51, W46–W50. [Google Scholar] [CrossRef]
- Mistry, J.; Chuguransky, S.; Williams, L.; Qureshi, M.; Salazar, G.A.; Sonnhammer, E.L.L.; Tosatto, S.C.E.; Paladin, L.; Raj, S.; Richardson, L.J.; et al. Pfam: The Protein Families Database in 2021. Nucleic Acids Res. 2021, 49, D412–D419. [Google Scholar] [CrossRef] [PubMed]
- The dMIQE Group; Huggett, J.F. The Digital MIQE Guidelines Update: Minimum Information for Publication of Quantitative Digital PCR Experiments for 2020. Clin. Chem. 2020, 66, 1012–1029. [Google Scholar] [CrossRef] [PubMed]
- MATLAB & Simulink. MATLAB v 3.8.0; MathWorks: Natick, MA, USA, 2012. [Google Scholar]
- Zhou, L.; Feng, T.; Xu, S.; Gao, F.; Lam, T.T.; Wang, Q.; Wu, T.; Huang, H.; Zhan, L.; Li, L. Ggmsa: A Visual Exploration Tool for Multiple Sequence Alignment and Associated Data. Brief. Bioinform. 2022, 23, bbac222. [Google Scholar] [CrossRef] [PubMed]
- Bodenhofer, U.; Bonatesta, E.; Horejš-Kainrath, C.; Hochreiter, S. Msa: An R Package for Multiple Sequence Alignment. Bioinformatics 2015, 31, 3997–3999. [Google Scholar] [CrossRef]
- Tekauz, A. A Numerical Scale to Classify Reactions of Barley to Pyrenophora teres. Can. J. Plant Pathol. 1985, 7, 181–183. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bouhouch, Y.; Aggad, D.; Richet, N.; Rehman, S.; Al-Jaboobi, M.; Kehel, Z.; Esmaeel, Q.; Hafidi, M.; Jacquard, C.; Sanchez, L. Early Detection of Both Pyrenophora teres f. teres and f. maculata in Asymptomatic Barley Leaves Using Digital Droplet PCR (ddPCR). Int. J. Mol. Sci. 2024, 25, 11980. https://doi.org/10.3390/ijms252211980
Bouhouch Y, Aggad D, Richet N, Rehman S, Al-Jaboobi M, Kehel Z, Esmaeel Q, Hafidi M, Jacquard C, Sanchez L. Early Detection of Both Pyrenophora teres f. teres and f. maculata in Asymptomatic Barley Leaves Using Digital Droplet PCR (ddPCR). International Journal of Molecular Sciences. 2024; 25(22):11980. https://doi.org/10.3390/ijms252211980
Chicago/Turabian StyleBouhouch, Yassine, Dina Aggad, Nicolas Richet, Sajid Rehman, Muamar Al-Jaboobi, Zakaria Kehel, Qassim Esmaeel, Majida Hafidi, Cédric Jacquard, and Lisa Sanchez. 2024. "Early Detection of Both Pyrenophora teres f. teres and f. maculata in Asymptomatic Barley Leaves Using Digital Droplet PCR (ddPCR)" International Journal of Molecular Sciences 25, no. 22: 11980. https://doi.org/10.3390/ijms252211980
APA StyleBouhouch, Y., Aggad, D., Richet, N., Rehman, S., Al-Jaboobi, M., Kehel, Z., Esmaeel, Q., Hafidi, M., Jacquard, C., & Sanchez, L. (2024). Early Detection of Both Pyrenophora teres f. teres and f. maculata in Asymptomatic Barley Leaves Using Digital Droplet PCR (ddPCR). International Journal of Molecular Sciences, 25(22), 11980. https://doi.org/10.3390/ijms252211980