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Abstract: Infertility, defined as the inability to obtain pregnancy after 12 months of regular unpro-
tected sexual intercourse, has increased in prevalence over the past decades, similarly to chronic,
allergic, autoimmune, or neurodegenerative diseases. A recent ARIA-MeDALL hypothesis has
proposed that all these diseases are linked to dysbiosis and to some cytokines such as interleukin
17 (IL-17) and interleukin 33 (IL-33). Our paper suggests that endometriosis, a leading cause of
infertility, is linked to endometrial dysbiosis and two key cytokines, IL-17 and IL-33, which interact
with intestinal dysbiosis. Intestinal dysbiosis contributes to elevated estrogen levels, a primary
factor in endometriosis. Estrogens strongly activate IL-17 and IL-33, supporting the existence of a
gut–endometrial axis as a significant contributor to infertility.

Keywords: infertility; endometriosis; IL-17; IL-33; estrogens; dysbiosis

1. Introduction

Infertility is defined as the inability to conceive after 12 or more months of regular,
unprotected sexual intercourse. In recent decades, the prevalence of infertility has risen,
becoming a major public health problem. Assisted reproductive technologies (ART) are con-
sidered the most efficient tool. However, success rates have only marginally increased over
the past decades, despite significant and constant advances in ART [1]. Various lifestyle risk
factors have been linked to infertility, with nutrition being one of the key factors [2]. Non-
infectious infertility is often associated with endometriosis or polycystic ovary syndrome
(PCOS). Endometriosis is an estrogen-dependent chronic inflammatory process, whereas
PCOS is associated with androgens. Endometriosis is a chronic gynecological condition in
which tissue similar to the endometrium, the lining of the uterus, grows outside the uterine
cavity, commonly affecting the ovaries, fallopian tubes, and pelvic peritoneum. This ectopic
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endometrial tissue responds to hormonal changes during the menstrual cycle, often leading
to inflammation, scarring, and adhesions. Endometriosis is a significant cause of chronic
pelvic pain, dysmenorrhea, and infertility [3]. The prevalence of endometriosis is estimated
to affect approximately 10% of reproductive-age women worldwide, although this figure
may be higher due to underdiagnosis [4]. The condition can have a substantial impact on
quality of life and poses a major challenge in reproductive health.

Polycystic ovary syndrome (PCOS) is a complex endocrine disorder characterized by
hormonal imbalance, metabolic abnormalities, and reproductive dysfunction. It is defined
by the presence of at least two of the following criteria: irregular or absent menstrual cycles
(oligo- or anovulation), hyperandrogenism (excess levels of androgens causing symptoms
like hirsutism, acne, and hair thinning), and polycystic ovaries observed on ultrasound. The
exact cause of PCOS remains unclear, but it is believed to involve a combination of genetic,
hormonal, and environmental factors that lead to insulin resistance and ovarian dysfunction.
PCOS is a leading cause of infertility due to its impact on ovulation and is also associated
with increased risks of metabolic syndrome, type 2 diabetes, cardiovascular disease, and
mood disorders. PCOS affects an estimated 5% to 20% of women of reproductive age
worldwide, depending on the diagnostic criteria used, with prevalence rates generally
around 10% in most populations [5]. The disorder has significant implications for women’s
health, not only impacting reproductive outcomes but also contributing to long-term health
risks. Early diagnosis and management are essential to address both the reproductive and
metabolic aspects of the condition.

Interleukin (IL) IL-17 is a cytokine secreted by T helper 17 (Th17) cells, a subset of
CD4+ T cells that differentiate in the presence of cytokines like TGF-β and IL-6. These
Th17 cells are key in immune responses against bacterial and fungal infections. Other
cells, such as γδ T cells, natural killer (NK) cells, and neutrophils, can also produce IL-
17, especially during infections and inflammatory conditions. Its expression is primarily
restricted to barrier surface tissues such as the intestine, gingiva, conjunctiva, vaginal
mucosa, and skin. IL-17 is produced in low amounts in response to the beneficial resident
microbiota, stimulating the production of antimicrobial peptides by epithelial cells to
maintain a balanced bacterial and fungal population. There is a delicate balance between
IL-17 and the microbiota; dysbiosis is known to lead to Th17 suractivation and elevated
IL-17 production in an attempt to restore equilibrium. Disruption of the healthy microbiota
contributes to the development of various chronic inflammatory and autoimmune diseases,
partly by affecting Th17 cell responses in the gut, which, in turn, influences systemic Th17
activation. Additionally, several cytokines, influenced by lifestyle factors, regulate IL-17
differentiation and its persistence in tissues during chronic inflammation. Excessive IL-17
activity is associated with chronic inflammation and has been implicated in autoimmune
diseases and reproductive disorders, as it promotes the recruitment of neutrophils and
enhances local inflammation in affected tissues. In immunologicdiseases, such as psoriasis
or rheumatoid arthritis, IL-17 blockage has been very effective [6,7].

IL-33 is part of the IL-1 cytokine family and serves as a warning signal for the immune
system in response to epithelial or endothelial cell damage caused by necrosis, infection,
allergies, stress, or trauma. It is mainly released by nonimmune cells, including epithelial
and endothelial cells, in response to cellular stress or damage [8]. It is also produced by
various immune cells, such as mast cells, macrophages, and dendritic cells, and interacts
with its receptor ST2, which is expressed on the surface of Th2 cells, regulatory T cells, and
innate lymphoid cells (ILCs). IL-33 plays a significant role in type 2 immune responses and
has been linked to the development of several conditions, including allergic, cardiovascular,
autoimmune, neurodegenerative, infectious diseases, and cancer. Interestingly, IL-33 can
either contribute to disease improvement or exacerbate its progression. Genetic variations
in the IL33 gene may influence whether an individual is more likely to be immune or
susceptible to certain diseases [9].
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2. The ARIA-MeDALL Hypothesis

The ARIA-MeDALL hypothesis refers to a model that integrates insights from the
“Allergic Rhinitis and its Impact on Asthma” (ARIA) initiative and the “Mechanisms of
the Development of Allergy” (MeDALL) project. This hypothesis proposes that allergic
diseases, particularly in childhood, do not occur in isolation but are interconnected and
often follow a pattern known as the “allergic march”, where different allergic conditions
(such as eczema, food allergies, asthma, and allergic rhinitis) develop and overlap over time.
The ARIA-MeDALL hypothesis suggests that genetic, environmental, and immunological
factors interact to drive a unified mechanism underlying the onset and progression of
multiple allergic diseases.

Recent findings have led to the formulation of the ARIA-MeDALL hypothesis that
rhinitis alone may be a distinct entity from rhinitis and asthma multimorbidity (A + R)
with clinical and therapeutic relevance. This hypothesis is supported by several factors:
(i) distinct gene expression profiles observed in rhinitis, which show a preference for
toll-like receptor and IL-17 expression, as opposed to A + R, where IL-33 and IL-5 are
more prominently expressed [10]; (ii) differing allergen sensitization patterns, with rhinitis
typically involving mono- or pauci-sensitization, while A + R tends to show polysensitiza-
tion [11,12]; (iii) the greater symptom severity observed in epidemiological studies [13,14];
(iv) real-life studies; and (v) differences in treatment response. The hypothesis focuses
on the roles of IL-17 and IL-33 and their interactions with the microbiome, along with
various co-factors. Depending on genetic factors (such as toll-like receptors (TLR) and
IL-33 variants), environmental influences, and other defined or unknown elements, the
interaction between these cytokines and the microbiome varies. In the context of a healthy
ancestral microbiome, IL-17 performs its typical protective role. However, as the micro-
biome’s diversity diminishes, IL-17 can become pathogenic, engaging with TLRs to drive
localized disease. In cases of rhinitis, there is IgE production in response to a limited range
of allergens. With further loss of microbiome complexity, the IL-33 pathway becomes acti-
vated, leading to multimorbidity (asthma and rhinitis) and polysensitization in individuals
who are genetically predisposed (Table 1, Figure 1).

Table 1. The ARIA-MeDALL hypothesis.

In Allergic and Airway Diseases

The hypothesis focuses on IL-17, IL-33, and their interactions with the microbiome and co-factors.
The relationship between these cytokines and the microbiome varies depending on genetic
background (such as TLR, IL-33, and other genes), environmental exposures, and other defined or
undefined factors.

In a microbiome with ancestral complexity, IL-17 performs its normal protective function.
However, as microbiome diversity diminishes, IL-17’s role shifts to a pathogenic one, interacting
with TLRs (local disease) and other mechanisms. For instance, in cases of rhinitis, there is IgE
production to a limited number of allergens, and it is probable that co-factors like viral infections
contribute to disease onset. This disease commonly appears after childhood.

With a further reduction in microbiome diversity, the IL-33 pathway becomes activated. In
genetically susceptible individuals, this leads to multimorbidity and polysensitization. Such
activation can occur shortly after birth (atopic march) or later in early childhood, associated with
factors like viruses, Staphylococcus aureus, pollutants, or nonallergenic components of allergens.

IL-33 may also downregulate IL-17 pathways.

In other noncommunicable diseases and autoimmune conditions, this hypothesis similarly centers
on the roles of IL-17, IL-33 (or other pivotal cytokines), and their interactions with the microbiome
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3. The Female Reproductive Tract Microbiota and Infertility

The following terms will be used according to Jiang [15] (Table 2).

Table 2. Glossary of terms used (from Jiang [15]).

Term Definition

Microbiota The community of microorganisms, including bacteria, archaea, protists, fungi,
and viruses, that live in and on the human body.

Microbiome The complete set of genetic material belonging to the microbiota.

Estrobolome The collection of genes within the gut microbiota that are involved
in estrogen metabolism.

Metabolome The full set of metabolites found in a particular environment.

Dysbiosis A disruption or imbalance in the microbiota, marked by the presence of harmful
microbes or a reduction in beneficial ones.

Prebiotic Substances that stimulate the growth and activity of beneficial microorganisms.

Probiotic Live microorganisms that provide health benefits to the host.

The composition of the vaginal microbiota plays a crucial role in maintaining the
integrity of the cervical epithelium and supporting the protective functions of the cervical
barrier against infections. Microbial communities vary depending on the areas of the
reproductive tract [16]. Lactobacillus species represent the main microorganisms of vaginal
and endometrial microbiota [17]. Like gut microbiota, vaginal microbiota can be modified
by many factors, including hormones and westernized lifestyle [18,19].

3.1. The Female Reproductive Tract (FRT) Microbiota and Endometriosis

Potential explanations for the role of dysbiosis in endometriosis include the Bacte-
rial Contamination Theory, immune system activation, cytokine-induced disruption of
gut function, altered estrogen metabolism and signaling pathways, and imbalances in
progenitor and stem cell homeostasis [15].

Women with endometriosis face a significantly higher risk of lower genital tract in-
fections. Sampling of FRT microbiota has been effective in predicting both the risk and
stage of the disease [15]. Endometriotic microbiotas are associated with diminished Lac-
tobacillus dominance and increased elevated abundance of vaginosis-related bacteria and
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other opportunistic pathogens [15]. Women with endometriosis exhibit higher levels of
colony-forming units of Gardnerella, Streptococcus, Enterococci, and Escherichia coli in the
endometrium. In the cervix, while Atopobium is absent, there is an increase in Gardnerella,
Streptococcus, Escherichia, Shigella, and Ureaplasma [20]. Variety in the cervical microbiome
has been linked to improved clinical outcomes in endometriosis [21]. The cervical micro-
biome may shift during the development and progression of the disease, with increased
Firmicutes and decreased Actinobacteria and Bacteroidetes. Unlike the vaginal microbiome,
the upregulation of Lactobacillus, along with higher levels of Streptococcus and lower levels
of Dialister, is frequently associated with advanced stages of endometriosis, severe pain,
and infertility. A notable reduction in the richness and diversity of the cervical microbiome
has been significantly observed in patients with more severe clinical symptoms [21].

Vaginal dysbiosis (microbial imbalance associated with adverse effects on host health)
can lead to vaginal infections (such as mycoses or bacterial vaginosis) [22]. Vaginal dysbiosis
was associated with infertility [16].

There is a fine balance between the pathogenic and protective functions of IL-17 in the
female reproductive tract. IL-17 plays an important role in maintaining the homeostasis
of the microbiome and the immune response generated during fungal, bacterial, and
viral infections associated with protection but also with inflammation. The relevance of
IL-17 has been demonstrated in bacterial, fungal, and viral infections within the female
reproductive tract, where the innate and adaptive production of IL-17 is involved in a
variety of immunomodulatory processes, including neutrophil recruitment, DC regulation,
and Th1 modulation [22]. IL-17 expression is upregulated in serum, peritoneal fluid (PF),
and endometriotic lesions from patients with endometriosis, especially in the early stages
of the disease [23,24]. IL-17 is involved in endometriosis in the regulation of immune
microenvironment, and the invasion and growth of ectopic lesions [23]. IL-17 may be
associated with pelvic pain [25] (Table 3).

Table 3. IL-17 and IL-33 in fertility.

Author Year Study Group Main Results

IL-17 mouse

Anipindi [26] 2016 Vaginal cells of mice treated
by estradiol or placebo

Estradiol Boosts CD4+ T-Cell Antiviral Immunity by
Preparing Vaginal Dendritic Cells to Trigger Th17
Responses through an IL-1-Dependent Mechanism.

IL-17 human

Rajaei [27] 2011 Case control, N = 12 + 10 Undetectable IL-17

Crosby [28] 2020 20 infertile women
Increase in the IL-17A pathway in endometrial tissue from
women with unexplained infertility affects pregnancy
outcome following assisted reproductive treatment.

Wang [29] 2019 Case–control, N = 75
endometriosis + 75 normal

Increased expression of IL-17 and decreased IL-10-TGFß
in endometriosis possibly associated with Treg (mTORC1
autophagy)

Zhao [30] 2021 47 infertile women after
blastocyst transfer

• Same profile the day of transplantation.
• IL-17 increase at day 3 in all women.
• But persistence of increased IL-17 at days 6 and 9

only in women with negative transplantation.

Olkowska-
Truchanowicz [31] 2021 Case–control: 36

endometriosis and 26 none

• Peritoneal fluid IL-17 increased in endometriosis
stages I–II by comparison to no-endometriosis and
endometriosis stages III–IV.

• IL-17 more increased when endometriosis was
associated with infertility.

• IL-1ß and VEGF increased in endometriosis.
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Table 3. Cont.

Author Year Study Group Main Results

Wu [24] 2021 36 endometriosis
• IL-17 and MAPK signaling pathway significantly

enriched in the eutopic endometria of women with
endometriosis

Jiang [32] 2022 48 women with stage III–IV
endometriosis

• Interleukin-17 Receptor E (IL-17RE) and CD27 were
the labels of heterogeneous peritoneal fluid Th17
subsets

Mary [33] 2021

cross-sectional study, 39 men
with infertility diagnosed
based on semen analysis and
39 subjects with normal
semen analysis

In infertile cases, MMP-9 and IL-17 were significantly
increased when compared with controls (p = 0.046 and
p = 0.041, respectively). A significant association of
MMP-9 was observed with IL-17 (p = 0.037)

IL-33 mouse/rat

Oh [34] 2016 mice Dysbiosis-induced IL- 33 contributes to impaired antiviral
immunity in the genital mucosa

Begum [35] 2020 mice
Dynamic Expression of Interleukin-33 and ST2 in the
Mouse Reproductive Tract Is Influenced by
Superovulation

Valero-Pacheco [36] 2022 mice
Maternal IL-33 critically regulates tissue remodeling and
type 2 immune responses in the uterus during early
pregnancy in mice

Kozai [37] 2021 rats Protective role of IL33 signaling in negative pregnancy
outcomes associated with lipopolysaccharide exposure

Wu [38] 2015 mice
IL-33 is shown to be associated with follicle atresia and
required for disposal of degenerative tissue during
ovarian atresia

IL-33 human

He [39] 2022 Case–control, N = 20 + 20

Reduced intracellular IL-33 levels negatively affect
endometrial receptivity in women with adenomyosis.
This is linked to a correlation with HOXA10 expression.
IL-33 enhances endometrial receptivity by promoting
STAT3 phosphorylation

Bourdon [40] 2019 Case–control N = 60 + 20 Low IL-33 (and IL-17F) in adenomyosis group

Lin [41] 2021 Cells from endometrioma
IL-33 promotes invasiveness of human ovarian
endometriotic stromal cells through the
ST2/MAPK/MMP-9 pathway activated by 17b-estradiol

Southcombe [42] 2013 N = 21 + 64
Soluble ST2 detected in Human Follicular Fluid and
Luteinized Granulosa Cells. sST2 levels increased in the
largest follicules.

Kaitu’u-Lino [43] 2012 Case–control,
N = 150 + 20 abortions

Increase in maternal serum IL-33 and soluble ST2
associated with miscarriage.
It is proposed that an increase in IL-33 may be a T2
compensatory response to prevent abortion.

Moretti [44] 2021
44 human semen
samples/control group
of 11 fertile men

IL-33 was absent in all analyzed semen samples,
suggesting a role of a nuclear factor rather than secreted
cytokine in human seminal plasma

Dysbiosis-induced IL-33 contributes to impaired antiviral immunity in the genital
mucosa [34]. In endometrium, IL-33 perpetuated inflammation, angiogenesis, and lesion
proliferation, which are critical events in the progression of endometriosis [45–47]. In a 2013
prospective study involving 151 patients, Santulli et al. [48] demonstrated for the first time
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that elevated serum levels of IL-33—a cytokine known for its role in fibrotic disorders—are
associated with the presence of uterine leiomyoma.

3.2. The FRT Microbiome and PCOS

The vaginal microbiome is also involved in PCOS with a reduction in Lactobacil-
lus sp. [49,50]. Vaginal bacterial species among PCOS patients may be associated with
testosterone levels [51]. Nonetheless, it remains unclear whether the vaginal microbiome
influences the onset or progression of PCOS [52]. Few studies have shown that IL-17 and
IL-33 were involved in PCOS [53–55].

3.3. Treatment of Endometriosis or PCOS by Alteration of the Genital Microbiome

Although research is still in its early stages, there is growing evidence that antibiotic
and probiotic treatments may offer therapeutic benefits for managing endometriosis [15].
Further research, including randomized controlled trials, is needed to establish standard-
ized treatment protocols and fully understand how these therapies can be integrated into
the management of endometriosis. Nonetheless, these approaches offer a potential avenue
for novel, microbiome-targeted therapies that could improve patient outcomes.

4. The Gut Microbiome and Infertility

The gut microbiome plays a critical role in regulating various aspects of physiology,
metabolism, and immune function, with its activity closely linked to nutritional intake.
The abundance and metabolic activity of gut microbiota follow a diurnal circadian rhythm,
primarily controlled by host nutrition and hormones [56]. This delicate balance between
the gut microbiome, immune responses, and physiological states has been disrupted by
westernized diets [57]. However, the composition of the gut microbiome differs significantly
from that of the genital microbiome [58].

In cases of endometriosis, altered gut microbiota profiles have been observed, and
these changes appear to contribute to the progression of the disease, suggesting a bidirec-
tional interaction [59]. Additionally, these microbiomes may influence the gut–brain axis,
potentially explaining the link between endometriosis and symptoms such as infertility and
chronic pelvic pain [60]. The gut microbiota is also modulated by estrogens and, in turn,
affects estrogen levels [61]. An increased presence of β-glucuronidase-producing bacteria
can lead to higher circulating estrogen levels, which may promote the development and
progression of endometriosis [61].

PCOS, a common cause of infertility, is also involved in gut microbiome changes [52,62].
In PCOS, dysbiosis with an imbalance of particular bacterial species such as Bacteroidetes
and Firmicutes [63] was associated with an altered production of short-chain fatty acids and
suggested a role for IL-22 and bile [61,63]. The changes in microbiome in PCOS are similar
to those of metabolic dysregulation [49]. Androgens appear to regulate the gut microbiome
in females and androgen excess may be linked with gut dysbiosis in PCOS. Women with
PCOS have an excess of androgens in relation to estrogen. The altered gut microbiota in
PCOS may promote increased androgen biosynthesis and decreased estrogen levels through
lowered beta-glucuronidase activity. PCOS is frequently linked to systemic metabolic issues,
including hyperinsulinemia, insulin resistance (IR), obesity, and a heightened risk of type II
diabetes and cardiovascular diseases [64]. Thus, it is possible that multimorbid PCOS may
be associated with changes in microbiome.

5. Estrogens, Dysbiosis, IL-17, and IL-33

Three primary factors that disrupt estrogen availability in women with endometriosis
are the expression of estrogen-synthesis enzymes, the estrobolome, and the metabolome [15].
The activity of the estrobolome regulates the amount of excess estrogen that is either elimi-
nated from or reabsorbed into the body [65]. When this activity is disrupted, often due to
imbalances in the gut microbiome, excess estrogen may be retained in the body. This estro-
gen can then enter the bloodstream and be transported to the endometrial and peritoneal
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tissues [65]. This process leads to a hyperestrogenic state, which fuels the progression of
endometriosis, offering a potential explanation for how gut microbiota dysbiosis might
contribute to the disease. Additionally, the metabolome, which is significantly shaped
by gut microbiota activity, plays a key role in the gut–brain axis [66]. Gut metabolites
stimulate the production of estrogens. Imbalances in the gut microbiota, or dysbiosis, can
lead to alterations in the metabolome, resulting in elevated levels of serotonin, glutamate,
short-chain fatty acids (SCFAs), and gamma-aminobutyric acid (GABA). These metabolites
can reach the brain, where they stimulate the production of estrogens [15].

Many different mechanisms can explain gut dysbiosis and endometriosis but can also
propose a role for IL-17 and IL-33 (Figure 2). Estrogen signaling enhances the release of
IL-33 in response to allergens, promotes cytokine production by ILC2 cells, and amplifies
airway inflammation [67]. IL-33 is involved in allergic and nonallergic inflammation [8].
IL-33-group 2 innate lymphoid cells are regulated by estrogens in the uterus [68]. Estrogens
enhance IL-17 expression in uterine γδ T cells [69]. The important activation of IL-17
and IL-33 pathways by estrogens provides a link between uterine and gut microbiomes.
Interestingly, the recent study of Wang et al. (Table 3) found that, in women with chronic
endometritis (CE) and recurrent implantation failure (RIF), there is a significant dysregula-
tion in cytokine expression and autophagy markers. Specifically, the expression of IL-17
was markedly higher in these patients compared to controls, while the levels of IL-10 and
TGF-β were significantly lower [29]. Furthermore, autophagy marker LC3-II expression
was elevated, and the mTORC1 pathway was impaired in CE patients. These findings
suggest that CE is associated with a shift toward a proinflammatory environment in the
endometrium, driven by an imbalance favoring Th17 over Treg responses, and exacer-
bated by altered autophagy processes. This dysregulated immune environment is likely to
contribute to reduced endometrial receptivity and increased risk of implantation failure.
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6. Male Infertility, Cytokines, and Microbiome

IL-17 has been linked to male infertility, as it negatively impacts both sperm motility
and viability [33,70]. This cytokine promotes inflammatory responses that can lead to
oxidative stress and tissue damage in the male reproductive system. Such inflammation can
impair the functionality of sperm by disrupting the environment in which they develop and
function, leading to reduced motility and compromised sperm viability [71]. Additionally,
the presence of IL-17 in the reproductive tract may contribute to the breakdown of sperm
membrane integrity, further diminishing their capacity to fertilize an egg. This association
suggests that increased IL-17 levels could play a detrimental role in male reproductive
health by creating a hostile environment for sperm survival. Sabbaghi et al. [72] showed
that IL-17A levels were elevated in both the seminal plasma and blood serum of varicocele
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patients compared to the control group. Additionally, this cytokine level was higher in the
follicular fluid of patients with endometriosis, polycystic ovary syndrome (PCOS), and
tubal factor infertility than in the control group.

The composition of the seminal microbiome can significantly influence male fertility.
Emerging research suggests that the presence and balance of specific microorganisms in
semen may affect sperm health, motility, and overall reproductive potential. An imbalance
or dysbiosis in the seminal microbiome, characterized by the overgrowth of pathogenic
bacteria or the reduction in beneficial microbes, has been linked to conditions such as
reduced sperm quality, oxidative stress, and inflammation of the male reproductive tract, all
of which can impair fertility. Furthermore, the seminal microbiome may also play a role in
influencing the immune environment within the reproductive system, potentially impacting
successful fertilization. Understanding the interactions between microbial populations in
semen and male reproductive health could lead to new insights and treatments for male
infertility [73]. A diverse semen microbiome was identified with modest similarity to the
urinary microbiome. Infertile men harbored increased seminal α-diversity and distinct β-
diversity [74]. In a meta-analysis [75], it was found that Ureaplasma urealyticum, Enterococcus
faecalis, Mycoplasma hominis, and Prevotella negatively impact semen parameters, whereas
Lactobacillus appears to protect sperm quality.

A clear link has been established between gut microbiota dysbiosis and male infertility.
Disruptions in the balance of gut bacteria can lead to systemic effects that influence repro-
ductive health. Specifically, an imbalanced gut microbiome can contribute to increased
inflammation, oxidative stress, and metabolic dysfunctions, such as insulin resistance and
obesity, which are known factors that negatively impact sperm quality and overall male fer-
tility. Additionally, the gut microbiota plays a crucial role in regulating hormonal balance,
including the metabolism of testosterone and other androgens essential for reproductive
function. Alterations in gut bacteria can therefore indirectly affect spermatogenesis and
impair sperm motility, morphology, and concentration [74,76–78].

Recent research has begun to uncover the complex interplay between immune factors,
particularly cytokines IL-17 and IL-33, the microbiome, and semen quality, offering new
insights into male infertility. IL-17 and IL-33, known for their roles in inflammatory and
immune responses, appear to influence reproductive health by affecting the inflammatory
environment within the male reproductive system. Elevated IL-17 levels, typically asso-
ciated with chronic inflammation, have been linked to increased oxidative stress in the
testes and seminal fluid. This oxidative stress can damage sperm DNA, impair motility,
and decrease sperm viability, all of which are critical parameters of semen quality [79].
Similarly, IL-33, which is involved in both inflammation and tissue repair, may exacerbate
inflammation when dysregulated, contributing to a hostile environment in the testes and
epididymis. Excessive IL-33 activation can lead to immune cell infiltration, further elevating
oxidative stress and impairing the structural integrity of sperm [80].

These cytokine effects are further compounded by dysbiosis in the male genital and
gut microbiome. The microbiome plays a crucial role in maintaining immune balance, as
microbial communities regulate inflammatory responses and modulate cytokine levels.
An imbalanced microbiome, particularly gut dysbiosis, can result in elevated systemic
inflammation, leading to heightened levels of IL-17 and IL-33. Dysbiosis within the male
genital tract itself can disrupt the protective microbial environment necessary for optimal
sperm health, contributing to oxidative stress and inflammatory damage [81]. Studies
have shown that certain microbial communities in the gut can influence hormone regu-
lation and immune signaling, suggesting a gut–testis axis through which dysbiosis may
indirectly impair semen quality by modulating IL-17 and IL-33 levels [82]. This novel con-
nection implies that treatments targeting microbial balance, such as probiotics, alongside
anti-inflammatory interventions, may offer potential therapeutic benefits for improving
semen quality and, consequently, male fertility. Integrating this understanding of cytokine
and microbiome interactions may reshape approaches to diagnosing and managing male
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infertility, focusing on reducing inflammation and restoring microbial health to optimize
semen parameters [83].

7. Relationship Between Infertile Male and Female Microbiotas

Unprotected sexual intercourse facilitates the exchange of bacteria between partners,
allowing each to influence the microbiota composition within the other’s reproductive
tract [84]. Investigating bacterial transmission through sexual activity presents challenges,
as fluctuations in the female microbiota are influenced by multiple factors beyond the
microbial contribution from semen. These factors include hormonal changes, variations
associated with the menstrual cycle, and broader environmental or lifestyle influences.
The complexity of these interactions makes it difficult to isolate the specific effects of
bacterial exchange during intercourse on the female reproductive microbiome, as it is
constantly shaped by both internal and external variables [85]. Considering how female
microbiota may act upon male microbial fauna [56], it may also be tempting to hypoth-
esize that a couple living in the same environment have the same dietary patterns and
that a similar dysbiosis may exist in couples with male and female infertility, leading to
increased infertility.

8. Discussion

The links between infertility and the microbiome are complex. They involve many
different mechanisms and various sites of the microbiome (genital or gut). However, some
hypotheses can be proposed.

Endometriosis and PCOS risks have genetically, developmentally, and physiologically
opposite causes [86]. They show opposite patterns of prevalence within populations: where
one is more common, the other is less common. This is supported by data of variation
among populations in levels of prenatal testosterone, which mediate risks of both condi-
tions [86]. A low level of prenatal testosterone favors the occurrence of endometriosis [87].
Testosterone downregulates IL-17 [88,89]. Testosterone levels are decreased when micro-
biome diversity is reduced [90]. Given that hormones like estrogen and testosterone have
a substantial impact on cytokine pathways (including IL-17 and IL-33), accounting for
hormonal fluctuations across the menstrual cycle or during reproductive treatments should
be an integral part of study designs. Since lifestyle factors like diet, stress, and pollutant
exposure can affect the microbiome, it is important to control for these variables—such as
by using questionnaires or tracking diet. This approach helps to isolate the direct effects of
cytokines on infertility, minimizing potential biases from these external influences.

The ARIA-MeDALL hypothesis in infertility is based on the reduction in gut and uter-
ine microbiome diversity by westernized lifestyle. Endometriosis, an estrogen-associated
disease, is a heterogeneous disease. Some forms may be associated with gut and uterine
dysbiosis, with a gut–endometrium axis promoting endometrial IL-17 and IL-33 pathways
enhanced by estrogens. On the other hand, PCOS may be an androgen-associated disease
with an impact on the gut (and possibly vaginal) microbiome, although some estrogen
pathways can also be activated. This hypothesis may explain, at least partly, some of the
dysbiosis impact on fertility due to westernization of the microbiome.

9. Conclusions

The connections between infertility and the microbiome are multifaceted, involving
diverse mechanisms and multiple microbiome sites, such as the gut and genital tract.
Alterations in the microbiome can impact hormone regulation, immune responses, and
inflammatory pathways, all of which play key roles in reproductive health. For instance,
dysbiosis in the gut microbiome may disrupt estrogen metabolism, influencing levels
of circulating estrogens that are critical for fertility. In the genital tract, an imbalanced
microbiome can lead to inflammation and immune dysregulation, which may impair
implantation and pregnancy maintenance. The ARIA-MeDALL hypothesis, originally
linking chronic diseases to dysbiosis and proinflammatory cytokines like IL-17 and IL-33,
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has recently been extended to infertility, proposing that dysbiosis-driven inflammation
and hormonal disruptions may similarly contribute to reproductive challenges. While
these mechanisms are still being explored, the emerging “gut-reproductive axis” and
“genital microbiome health” hypotheses suggest that restoring microbial balance could be
a potential strategy for improving fertility outcomes.
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