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Abstract: Pharmaceutical cocrystals offer a versatile approach to enhancing the properties of drug
compounds, making them an important tool in drug formulation and development by improving
the therapeutic performance and patient experience of pharmaceutical products. The prediction
of cocrystals involves using computational and theoretical methods to identify potential cocrystal
formers and understand the interactions between the active pharmaceutical ingredient and coformers.
This process aims to predict whether two or more molecules can form a stable cocrystal structure
before performing experimental synthesis, thus saving time and resources. In this review, the
commonly used cocrystal prediction methods are first overviewed and then evaluated based on
three criteria: efficiency, cost-effectiveness, and user-friendliness. Based on these considerations, we
suggest to experimental researchers without strong computational experiences which methods and
tools should be tested as a first step in the workflow of rational design of cocrystals. However, the
optimal choice depends on specific needs and resources, and combining methods from different
categories can be a more powerful approach.

Keywords: pharmaceutical cocrystals; drug formulation enhancement; computational cocrystal
prediction; in silico cocrystal prediction methods; rational cocrystal design

1. Introduction

Cocrystal formation is a promising approach to enhancing the properties of drugs, par-
ticularly solubility, stability, and bioavailability [1–4]. The selection of a suitable conformer
next to the active pharmaceutical ingredient (API) is critical in designing pharmaceutical
cocrystals, which can improve the performance of drug substances by modifying their
physicochemical properties. Conventional methods for cocrystal screening, such as solvent
evaporation [5], solution crystallization [6,7], dry [8], liquid-assisted grinding [9], and melt
crystallization [10], and others, have been foundational in the discovery and development
of new cocrystals. The techniques mentioned have been helpful in the development of
new pharmaceutical cocrystal forms with enhanced properties such as solubility, stabil-
ity, and bioavailability. However, as practical as they may be, these approaches require
extensive laboratory work and are trial-and-error-based, often yielding inefficiencies. Com-
bining conventional methods with novel computational and high-throughput technologies
can improve researchers’ cocrystal design and development efficiency. The prediction of
cocrystals is a multifaceted approach that combines computational and theoretical methods
to forecast the formation and stability of cocrystals as part of the workflow of rational
cocrystal design [11–13]. This predictive capability allows researchers to focus on the most
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promising candidates for experimental synthesis, ultimately enhancing the efficiency of
drug development processes.

Steps in the workflow of rational cocrystal design are as follows (Figure 1):
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1. API of interest: Select an API and clearly define the desired properties of the
cocrystal (e.g., improved solubility, stability, and tableting characteristics).

2. Computational screening of potential coformers: Identify potential coformers with
complementary functionalities that could enhance the desired characteristics based on
chemical compatibility and known interaction patterns. Utilize databases like ZINC [14,15],
PubChem [16], and the Cambridge Structural Database (CSD) [17,18] to explore potential
coformers based on chemical properties, known interactions, and supramolecular synthons
(recurring motifs in crystal structures). Use one or more prediction methods to gain a
comprehensive understanding of potential cocrystal behavior with calculating interaction
energies, solubility parameters, and other relevant properties.

3. Ranking and analysis of predicted potential cocrystals: Rank the potential cocrystals
based on computational prediction of stability and interaction strength. Analyze the results
to identify potential cocrystals with favorable interaction energies and binding affinities
between APIs and coformers, improved solubility or stability compared to the original API,
and synthetic feasibility based on factors like functional group compatibility.

4. Experimental design: Based on the computational prediction and analysis, pri-
oritize the most promising cocrystal candidates for experimental validation, considering
factors like ease of synthesis, availability of starting materials, and potential scalability for
larger-scale production. Well-defined experiments for cocrystal synthesis can be designed,
including solvent selection, crystallization conditions, and purification techniques.

5. Experimental validation and characterization of the predicted cocrystal: Synthesize
the prioritized cocrystal candidates using the designed experimental procedures. Then,
various characterization techniques like X-ray diffraction (XRD), single-crystal structure
analysis (SCXRD), solid-state nuclear magnetic resonance (ssNMR), and spectroscopic
methods (e.g., FTIR and Raman) can be employed to confirm the cocrystal formation
and determine its structure. Measuring the desired properties (e.g., solubility and stabil-
ity) of the synthesized cocrystal validates the computational predictions and assesses its
potential application.

6. Simulating different crystal behaviors: To gain a deeper understanding of cocrystal
behavior, predict or refine the predicted cocrystal structure. Simulate various physical and
thermodynamic properties and compare with experimental results.

7. Refinement of the computational screening (optional): Based on the experimental results,
refine the computational models (if applicable) for improved accuracy in future predictions.

This workflow emphasizes a data-driven approach that integrates computational
screening with well-designed experimental validation. By combining these methods,
researchers can efficiently discover and develop cocrystals with desired properties for
various applications.

Objectives of the present review are to evaluate and prioritize prediction meth-
ods based on user-friendliness, efficiency, and cost-effectiveness (Figure 2). The user-
friendliness and cost-effectiveness are easily evaluated on an objective basis, but the evalu-
ation of effectiveness is more complex. Primarily, it considers the accuracy and reliability
of the predictions, but the amount of information obtained by the method and the time to
reach the first results have to be considered as well. Which leaves some space for subjective
evaluation of efficiency. The field of pharmaceutical research is increasingly reliant on
in silico computational methods for cocrystal formation prediction. While numerous re-
views exist [11,13], summarizing the available tools and approaches, none have specifically
focused on aiding experimental researchers new to these methods. This study bridges
that gap by guiding researchers unfamiliar with computational methods in selecting the
most suitable approach for their specific needs. By focusing on methods offering effective
predictions with minimal learning curve, time, and financial investment, this study aims to
facilitate efficient and informed experimental design for cocrystal discovery.
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2. Overview of Cocrystal Formation Prediction Methods

The aim of this summary is to assist experimental scientists in making informed
choices by highlighting practical applications rather than delving deeply into theoretical
foundations and methods. We focus on how the tools can be used effectively rather
than on the specific equations solved by the programs in the background. To avoid the
black-box effect, we provide a minimal theoretical background, ensuring that users have
enough understanding to trust and interpret the results. By offering sufficient theoretical
insight without overwhelming the reader, we aim to bridge the gap between complex
computational methods and practical experimental needs.

Many methods and tools are now available to predict cocrystal formations, with
some offering insights into not only the probability of formation but also the potential
crystal structure of the resulting cocrystals (Figure 3). In this section, we will overview
the most commonly used methods, briefly summarizing how cocrystal formations can be
predicted using a given method and what software packages and tools are available for it.
There is overlap between the categories, and in many cases, they need to be used together.
Nevertheless, this division allows us to analyze the available tools according to the criteria
of efficiency, cost-effectiveness, and user-friendliness.

2.1. Quantum Mechanical Methods

Quantum mechanical (QM) methods provide the underlying theory for understanding
the forces between atoms and molecules [19]. QM calculations are used to calculate the
electronic structure of the individual molecules (e.g., API and coformer) that form the
potential cocrystal [20]. This information provides insights into the reactivity and the
ability of molecules to form specific interactions (hydrogen bonding and electrostatics) with
another molecule. Furthermore, QM calculations help develop models for intermolecular
interactions between the cocrystal components. These models account for factors like
electrostatic interactions (based on atomic charges), hydrogen bonding, and dispersion
forces [21,22]. The accuracy of these models is crucial for reliable cocrystal prediction [23].
QM calculations can be used to evaluate the interaction energy between API and conformer
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packed together in the crystal lattice, providing a preliminary assessment of the stability
of the potential cocrystal structure [21,22]. While QM offers valuable insights, it is often
computationally expensive for complex systems. Simulations might not fully capture all
the complexities of real-world cocrystal formation, like kinetic factors or solvent effects.
To address these limitations, QM calculations are often combined with other methods
like lattice energy minimization or machine learning (ML) to improve efficiency and
accuracy [24].
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QM calculations specifically use methods like density functional theory (DFT) to cal-
culate the electronic structure of molecules and predict interaction energies [25]. Molecular
Electrostatic Potential (MEP) calculations analyze the electrostatic potential distribution
around molecules to predict interaction sites and complementarity between the API and
conformer (Figure 4) [26,27]. This helps in understanding the likelihood of forming stable
cocrystals. Periodic DFT calculations offer a more accurate approach to modeling crys-
tal structures compared to in vacuo calculations. Unlike in vacuo methods, which treat
molecules in isolation, periodic DFT accounts for the periodic nature of solids, enabling
the modeling of long-range interactions between atoms across unit cells. This is crucial
for considering intermolecular forces like van der Waals interactions, which significantly
influence crystal structures and properties. In contrast, in vacuo calculations often fail to
accurately represent these interactions, leading to less reliable predictions. By minimizing
edge effects through periodic boundary conditions, periodic DFT provides a more realistic
representation of the electronic structure, geometry, and stability of crystals, leading to
more accurate predictions of their physical properties [28]. Furthermore, phonon calcu-
lations, as achieved through density functional perturbation theory (DFPT), are indeed
critical for calculating Gibbs free energy within periodic DFT frameworks by incorporating
lattice vibrations and entropy contributions. This approach provides high accuracy in ther-
modynamic property predictions, which is essential for determining stability and phase
transitions in crystalline materials. However, phonon calculations are computationally
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intensive and require significantly longer processing times, especially for complex systems,
making a trade-off between accuracy and computational cost unavoidable [28].
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There are several relevant QM programs or tools that utilize the principles of QM to
perform calculations on molecules and materials. Gaussian is a commercially available
popular software package for performing various electronic structure calculations using
quantum chemistry methods like DFT [29]. It is widely used for calculations on molecules
and small clusters [30]. CASTEP [31] is a widely used software package for first-principles
calculations in materials science, available under a free license for academic users. It
employs DFT with a plane-wave basis set to calculate the electronic properties of a variety
of materials, including crystalline solids. Vienna Ab initio Simulation Package (VASP) is a
powerful software package designed for performing electronic structure calculations on
periodic systems, particularly solids and surfaces [32]. It utilizes plane-wave basis sets
and pseudopotentials to efficiently handle complex systems. QuantumESPRESSO is an
open-source software package known for its capabilities in electronic structure calculations
for periodic systems [33]. It offers a modular design and allows for a high degree of
customization for specific needs. BIOVIA Materials Studio DMol3 is another versatile
modeling program based on DFT that predicts chemical processes and material properties
across gas, solution, and solid phases, making it valuable in fields such as chemistry,
pharmaceuticals, and materials science [34]. The commercially available Schrödinger suite
offers a wide range of tools for various tasks in molecular modeling, simulation, and
property prediction [35]. Its two modules, namely, Jaguar [36] and MacroModel [37], can
be valuable tools within a computational workflow for cocrystal prediction. Jaguar offers
high-level electronic structure calculations for accurate interaction energy analysis, while
MacroModel is useful for initial structure preparation and basic energy minimizations.
OCTOPUS is a powerful computational chemistry program performing electronic structure
calculations at the quantum mechanical level [38]. It is a valuable tool for refining and
analyzing the predicted crystal structures, offering a deeper understanding of the electronic
interactions within the cocrystal.

2.2. Molecular Docking and Molecular Dynamics

Molecular docking and molecular dynamics (MDs) utilize pre-calculated data or
classical mechanics approaches based on the principles of QM used for molecular sim-
ulations [39,40]. Molecular docking simulates the binding of the API and coformer to
predict their ability to form a stable cocrystal [41]. Simulating the docking poses provides
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insights into potential binding modes within the cocrystal structure. Docking programs
simulate how the API molecule and potential coformers might interact with each other
at the molecular level. They predict the binding site (where the coformer interacts with
the API) and the binding pose (the conformation of the coformer in the complex). This
information helps researchers identify coformers with favorable interactions that could
potentially lead to a stable cocrystal. Many docking programs offer scoring functions that
estimate the binding affinity (strength of interaction) between the docked molecules [42].
This can help assess the favorability of a particular cocrystal arrangement. Thus, docking
tools can be used to virtually screen a large database of potential coformers for a specific
API, prioritizing promising coformers with the help of docking scores researchers can
for further evaluation [43]. This helps identify promising candidates for cocrystallization
based on their predicted binding interactions. A brief overview of some popular programs
is followed.

AutoDock and AutoDock Vina (Vina) are popular open-source docking programs
known for their user-friendliness and speed [44,45]. GOLD is a widely used docking
program known for its genetic algorithm approach to exploring docking poses [46]. GOLD
(Genetic Optimization for Ligand Docking) is commercially available from the Cambridge
Crystallographic Data Centre (CCDC) [47]. Schrödinger Suite is a comprehensive software
suite that includes Glide for docking as well as tools for structure preparation, virtual
screening, and property prediction [48]. As mentioned earlier, this suite is not freely
available for academic users; it is commercial software with licensing fees. The University
of California, San Francisco (UCSF) maintains the DOCK program, an academic docking
program known for its speed and ease of use [49]. The best choice of docking program
depends on your specific needs, considering factors like budget, desired level of accuracy,
and user-friendliness. Noted here is that although primarily designed for protein–ligand
and protein–protein docking, these tools are now widely used beyond protein–ligand
docking, including cocrystal formation predictions [41,43], applications such as predicting
host–guest interactions, and other non-covalent binding processes [50,51].

MD simulates the dynamic behavior of API–coformer pairs over time to assess the
stability of the predicted cocrystal [52,53]. MD simulations are not the typical first-choice
method for directly predicting cocrystal structures. This is because simulating the en-
tire crystallization process with full atomistic detail is computationally expensive and
time-consuming. However, MD simulations become valuable after the potential cocrys-
tal structures have been identified using other methods like lattice energy minimization
or docking simulations with the aim of refining docked poses, studying conformational
flexibility, and analyzing intermolecular interaction. Desmond [54], GROMACS [55], AM-
BER [56], and LAMMPS [57] are valuable tools for MD simulations that can be a powerful
complement to other cocrystal prediction methods. They offer insights into the dynamics
and stability of potential cocrystal structures, aiding in the selection of promising candidates
for further investigation.

2.3. Crystal Structure Prediction and Lattice Energy Minimization

Crystal structure prediction (CSP) generates possible crystal structures with the ar-
rangement of atoms (crystal structure) of a material based on its chemical formula [58].
The generated structures are ranked based on lattice energies. It identifies the most stable
cocrystal forms by comparing the energies of different possible configurations, and the
most stable structure is often the one with the minimum energy. Further approaches within
CSP support cocrystal prediction [59]. The evolutionary algorithms mimic natural selection
to iteratively improve candidate structures, or the random sampling involves generating a
large number of random structures and evaluating their stability.

The lattice energy minimization method is a computational approach used to predict
cocrystal structures. It relies on the principle that cocrystals form when the overall lattice
energy (the energy holding the crystal structure together) is minimized. Calculates and
minimizes lattice energy to predict the most stable crystal based on the core principle: The
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method explores different possible packing arrangements of the cocrystal components
and calculates the lattice energy for each arrangement. The arrangement with the lowest
lattice energy is considered the most stable and the predicted cocrystal structure. Thus, it
essentially tackles CSP by minimizing an energy function.

CSP is a critical area in materials science and pharmaceuticals, and several software
programs have been developed to aid in this process. An overview of various software
options for CSP will be discussed; at the same time, it is impossible to list all the available
tools because new software and advancements are continuously emerging in the field
of CSP.

DMACRYS software developed at the University College London is free of cost for
academic scientists in the United Kingdom (UK) and commercially available for non-UK
academists and for the industry, with the possibility of further developing and contributing
with third-party enhancements [60]. Even though workflows and suite examples help to
train and use the program, DMACRYS is not user-friendly software; strong computational
chemistry knowledge and other QM programs (e.g., Gaussian) are required to simulate
possible crystal structures.

CALYPSO (Crystal Structure Analysis by Particle Swarm Optimization) employs
particle swarm optimization techniques for predicting crystal structures [61]. This technique
simulates the collective movement of a swarm, where individual particles learn from each
other and converge toward optimal positions. In this particle swarm optimization (PSO)
algorithm [62], through a series of iterations, the swarm of structures explores the potential
energy landscape, with each particle adjusting its position based on the energy of its
neighbors. This collaborative approach efficiently can identify low-energy crystal structures.
CALYPSO can predict energetically stable or metastable structures based on the chemical
composition of the compound. This feature allows researchers to explore various structural
possibilities without needing extensive prior knowledge of the crystallography of the
compound. CALYPSO is currently interfaced with several major computational chemistry
and materials science codes, including VASP [32], CASTEP [31], QuantumESPRESSO [33],
GULP [63], and CP2K [64]. This interfacing allows users to leverage the strengths of
these established programs while utilizing the efficient structure prediction capabilities
of CALYPSO. Additionally, the software can be interfaced with other total energy codes
upon user request, providing flexibility for specific research needs. CALYPSO is freely
distributed for academic use and comes with thorough documentation, which helps users
understand and effectively apply the program to their research projects.

XtalOpt is a free and open-source evolutionary algorithm designed for crystal structure
prediction [65]. It performs multi-objective global optimization using properties calculated
by external codes to discover novel (meta)stable phases of functional materials. The
graphical user interface allows users to define parameters, choose queue systems, and select
optimizers for the search process. Multi-objective search functionality enables users to add
and optimize multiple properties simultaneously with total enthalpy. The progress table
provides continuous updates on optimization time, enthalpy, cell volume, space group, and
structure ancestry. XtalOpt supports various queue systems such as SLURM [66], PBS [67],
and LSF [68], and optimizers like VASP [32], GULP [63], and CASTEP [31]. The interactive
plot tool offers real-time visualization and analysis during the search. The open-source
nature and compatibility with multiple external codes of XtalOpt make it a valuable tool
for materials science researchers.

AIRSS (Ab Initio Random Structure Searching) utilizes a stochastic approach to ex-
plore the potential energy landscape of crystal structures [69]. Sensible random packing
arrangements are generated, adhering to realistic density and atomic separation constraints.
These structures can optionally incorporate prior crystallographic or chemical informa-
tion to guide the search. This strategy aims for a broad and unbiased sampling of the
configurational space. Subsequent ab initio calculations, often employing DFT, evaluate
the energy of each generated structure. By identifying the structures with the lowest
energy, AIRSS efficiently locates the most stable crystal configuration for the molecule
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of interest. The open-source AIRSS package (GPL2 license) requires a Unix-like environ-
ment for compilation. Windows users can leverage the Linux Subsystem for Windows.
AIRSS seamlessly integrates with CASTEP [31] (available free for academic users and can
be purchased through BIOVIA Materials Studio), a leading DFT-based total energy code
for material properties. Script modifications for alternative DFT codes are feasible, with
provided examples.

Beyond traditional crystal structure prediction, USPEX demonstrates versatility by
extending its capabilities to diverse material systems [70]. It efficiently predicts struc-
tures for nanoparticles, polymers, surfaces, interfaces, and 2D crystals, showcasing its
ability to handle various dimensionalities. Notably, USPEX excels in handling complex
molecular crystals, including those with flexible molecules. Furthermore, it offers a fully
non-empirical approach, predicting stable chemical compositions and corresponding crys-
tal structures solely from elemental names. USPEX surpasses a purely energetic search
by additionally identifying a range of robust metastable structures. Its flexibility extends
to various simulation types and the incorporation of prior knowledge. The applicability
of USPEX is broad, encompassing the discovery of low-energy metastable phases, stable
nanoparticle structures, surface reconstructions, and organic crystal packing arrangements.
Notably, USPEX can guide the search for materials with desired physical properties, in-
cluding mechanical and electronic characteristics. The core of USPEX lies in an efficient
evolutionary algorithm; however, it offers flexibility by allowing alternative methods like
random sampling, metadynamics, and corrected PSO algorithms. USPEX seamlessly in-
terfaces with a multitude of DFT and classical codes, including VASP [32], GULP [63],
QuantumESPRESSO [33], CP2K [64], CASTEP [31], and LAMMPS [57], demonstrating its
extensive compatibility. The STM4 toolkit [71] can be used to visualize the results.

PyXtal is an open-source Python library for generating random crystal structures [72].
This versatile tool caters to diverse materials, enabling the creation of atomic and molecular
crystals (0-3D) with support for specific symmetries and Wyckoff positions. Integration
with Pymatgen [73] and ASE [74] allows import/export of various file formats (e.g., cif).
PyXtal offers functionalities for XRD analysis, structural manipulation, and geometry
optimization (both internal and external methods). Available under the MIT license on
GitHub, PyXtal welcomes contributions and user feedback for continuous improvement.

The Utrecht Crystal Packer (UPACK) program suite offers a methodology for generat-
ing hypothetical crystal structures with low potential energy [75]. This approach leverages
a pre-defined molecular force field to evaluate intermolecular interactions and guide the
packing process. While UPACK excels at creating diverse candidate structures, it is crucial
to recognize that the generated list may not solely represent experimentally realizable
phases. More sophisticated programs are necessary for a definitive ranking of these struc-
tures based on their energetic favorability. Notably, the UPACK suite is freely available for
academic research purposes.

GULP is a versatile program designed for material simulations across dimensionalities
(0–3D) [63]. It prioritizes analytical solutions, particularly through lattice dynamics, over
molecular dynamics whenever possible. GULP offers a diverse selection of force fields and
incorporates analytical derivatives up to at least the second order for most force fields, ex-
tending to the third order for many, facilitating efficient energy calculations. This software is
freely available to academics with valid university email addresses. Additionally, graphical
interfaces for GULP are accessible through popular software suites like BIOVIA Materials
Studio [34]. Furthermore, BIOVIA Materials Studio Polymorph Predictor [34] enables
the prediction of possible polymorphs of a compound based on its molecular structure,
which is essential for understanding variations in properties like bioavailability, solubility,
and stability. Polymorphism is significant across industries, as different crystalline forms
of a compound can exhibit distinct physical and chemical properties crucial to product
performance and safety.
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GRACE is a software product developed by Avant-garde Materials Simulation Deutsch-
land GmbH that is used to predict the solid-state properties of compounds [76]. GRACE is
a robust workflow with a command-line interface that can be run on HPC Linux clusters.

Lattice energy minimization can be performed with the earlier mentioned QM pro-
grams, for example, Gaussian or Quantum ESPRESSO. Gaussian is not directly designed
for CSP, but its capabilities can be indirectly applied within a cocrystal prediction work-
flow, particularly for high-level accuracy calculations. It can be helpful for initial structure
optimization and accurate binding energy calculation.

CrystalMaker is another valuable tool for visualizing and exploring potential crystal
structures in the CSP process [77]. Researchers can build or import the API or coformer
molecule into CrystalMaker to facilitate the visualization of different packing arrangements.
Using the visualization tools of CrystalMaker, various space groups and packing motifs can
be manually generated and explored. Once a promising packing arrangement is identified,
the energy minimization tool of CrystalMaker can refine the structure, enhancing its initial
geometry. The predicted crystal structure from CrystalMaker can then be exported for
further analysis with other software, including ab initio calculations for more precise energy
minimization and stability evaluation.

CrystalExplorer is a cross-platform computational tool designed for the investigation
and analysis of intermolecular interactions within molecular crystals [78]. It offers func-
tionalities to visualize and quantify these interactions, particularly through the decorated
Hirshfeld surface and its two-dimensional fingerprint. This allows researchers to gain
insights into crystal packing arrangements by mapping electrostatic potentials onto the
surfaces. Additionally, CrystalExplorer facilitates the quantification of intermolecular inter-
action energies, aiding in a more comprehensive understanding of the forces governing
crystal structure formation.

Noted here, the CCDC Blind Test, organized by the Cambridge Crystallographic
Data Centre, is a benchmark event designed to evaluate and compare the effectiveness of
crystal structure prediction methods with the primary goal of assessing the accuracy and
capabilities of various computational methods for predicting crystal structures of unknown
molecules [79].

2.4. Semi-Empirical Methods

Semi-empirical methods combine elements of both fundamental theory and experi-
mental data. COSMO-RS (Conductor-like Screening Model for Real Solvents) combines
quantum chemical calculations to represent the surface of molecules with empirically de-
rived parameters to account for interactions between molecules [80]. Within the workflow
of cocrystal prediction, COSMO-RS allows you to calculate some key properties relevant to
the potential success of cocrystal formation. Statistical thermodynamics are used to predict
the solubility and miscibility of molecules in solvents, aiding in coformer selection with-
out needing full-blown molecular simulations [81]. Large-scale, predictive assessment of
cocrystal formation is possible through calculating the excess enthalpy of mixing between
API–coformer, which serves as an indicator of their tendency to cocrystallize [82].

BIOVIA COSMO-RS products [83] like COSMOquick [84] and COSMOtherm [85]
can be valuable tools within a cocrystal prediction workflow. COSMOquick allows for
rapid screening of a large number of potential coformers by estimating their excess en-
thalpy of mixing with the API, providing an initial assessment of their propensity for
cocrystallization [82,86]. This helps identify promising candidates for further investiga-
tion. COSMOtherm can then be used for a more detailed analysis of these shortlisted
coformers by evaluating the thermodynamic properties, phase behavior, and molecular
interactions to offer a more complete picture of the potential success of a cocrystal [82].
While COSMOtherm excels at comprehensive solubility predictions, it is important to
remember that its focus is on thermodynamics. Additional factors like crystal packing or
specific intermolecular interactions might also be important for cocrystal formation. By
combining the rapid screening of COSMOquick with the detailed thermodynamic informa-
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tion from COSMOtherm, researchers can efficiently prioritize potential cocrystal formers
for experimental validation.

Developed by Scientific Computing and Modeling (SCM), COSMO-RS seamlessly inte-
grates with other tools within the Amsterdam Modeling Suite (AMS) [87,88]. This includes
powerful quantum chemistry software like ADF (Amsterdam Density Functional) [89].
Beyond its core functionality for COSMO-RS calculations, it offers valuable capabilities for
thermodynamic analysis relevant to cocrystal prediction. COSMO-RS-ADF can calculate
properties like excess enthalpy of mixing, which provides an indication of the energetic
favorability of interactions between the API and the coformer in a cocrystal. Additionally,
it can predict the solubility of cocrystals, allowing researchers to assess potential benefits
compared to the original API. Generating sigma profiles for high-throughput screening
within COSMO-RS calculations can be the most time-consuming step. COSMO-RS-ADF
also offers a quick method that can be used for fast COSMO-RS thermodynamic property
prediction [90].

Furthermore, an open-source alternative to the COSMO-RS model, OpenCOSMO-RS,
was introduced by Gerlach and his team [91]. This software offers the functionalities of the
model through codebases written in both Python and C++ languages.

Hansen Solubility Parameters (HSPs) [92] is another semi-empirical method that can
be used in the workflow of cocrystal prediction. HSP relies on experimental data derived
from measurements of solubility in various solvents to establish relationships between
the solubility behavior of a solvent and its three key parameters (dispersion, polarity, and
hydrogen bonding) to represent different types of intermolecular interactions that influence
solubility. However, HSP is not purely based on observation; it incorporates some theoreti-
cal concepts from corresponding states theory, particularly the use of geometric mean to
estimate interaction energy between molecules. Based on this combination, HSP estimates
the compatibility of the API and coformer based on their solubility parameters [93]. By
comparing the HSP parameters of the API and the coformer, HSP helps estimate their
compatibility for cocrystal formation. Molecules with similar HSP values tend to be more
miscible (compatible) and potentially form stable cocrystals. HSPiP (Hansen Solubility
Parameters in Practice) is a commercially available software package designed to calculate,
analyze, and visualize HSPs for various materials [94]. Although numerous databases offer
HSP data, the availability and quality of HSP data can vary depending on the database.
Some databases may have more comprehensive data than others, and the data may not
always be up-to-date.

2.5. Machine Learning and Data-Driven Approaches

ML is providing crystal prediction by analyzing vast datasets of known cocrystal struc-
tures, their properties, and failed experiments. Algorithms like Support Vector Machines
(SVMs) [95,96] and Random Forests (RFs) [97] learn from this data to identify patterns
and relationships between the properties of a molecule and its cocrystal structure. This
allows researchers to predict the cocrystal structure of new materials based solely on their
molecular composition. While these models excel at predicting crystals similar to those
used in training, ongoing efforts focus on incorporating more diverse data and advanced
techniques to improve generalizability for a wider range of materials.

Various tools and programs can be used for different aspects of ML for cocrystal
prediction. Open-source libraries like scikit-learn (Machine Learning in Python) [98] offer
implementations of common algorithms for building and applying ML models. Powerful
frameworks like TensorFlow (an end-to-end platform for machine learning) [99] and Py-
Torch (a machine learning library based on the Torch library) [100] can be used for building
complex deep learning models for cocrystal prediction. WEKA (Waikato Environment
for Knowledge Analysis), another open-source software suite, provides functionalities for
data preprocessing, exploration, and implementation of various ML algorithms [101,102].
CrySPY, an open-source Python crystal structure prediction tool (versioned under the
MIT License and running on Unix/Linux platforms), empowers researchers to automate
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materials discovery workflows [103]. It automates structure generation, optimization,
energy evaluation, and candidate selection through ML. CrySPY offers various searching
algorithms like random search, evolutionary algorithms, and Bayesian optimization with
Look Ahead for efficient exploration. ML is employed for intelligent candidate selection,
prioritizing structures for further optimization using external software like VASP [32],
QuantumESPRESSO [33], OpenMX [104], soiap [105], or LAMMPS [57]. CrySPY supports
both atomic and molecular random structures, catering to diverse material systems. This
tool empowers researchers to perform crystal structure prediction simulations without
requiring in-depth ML expertise.

QSAR, which stands for Quantitative Structure-Activity Relationship, is a powerful
computational technique used to predict the biological or physicochemical properties of
a molecule based solely on its chemical structure [106]. QSAR is traditionally used for
predicting the biological activities of drugs; its principles can also be applied to cocrystal
prediction by leveraging the relationship between molecular structure and the potential for
cocrystal formation. KNIME Analytics Platform is an open-source data analytics platform
that includes nodes specifically designed for QSAR modeling [107]. It has a user-friendly
drag-and-drop interface for building and applying QSAR models without extensive coding
knowledge. Furthermore, the commercially available KNIME Hub offers a complete
platform for data science [108]. The OECD QSAR Toolbox is a software program designed
to assess the hazards of chemicals. It is a free tool that reduces animal testing by predicting
the toxicity of chemicals before they are produced [109]. Even though the QSAR Toolbox is
a versatile platform for building QSAR models, it requires more effort to customize it for
cocrystal prediction.

The combination of QSAR and ML offers a powerful approach to cocrystal predic-
tion [110]. QSAR provides the framework and understanding of the structural factors
affecting cocrystal formation, while ML algorithms leverage this knowledge to build pow-
erful predictive models.

2.6. Database and Knowledge-Based Methods

Virtual screening is a powerful computational technique used in cocrystal discovery to
identify potential coformers that could form stable cocrystals with a specific API. Different
factors were considered during the screening. Related algorithms can analyze the shapes
and sizes of the API and coformer molecules. Ideally, they should complement each other
well, allowing for efficient packing in the cocrystal lattice. Furthermore, the presence of
functional groups on both API and coformer molecules is crucial. Screening algorithms
might look for complementary functional groups that can participate in strong intermolec-
ular interactions (e.g., hydrogen bonding and π–π stacking) necessary for stable cocrystal
formation. Additional properties like solubility or hygroscopicity might also be considered
during virtual screening.

CSD, the collection of experimentally determined crystal structures, is a powerful
resource for researchers in crystal engineering, and it can be used for identifying potential
cocrystal formers by looking at structural motifs and interaction patterns [17,18]. The
CCDC software suite [47], including ConQuest [111], Mercury [112], and the CSD Python
API [113], are essential tools for identifying cocrystal candidates. ConQuest is used to
search the CSD for crystal structures and motifs indicative of cocrystal formation. Mercury
enables visualization and analysis of crystal packing and existing hydrogen bonding
interactions, crucial for understanding potential cocrystal stability. Mercury software
offers functionalities beyond just crystal structure visualization [114]. It can be used for
cocrystal prediction through a module called “Molecular Complementarity” within the
“Co-Crystal Design” menu. This module relies on pre-defined thresholds for calculated
molecular descriptors to assess the likelihood of a molecule cocrystallizing with a target
molecule. The concept is that molecules with similar properties (shape and polarity) are
more likely to form cocrystals. Mercury software acts as a screening tool in cocrystal
prediction. By identifying improbable coformers and ranking promising candidates, it
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helps streamline the experimental process of finding suitable coformers for cocrystallization.
The CSD Python API allows for automated, customized searches and statistical analyses of
crystallographic data, integrating with ML models for advanced predictions. Researchers
use these tools to retrieve data, analyze interactions, and identify promising API–coformer
pairs based on structural motifs and predicted interactions. By automating screening and
refining criteria, the CCDC tools streamline the discovery and validation of new cocrystal
candidates. Overall, these tools provide a comprehensive approach to cocrystal discovery,
leveraging extensive crystallographic data and advanced analytical capabilities.

ZINC Database is a free, public database of commercially available chemical com-
pounds for virtual screening [14,15]. PubChem is a freely accessible database maintained
by the National Institutes of Health (NIH) that contains information on a large collection
of chemical compounds, including small molecules, biomolecules, and synthetic chemi-
cals [16]. DrugBank is a comprehensive bioinformatics and cheminformatics resource that
combines detailed drug data with targets, pathways, and clinical trial information [115].
While not specifically designed for cocrystal screening, DrugBank can be a useful resource
for identifying potential coformers with known biological activity or properties that might
be beneficial for cocrystal design. ChemSpider is a free chemical database containing infor-
mation on a vast collection of chemical compounds [116]. The data can be filtered based
on various molecular properties relevant to cocrystal formation, such as size, shape, hy-
drogen bond donors/acceptors, or solubility. It offers information on structure, properties,
and links to other relevant databases. Crystallography Open Database (COD) is a public
database containing crystal structures of organic, inorganic, and metal-organic compounds
determined using various experimental techniques [117]. These databases can be valuable
resources for informed selection and filtering of potential coformers in cocrystal discovery.
By combining them with other tools like molecular docking software, CSP packages, and
cheminformatics toolkits, researchers can enhance their virtual screening workflow for
cocrystal prediction.

3. Exploring Cocrystal Formation Predictions: Case Studies and Challenges
3.1. Case Studies for Theoretically Predicted Cocrystals
3.1.1. Unraveling Cocrystal Structures and Interactions: A Quantum
Mechanical Perspective

QM methods, particularly DFT calculations, have emerged as powerful tools for
investigating cocrystal structures and intermolecular interactions. These methods offer
valuable insights along with experimental techniques, providing a deeper understanding
of cocrystal formation at the atomic level [21,26,118,119]. For instance, dispersion-corrected
plane-wave DFT calculations were used to elucidate the structures and calculate electric
field gradient tensors of Xylazine HCl cocrystals, demonstrating good agreement with
experimental data [118]. These calculations were performed within the CASTEP module of
Materials Studio 2020 using the RPBE functional. The primary aim was to refine the crystal
structures obtained from experimental techniques and compute 35Cl electric field gradient
tensors. The good agreement between the calculated and experimentally measured 35Cl
electric field gradient tensors validated the accuracy of the refined structures.

DFT calculations can also explore the changes in electronic properties and intermolec-
ular interactions upon cocrystal formation [21,22,26]. For example, a DFT study on the
5-fluorocytosine-ferulic acid cocrystal revealed significant enhancement in hydrogen bond
strength compared to the pure drug, potentially explaining the observed decrease in solu-
bility [21]. The calculations focused on frontier molecular orbitals, MEP, and intermolecular
interactions. Furthermore, topology analysis based on the theory of atoms in molecules
quantified the intermolecular interactions, particularly the strength of hydrogen bonds.
The combined experimental and theoretical approach provided valuable insights into the
connection between the microscopic structure and macroscopic physicochemical properties
of the cocrystal.
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However, the accuracy of DFT calculations can be limited by the chosen functional
and the complexity of the system. A study investigating various DFT models for predicting
cocrystal lattice enthalpy found that simpler systems yielded consistent results across
different models, while complex cocrystals, particularly those containing APIs, exhibited
significant variations depending on the chosen functional [23]. This highlights the need for
further development of DFT methods or exploration of alternative approaches like AI for
improved accuracy in predicting complex cocrystals. The comparison of several DFT mod-
els interestingly showed that the most computationally expensive model (PBE0-MBD) did
not provide a substantial improvement in prediction accuracy compared to a less demand-
ing model (PBE). The performance of two dispersion correction methods, TS and MBD,
was found to be comparable. The DFT-based predictions confirmed the thermodynamic
favorability of cocrystallization. However, the computationally inexpensive DFTB models
exhibited substantial limitations in accurately predicting the lattice enthalpy of complex
cocrystals, likely due to their inability to account for dispersion forces [23]. Although not a
recent development, the B3LYP functional remains popular due to its well-established accu-
racy and efficient balance between computational cost and results. In a present study [20],
to investigate the intermolecular interactions in cocrystals, the geometries of the isolated
molecules at the B3LYP/6-31G** level of theory were optimized using Gaussian16. This
optimization allowed them to calculate the MEP of the molecules, which was crucial for
identifying the best donor and acceptor sites for hydrogen bonding and other contacts.
The calculated MEP values aligned well with the intermolecular interactions observed in
the crystal structures determined by XRD. Overall, the DFT studies provided valuable
insights into the nature of the intermolecular interactions in the cocrystals, confirming
the reliability and utility of the B3LYP functional in such investigations. Parallel with
these Minnesota functionals are also used to describe the intermolecular interactions and
electronic properties of cocrystals. In a recent study [26], cocrystallization of a poorly
soluble drug, telmisartan, was investigated using again a combined approach of com-
putational screening and analysis of crystal structures from the CSD. MEP calculations
were performed using ORCA software with the M062X/6–311++G(d,p) level of theory
to identify suitable coformers based on their electrostatic complementarity, with telmis-
artan successfully demonstrating DFT calculations as an effective approach for cocrystal
formation prediction.

QM methods offer various valuable insights into the structures of different cocrystals.
MEP surfaces, calculated using programs like Gaussian16 [20,119] or ORCA [26], can
identify favorable sites for hydrogen bonding and other intermolecular interactions, aiding
in cocrystal design. Additionally, tools like the quantum theory of “atoms-in-molecules”
(QTAIMs) and non-covalent interaction plot (NCIplot) provide detailed information on the
nature and strength of these interactions within the cocrystal [22]. This study [22] utilizes a
combined computational approach to analyze the intermolecular interactions governing
the crystal packing of a newly synthesized pterostilbene–theophylline cocrystal. DFT
calculations quantify the energetic contributions of various interactions, while the QTAIM
and NCIplot tools provide detailed information on electron density, bond paths, and the
nature (strength and type) of the interactions, respectively. Additionally, MEP surface
analysis is employed to understand the π–π stacking interactions arising from the interplay
of electron-rich and electron-poor regions of the cocrystal components. Furthermore, the
CSD is interrogated to identify other theophylline cocrystals exhibiting similar interactions.
Finally, Hirshfeld surface analysis refines the understanding of intermolecular contacts
surrounding the included solvent molecules, providing insights into their role in the
crystal structure.

Although QM methods offer a powerful suite of tools for investigating cocrystals,
their limitations, particularly for complex systems, necessitate a combined approach that
integrates computational methods with experimental data and analysis of existing crystal
structures from the CSD [23,26,118,119]. This synergy between theory and experiment is
crucial for advancing cocrystal design and understanding.
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3.1.2. Unveiling the Power of Molecular Dynamics Simulations in Cocrystal Research

MD simulations have emerged as a powerful tool for predicting and understanding
the formation and properties of cocrystals. These simulations can reveal the intricate
intermolecular interactions and structural features that drive cocrystal formation, providing
detailed insights into key factors such as hydrogen bonding tendencies, electrostatic effects,
and other non-covalent forces [52,120]. For instance, MD simulations, coupled with DFT
calculations, were used to investigate how a negatively charged maleic acid interacts with
protonated drug molecules in water [120]. The simulations revealed that these components
form stable assemblies through hydrogen bonding. Notably, the maleic acid preferentially
interacts with the drug molecules over the self-association of the drug molecules. These
findings suggest that the maleic acid plays a key role in dictating the assembly process in
solution. This study highlights the importance of considering intramolecular hydrogen
bonds when designing force fields for simulations of pharmaceutical cocrystal formation.
By modeling these intermolecular interactions, MD can identify the most favorable cocrystal
structures and predict the formation of new cocrystals with a high degree of accuracy,
marking a successful case of cocrystal formation prediction [52].

Beyond predicting cocrystal formation, MD provides valuable insights into the struc-
tural stability and physicochemical properties of cocrystals. This includes understanding
the hydrogen bonding patterns, decomposition mechanisms, and the effects of electric fields
on cocrystal energetics. Such insights are crucial for the rational design and development
of new cocrystal formulations. A study [121] utilized MD simulations to investigate the
cocrystal formed between TKX-50 and HMX, an energetic material. By performing MD
simulations on supercell models of both TKX-50/HMX and the individual components,
the study found that the cocrystal structure exhibited enhanced stability, especially when
HMX substituted TKX-50 on specific facets. The analysis revealed that hydrogen bonding
and van der Waals forces played crucial roles in cocrystal formation. These findings not
only validate the theoretical predictions but also suggest that the TKX-50/HMX cocrystal
may have extensive applications in the field of energetic materials.

The ability to probe the energetics and structural features of potential cocrystals has
made MD a powerful tool for computational screening. These simulations can rapidly
evaluate a large library of coformer candidates, predicting which are most likely to form
stable cocrystals with a given drug molecule. For instance, a study [122] investigating the
cocrystal potential between CL-20, an energetic material, and TTX utilized MD simulations
within Materials Studio software. This in silico approach analyzed the interactions between
the molecules and their binding energy, revealing strong interactions that supported the
theoretical prediction of cocrystal formation. Furthermore, the simulations predicted
improved properties for the cocrystal compared to CL-20 alone. This example highlights
the effectiveness of MD simulations in rapidly screening coformers and guiding the design
of cocrystals with tailored properties.

MD simulations offer a significant advantage over traditional CSP searches in the
realm of cocrystal polymorphism. CSP searches are often limited to identifying low-energy
structures, whereas MD simulations can comprehensively explore the free energy landscape
of the cocrystal system. This enhanced exploration capability allows MD simulations
to uncover hidden polymorphs that might escape detection by conventional methods.
Furthermore, MD simulations can simulate transitions between different polymorphs,
providing valuable insights into the transformation mechanisms between cocrystal forms.
This information is crucial for optimizing the stability and performance of cocrystals. For
example, a recent study [53] investigated cocrystal formation between resorcinol and urea.
They employed MD simulations with information entropy to identify potential polymorphs.
This method, compared to a standard search, effectively navigated the free energy landscape
of the system, uncovering new polymorphs stable under specific pressure conditions. This
example highlights the effectiveness of MD simulations in not only discovering unseen
polymorphs but also understanding the factors influencing their stability.
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Finally, MD enables the precise evaluation of physicochemical, biopharmaceutical,
and mechanical properties simultaneously, thus enhancing the solid-form diversity of
drugs. By leveraging MD to assess hydrogen bonding tendencies, a new computational
prediction methodology has been developed, significantly reducing the need for exhaustive
experimental study and improving coformer selection success rates [123]. Validated with
experimental results from 145 coformers and 6 drugs, this MD-based approach demon-
strated high accuracy and efficiency. The success of the methodology in correctly predicting
new cocrystals for nitrofurantoin highlights the vital role MD can play in future large-scale
coformer screening efforts. Despite the higher computational complexity of MD simula-
tions compared to other methods, their ability to comprehensively explore the free energy
landscape and predict hidden polymorphs makes them a valuable tool for cocrystal design
and discovery.

3.1.3. Exploring Cocrystal Interactions with Molecular Docking

Docking studies provide an opportunity to model interactions between APIs and po-
tential coformers. Molecular docking was used to identify the most favorable stoichiometric
ratio for cocrystal formation [41]. Telmisartan API and maleic acid coformer were docked to
identify a favorable stoichiometric ratio to form cocrystals, which was then experimentally
validated and shown to have the most favorable impact on drug efficacy. In another study,
docking was used to understand the impact of cocrystallization on the functionality of
salicylic acid and to see how the binding properties of salicylic acid change when it forms
cocrystals with different molecules [124]. GOLD molecular docking software was used
to predict the interactions between ritonavir API and L-tyrosine coformer before creating
cocrystals, representing yet another successful case of cocrystal formation prediction [43].
This docking analysis aimed to understand the possibility of hydrogen bonding and van
der Waals interactions between the molecules, potentially leading to successful cocrystal
formation. The software provided scores to rank the favorability of these interactions,
with higher scores indicating a better chance of forming a stable cocrystal. Ultimately, the
docking results suggested promising interactions between ritonavir and L-tyrosine, which
was then confirmed by successful cocrystal synthesis in the wet laboratory experiments.
A present study discusses using molecular docking to predict the stability and possible
orientation of various bases on the surface of ketoprofen [125]. This is performed to identify
if there is a possibility of salt formation between ketoprofen and the three basic excipi-
ents (tris, L-lysine, and L-arginine). The potential cocrystal partners for ketoprofen were
identified based on their predicted binding affinities and orientations, and then promising
candidates were selected for further experimental validation.

3.1.4. Advancing Cocrystal Prediction: A Focus on Crystal Structure Prediction

CSP plays a crucial role in the workflow of cocrystal prediction by offering high
accuracy in predicting experimentally determined cocrystal structures. Studies [126–129]
demonstrate the capability of CSP methods to accurately predict cocrystal structures that
align well with experimental data for various systems. CSP can be a starting point for
designing cocrystals with tailored properties [130]. However, as highlighted in [131], the
accuracy of CSP can be limited, evidenced by less accurate predictions for 4,4′-bipyridine,
suggesting either limitations in the method or undiscovered forms. Additionally, the 3:1
stoichiometry of the benzotrifuroxan-1,4-dinitrobenzene cocrystal was accurately predicted
and subsequently confirmed experimentally; it is important to note that not all predicted
cocrystals were successfully obtained experimentally [127].

The selectivity of CSP is instrumental in predicting the formation of the desired cocrys-
tal over other potential polymorphs or competing cocrystals. For instance, a study [59]
demonstrates the use of CSP-Lite to identify promising coformers for a triol intermediate,
highlighting its ability to select from various candidates. Additionally, another study [132]
presents a method for prioritizing cocrystal formation based on the energetic driving force
predicted by CSP, aiding in the selection process. The efficiency of CSP methods is also no-
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table, with works such as the study [59] discussing CSP-Lite, a cloud-computing algorithm
that enables faster calculations. Furthermore, [132] emphasizes the efficiency gained by
reusing databases for rapid screening of coformers.

Sensitivity to parameters is another important aspect of CSP. As illustrated in a
present study [131], the potential discrepancy between prediction and experiment for
4,4′-bipyridine suggests that the accuracy of CSP can be affected by parameter sensitivity
or missing information. The ability of CSP to handle flexible molecules is demonstrated
in [59], which shows the capability of CSP to manage a flexible triol molecule and identify
a suitable cocrystal. This study and ref. [131] highlight the importance of considering
conformational flexibility for accurate prediction.

CSP also excels in predicting key interactions and properties of cocrystals, such as
stability, solubility, and hygroscopicity, by integrating property prediction tools with CSP
calculations. Studies [127–129] identify dominant intermolecular interactions (e.g., H-
bonding and π–π stacking) in predicted cocrystal structures. The ability of CSP to predict
specific stoichiometries is evidenced by Ref. [127], which successfully predicts the 3:1 ratio
for a benzotrifuroxan-1,4-dinitrobenzene cocrystal.

The design of cocrystals often relies on a combined approach utilizing both experimen-
tal and computational methods. The combined application of SCXRD, Gaussian09, and
CrystalExplorer17 has enabled a comprehensive understanding of crystal structures and
intermolecular interactions, as demonstrated in the study of the L-ascorbic acid–picolinic
acid cocrystal [128]. SCXRD provided the initial atomic arrangement, which was then
analyzed computationally to elucidate the stability mechanisms of the cocrystal. DFT calcu-
lations with Gaussian09 estimated the energetic contributions of individual fragments and
molecule pairs, identifying the R22(9) motif as a key stabilizing factor. CrystalExplorer17
further refined this analysis by calculating interaction energies, taking into account nearest
neighbors within 3.8 Å, thereby offering a realistic assessment of intermolecular forces.
Complementing these findings, another study integrated computational CSP with exper-
imental techniques to investigate ternary molecular ionic cocrystals [129]. CSP methods
predicted the structures of all investigated ionic cocrystals, including flexible binary salt
complexes and ternary conjugated acid/base systems. Using CrystalPredictor II software,
blind structure prediction accurately reproduced the binary salt complex, while Gaussian09
calculations and hypothetical structure searches revealed a range of polymorphs for the
ternary system. Periodic dispersion-corrected DFT calculations with VASP estimated the
energetic favorability of ionic cocrystal formation compared to physical mixtures, con-
firming the energetic advantages. This integration of CSP and experimental methods
highlights the potential for a combined mechanosynthesis and CSP approach, facilitating
the rapid screening and selection of novel functional ionic cocrystals with tailored proper-
ties. Combined computational approaches are also significant. For instance, in a present
study, the solid-state assembly of 2,2′- and 4,4′-bipyridine with carboxylic acids was inves-
tigated [131]. Potential energy surface scans were performed using Gaussian 09 to explore
the conformational landscapes of the bipyridine molecules. The CSD served as a reference
for analyzing known crystal structures of the components and identifying recurring pack-
ing motifs. Subsequently, CSP was carried out using CrystalPredictor v2 software. This
generated a multitude of potential crystal packing arrangements for the bipyridine–acid
complexes. Gaussian 09 was then re-employed to calculate the conformational energies
and distributed multipoles of the predicted structures. To refine the structures and account
for intermolecular interactions, crystal optimizations were performed with CASTEP. Subse-
quently, CrystalExplorer vpo17 was used to perform intermolecular energy calculations
and assess the strength of these interactions. Finally, lattice energies were estimated by
calculating the energetic contributions of individual molecules within their crystalline
phases. The computational predictions demonstrated good agreement with experimental
data for 2,2′-bipyridine. However, for 4,4′-bipyridine, the predictions were less accurate.
This discrepancy suggests potential limitations in the current modeling approach or the
existence of undiscovered crystal forms for 4,4′-bipyridine–acid complexes.
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Future applications of the CSP results regarding cocrystals include the rapid iden-
tification and experimental validation of novel cocrystals with optimized properties for
pharmaceutical and material science applications. A present study [132] estimates the
likelihood of successful cocrystal formation between an API and potential coformers
by generating lattice energy minimization databases for the pure API and each candi-
date coformer. These databases predict the most stable cocrystal structures for various
API/coformer stoichiometries, with a more negative difference in lattice energies values
indicating higher thermodynamic driving forces for cocrystal formation. Reusing these
databases allows for the rapid screening of numerous coformers, significantly enhancing
the efficiency of the discovery process. Similarly, CSP calculations were pivotal in designing
ammonium nitrate cocrystals with tailored properties, serving as yet another successful
example of cocrystal formation prediction [130]. The electrostatic potential surfaces of
ammonium nitrate and potential coformers were calculated, identifying guest molecules
with complementary electrostatic potential distributions to promote strong intermolecular
interactions and predicting the lattice structures of these cocrystals by simulating molecular
arrangements and minimizing total energy to find the most stable configurations. These
CSP calculations provided a valuable foundation for further investigations into the hygro-
scopicity, stability, sensitivity, and mechanical properties of the designed cocrystals. These
results include the rapid identification and experimental validation of novel cocrystals with
optimized properties for pharmaceutical and material science applications.

A study [126] developed a novel virtual screening approach for cocrystal prediction
using CSP calculations, incorporating crystallinity as a crucial factor. Using dispersion-
corrected DFT (DFT-D), the CSP method estimates the lattice energy difference between
the drug, coformer, and potential cocrystal, serving as a metric for cocrystal formation
propensity. Validated against indomethacin and paracetamol cocrystallization cases from
the CSD, CSP-based predictions outperformed established methods like COSMO-RS. These
findings advocate for CSP-based virtual screening in pharmaceuticals for accurate and
efficient cocrystal design.

Furthermore, an evolutionary algorithm within USPEX software was used to predict
cocrystal structures for high-energy molecules using DFT-D [133]. The evolutionary al-
gorithm successfully recovered known structures with experimental conformations, but
a more realistic approach is needed for unknown structures. The study showed that the
evolutionary algorithm can predict structures within 20 generations even with limited in-
formation. Challenges exist for some crystals, and a lower-cost xTB method compromised
accuracy. A future hybrid xTB/DFT-D approach is proposed for larger molecules.

Finally, the 7th CSP CCDC Blind Test provided valuable insights into the progress
and remaining hurdles in the field of crystal structure prediction. The encouraging results
suggest the potential for these methods to become routine tools for materials science
research in the near future. The test revealed a significant improvement in the accuracy of
crystal structure predictions compared to previous blind tests. A substantial portion of the
predicted structures exhibited good agreement with the experimental data, demonstrating
the growing maturity of these computational tools. However, the results also highlighted
areas for further development. Complex crystal structures with multiple molecules in
the unit cell or those involving conformational flexibility proved more challenging to
predict accurately.

3.1.5. COSMO-RS: A Valuable Tool for Streamlining the Initial Stages of
Cocrystal Development

COSMO-RS has emerged as a powerful tool, streamlining the initial stages of cocrys-
tal development. This computational approach analyzes intermolecular interactions at a
molecular level, providing valuable insights for prioritizing promising coformers for experi-
mental validation. COSMO-RS can significantly reduce the number of candidates requiring
experimental validation by predicting factors like intermolecular interactions and excess
enthalpy of mixing [134–136]. By prioritizing promising coformers, COSMO-RS saves
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time and resources in the initial stages of cocrystal development [137,138]. For instance,
in the development of cocrystal forms for the poorly soluble drug abiraterone acetate,
COSMOtherm-X, a software suite based on COSMO-RS principles, successfully identified
suitable coformers like succinic acid and glutaric acid [139]. This virtual screening signifi-
cantly reduced the number of candidates requiring experimental evaluations, ultimately
leading to the successful creation of new cocrystals with improved properties. Similarly, a
study focused on nimesulide, another poorly water-soluble drug, employed COSMOquick,
a user-friendly software utilizing COSMO-RS calculations. While COSMOquick indicated
a low overall tendency for nimesulide to form cocrystals, it did identify piperazine as a
viable candidate [140]. Subsequent experiments confirmed the formation of a cocrystal with
piperazine, highlighting the ability of COSMO-RS to pinpoint promising coformers even in
challenging cases. A recent study [141] combined nanococrystallization with anti-solvent
precipitation to create a soluble form of carvedilol, a β-blocker drug. A key part of their
process involved using COSMOquick software to identify the best coformer (tartaric acid)
and solvent (acetone) for cocrystallization. This in silico approach, compared to traditional
trial-and-error methods, saved time and money in the development process.

Compared to other computational cocrystal prediction methods, COSMO-RS often
demonstrates superior accuracy in predicting successful cocrystal formation, highlighting
its effectiveness in achieving reliable prediction outcomes [110,137,142,143]. For example,
a study designed cocrystals for the drug minoxidil and compared the performance of
three different methods, namely, virtual screening CSD, using HSP, and COSMO-RS [142].
While CSD provided valuable insights into suitable coformer functionality, COSMO-RS
outperformed HSP in identifying viable cocrystal candidates. The researchers estab-
lished a specific criteria based on COSMO-RS calculations (calculated excess enthalpy,
∆Hex < −2.00 kcal mol−1) to shortlist coformers, and this approach successfully led to
the creation of new cocrystals of minoxidil with eight aromatic carboxylic acids. Noted
here is that another study has also confirmed that although several factors like hydrogen
bonding and molecular flexibility were considered, ∆Hex values from COSMO-RS served
as a preliminary screening tool to identify promising cocrystal candidates for forming mul-
ticomponent crystals between 2,4-dichlorophenoxyacetic acid and various N-heterocyclic
compounds [144]. Furthermore, COSMO-RS performed the best in predicting successful
cocrystal formation of 2-amino-4,6-dimethoxypyrimidine [143]. Based on the predictions
from different methods, including COSMO-RS, the researchers were able to identify and
experimentally validate 21 new solid phases for 2-amino-4,6-dimethoxypyrimidine, includ-
ing 10 cocrystals. These examples underline the superior performance of COSMO-RS in
predicting successful cocrystal formation compared to other commonly used methods.

While COSMO-RS offers significant advantages, it is important to acknowledge its
limitations. In a present study [145] investigating cocrystal formation for the energetic
material CL-20, COSMO-RS successfully predicted stable solvents based on factors like
enthalpy and cavity volume. However, it struggled to predict cocrystal formation itself,
likely due to the entropy contribution [145]. The model excels at predicting intermolecular
interactions based on quantum chemistry calculations, but it might not fully account for
the role of entropy, another crucial factor influencing cocrystal formation. Additionally,
the accuracy of COSMO-RS predictions can be dependent on the specific parameterization
used [146]. The investigation of the interactions between sulfa drugs (sulfamethazine
and sulfamethizole) and urea in mixtures surprisingly showed that COSMO-RS was not
successful in predicting the solid–liquid equilibria phase diagrams [147]. Despite this, the
results highlight how COSMO-RS can be used along with other methods to provide a more
comprehensive understanding of interactions in pharmaceutical mixtures, even if it does
not directly predict phase diagrams [147].

To address these limitations and achieve even more robust predictions, some re-
searchers have explored combining COSMO-RS with other methods. For instance, a study
investigating cocrystal design for 2,4-dichlorophenoxyacetic acid employed COSMO-RS
along with molecular complementarity (MC) analysis [148]. This combined approach effec-
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tively filtered out unsuitable candidates, leading to the identification of new cocrystals for
2,4-dichlorophenoxyacetic acid. At the same time, the multicomponent crystal prediction
of the pesticide pymetrozine suggests that COSMO-RS combined with CSD analysis can
be an efficient tool for rational cocrystal design [149]. New methods for rational cocrystal
design that combine ML with COSMO-RS have also been reported [150,151]. These studies
found that combining the predictions from ML and COSMO-RS resulted in a more accurate
screening method compared to either approach used alone. This combined method offers a
fast and reliable alternative to existing physics-based methods, which can be valuable for
pharmaceutical projects with limited time and budget.

3.1.6. The Role of Hansen Solubility Parameters in Cocrystal Prediction

HSPs have been employed as a predictive tool for cocrystal formation by leveraging the
principle of “like dissolves like” to estimate the miscibility between an API and potential
coformers. This approach utilizes three parameters, namely, dispersive forces, dipole–
dipole interactions, and hydrogen bonding, which collectively describe the solubility
characteristics of a compound. The effectiveness of HSPs in predicting cocrystal formation
has been explored in several studies, each using HSPs to identify promising coformers.

In a study by Li et al. [142], the HSPs of minoxidil and various potential coformers
were calculated using the HSPiP software, employing group contribution methods to
determine the HSP values and predict miscibility based on the total solubility parameter
difference (∆δt). A lower ∆δt value suggested higher miscibility and a greater likelihood
of cocrystal formation, with a threshold set at ∆δt < 7 MPa

0.5 for successful prediction.
Despite this, the study found that the COSMO-RS method, which uses ∆Hex as a criterion,
outperformed the HSP method in predicting successful cocrystal formation. Specifically,
the COSMO-RS method achieved perfect prediction with all identified coformers forming
cocrystals with minoxidil, whereas the HSP method had a success rate of 65.5%.

Another study explored the use of HSPs for predicting the formation of co-amorphous
systems between norfloxacin and various coformers [152]. Here, HSPiP software was used
to calculate the HSP values of norfloxacin and 17 coformer candidates. Two approaches
were employed as follows: the van Krevelen method, which assesses miscibility based
on the difference in solubility parameters (∆δ) with a cutoff of ∆δ < 5 MPa

0.5, and the
Greenhalgh method, which uses the ∆δt with a cutoff of ∆δt < 7 MPa

0.5. The study found
that the van Krevelen method provided better prediction accuracy for norfloxacin co-
amorphous formation. The results suggested that good miscibility, indicated by a lower ∆δ

value, is essential for forming a stable co-amorphous system.
In another application, HSPs were used to shortlist l-proline as a coformer for ibupro-

fen in a cocrystal formation study [153]. The workflow involved calculating the total
solubility parameters of ibuprofen and potential coformers using the Hoftyzer–van Kreve-
len method. A key selection criterion was that the difference in total solubility parameter
between ibuprofen and l-proline was less than 7 MPa

0.5, indicating good miscibility. Ad-
ditionally, the selection of l-proline was supported by computational studies using DFT,
which predicted increased solvation energy for the ibuprofen-l-proline complex compared
to ibuprofen alone, suggesting enhanced solubility in the cocrystal form. These combined
analyses (pKa difference, HSPs, and DFT studies) led to the successful preparation and
characterization of ibuprofen-l-proline cocrystals using solvent evaporation and melt ex-
trusion techniques, underscoring the importance of the HSP method in achieving these
successful outcomes.

Compared to other methods for predicting cocrystal formation, HSPs have demon-
strated a lower success rate. Studies have shown that COSMO-RS achieved significantly
higher success rates of 82.4% and 84.1%, whereas HSPs only reached 52.2% and 49.0% in
the respective studies [137,143]. These findings suggest that COSMO-RS is a more effective
tool for the initial screening of coformers in cocrystal formation. Nonetheless, HSPs can
still offer valuable insights into cocrystal formation. Another study examined the influence
of solvents with different HSPs on the type of cocrystal polymorph that forms [154]. By
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employing solvents with varying HSPs, researchers were able to generate a new polymorph
of a cocrystal. The study highlighted that the ability of the solvent to accept hydrogen
bonds had a greater impact on polymorph generation compared to its ability to donate
hydrogen bonds. This finding indicates that HSPs can shed light on the interactions be-
tween solvents and molecules, which in turn can affect the crystallization process and the
resulting crystal structures [154]. Furthermore, recently the potential of using HSPs as a
tool to understand how solvent selection can influence cocrystal polymorph generation
was also highlighted [155].

While the use of HSPs shows promise for polymorph screening, it is important to
recognize their limitations and the need for further research. Understanding how HSPs in-
teract with other factors, such as thermodynamic parameters, is crucial for fully leveraging
their potential in predicting cocrystal formation and polymorph screening. Consequently,
while HSPs can provide some valuable insights, integrating them with more comprehensive
methods like COSMO-RS may enhance the accuracy and reliability of cocrystal formation
predictions. Overall, these case studies [137,142,143,152–154] demonstrate that while HSPs
can be a valuable tool for predicting cocrystal formation, their effectiveness can vary, and
they may benefit from being used in conjunction with other computational methods, such
as COSMO-RS or DFT calculations, to improve prediction accuracy and reliability in the
rational design of cocrystals.

3.1.7. Predicting Cocrystal Success: Leveraging Molecular Features

A novel method for predicting cocrystal formation using a QSAR statistical analysis
has been developed, focusing on key molecular features of coformers, such as phenolic
acids, that influence their cocrystallization ability with various drugs [156]. By analyzing
a dataset of known cocrystal and non-cocrystal pairs, researchers identified 13 important
structural descriptors derived from simple SMILES strings, making the method compu-
tationally efficient. This approach aims to find coformers effective across a wide range
of drugs rather than specific pairings, achieving an estimated 80% accuracy in predicting
new cocrystal formations. Another study investigated cocrystal formation using known
cocrystal structures from the CSD and employed QSAR to compare various molecular
properties of coformers [157]. It found the strongest correlations with shape and polarity
rather than the number of hydrogen bond donors and acceptors, suggesting that similar
shapes and polarities promote cocrystal formation. These findings highlight the potential
of using simple molecular descriptors to develop semiquantitative models for cocrystal
prediction. The study also emphasizes the importance of understanding the relationship
between these properties and specific supramolecular synthons to improve cocrystal for-
mation success rates. Together, these studies pave the way for developing comprehensive
predictive models for cocrystal formation using QSAR.

3.1.8. The Power of Machine Learning in Cocrystal Prediction

ML streamlines cocrystal prediction by automating data analysis and uncovering
hidden patterns in large datasets (like CSD). This leads to discovering novel cocrystals and
fosters an ever-evolving approach through continuous learning. Moreover, ML excels at
handling complex, high-dimensional data, enabling more robust predictions and facilitating
large-scale screening efforts. Building an ML model for cocrystal prediction requires data
on known successful and unsuccessful pairings. Positive data (known cocrystal formation)
typically comes from the CSD, a comprehensive repository of crystal structures [158–161].
However, the success of these models hinges on acquiring high-quality data encompassing
both positive and negative examples [158]. Negative data, representing unlikely cocrystal
pairs, poses a challenge. Researchers have addressed this by employing various strategies,
including random selection with structural filtering to avoid overly similar molecules [160]
or leveraging documented failures from past studies to enrich the negative data pool [161].
These efforts to ensure data quality and balance are essential for developing robust and
generalizable ML models that can effectively predict cocrystal formation.
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A variety of ML algorithms for cocrystal prediction have been explored, each with
its strengths. Popular choices include SVM [162,163], RF [162,163], and Artificial Neural
Networks (ANNs) [159,162–164]. Notably, XGBoost, a more recent algorithm, has achieved
exceptional performance in predicting cocrystal formation [164,165]. Open-source software
libraries like scikit-learn provide a versatile toolkit to train and evaluate these ML models
in cocrystal discovery [160,162,165].

ML models require rigorous evaluation to ensure their effectiveness and applicabil-
ity. Researchers utilize various metrics to assess model performance [150,158–163,165].
Common metrics include accuracy, ROC-AUC (Receiver Operating Characteristic—Area
Under the Curve), precision, and recall. Accuracy reflects the overall proportion of correctly
classified cases (true positives and true negatives), while ROC-AUC provides a more robust
measure, particularly for imbalanced data, by considering both true positive and false
positive rates. Precision and recall offer insights into the ability of the model to identify true
positives and avoid false positives. Studies report high accuracy exceeding 80% [159,165]
and ROC-AUC values above 0.8 [160], demonstrating the strong classification capabilities
of the models. Furthermore, techniques like k-fold cross-validation are employed to assess
the generalizability of the model beyond the training data [162,166]. This ensures the model
performs well on unseen data, not just the data used for training. Finally, ML models are
compared with traditional methods for cocrystal prediction. This comparison aims to show
that the ML approach offers superior performance or additional benefits, such as lower
computational complexity [160].

Techniques required to understand the reasoning behind their predictions. Feature
importance analysis is a crucial tool in achieving this goal. By analyzing feature importance,
researchers can identify which molecular descriptors, representing the chemical proper-
ties of the molecules, contribute most significantly to the output of the model [162–164].
Techniques like shapley additive explanations assign a contribution score to each feature,
providing insights into its influence on the prediction of the model [164]. For example, a
study on flavonoid cocrystal prediction analysis revealed that descriptors associated with
hydrogen bonding were the most impactful features, underlining the critical role of hydro-
gen bonding in this context [163]. However, interpreting complex models, particularly deep
neural networks, remains a challenge [150]. For instance, one study [159] utilized ANNs
trained on cocrystal data from the CSD to assess pairs of candidate coformers based on
their molecular structures and predict the probability of cocrystal formation. By combining
predictions from multiple ANNs, the approach achieved high accuracy, estimated at 80%,
even for molecules lacking prior cocrystal information. Notably, the method is applicable
to virtually any molecule, including those not yet synthesized, making it valuable for
early-stage drug design and optimization within the pharmaceutical industry. Another
study [162] used a data-driven machine learning approach combining database virtual
screening and QSAR/QSPR analysis to predict cocrystal formation between APIs and co-
formers. A dataset of successful and unsuccessful cocrystal formations was compiled, and
molecular descriptors were generated using Mordred software. Various machine learning
models (ANN, SVM, RF, and XGB) were trained with scikit-learn, achieving promising
results. Similarly, another approach [165] employed the XGBoost machine learning model
from the scikit-learn library, using SMILES strings and RDKit molecular descriptors. This
model, trained on data from the CSD and documented non-cocrystal formations, demon-
strated exceptional performance with a prediction success rate surpassing 90%. A different
study [160] described a machine learning model using the CSD as a source of positive
samples and a novel method for generating negative samples via random selection with a
filtering step based on structural similarity. PubChem fingerprints represented the molecu-
lar structures, and scikit-learn implemented various machine learning algorithms, resulting
in a high score on an independent test set and effective experimental validation with
captopril. Lastly, a deep forest model [161] was developed using a dataset exceeding
8000 samples from the CSD and documented failures. This model, utilizing ECFP4 and
FCFP4 molecular fingerprints, exhibited reduced sensitivity to class imbalance and faster
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training speed compared to deep learning methods, successfully predicting febuxostat
cocrystal formation.

Several studies have utilized large databases, particularly the CSD, to develop pre-
dictive models. These extensive databases are used not only for direct identification of
potential candidates but also to train and validate ML algorithms that can predict the
behavior and interactions of these compounds. By leveraging the vast amounts of data
available, ML models can uncover patterns and relationships that may not be immediately
apparent through traditional screening methods. This approach enhances the efficiency
and accuracy of identifying compounds with desired properties, ultimately accelerating the
discovery and development process in fields such as pharmaceuticals and materials science.
Although databases primarily serve as starting points for ML models today, database
virtual screenings allow us to search for compound groups with specific properties. ML can
be very powerful when dealing with large datasets and identifying complex, non-obvious
patterns. However, virtual screening with tools like Mercury offers valuable advantages in
terms of interpretability, flexibility, and human expertise integration.

3.1.9. Navigating the Cocrystal Landscape: The Virtual Screening Approach

Recent studies have demonstrated the utility of various virtual screening methods
and computational tools for predicting cocrystal formation, with a particular focus on CSD.
Furthermore, the effectiveness of CCDC software, particularly Mercury, in implementing
knowledge-based virtual screening methods for cocrystal design has been highlighted.
One key approach involves leveraging MC and hydrogen-bond propensity (HBP) analyses.
MC, implemented within Mercury software, assesses the geometric fit between the API
and potential coformers based on their shape and polarity descriptors [167,168]. This
initial screening helps eliminate sterically incompatible candidates. HBP calculations,
also performed in Mercury, evaluate the likelihood of specific hydrogen bond formations
between the API and potential coformers [167–169]. Hydrogen bonds are crucial for
stabilizing cocrystal structures, and HBP analysis helps prioritize coformers with a high
propensity for such interactions.

The effectiveness of combining these methods is evident in a study by Ref. [167].
The authors observed only moderate accuracy for individual methods (hydrogen-bond
energy (HBE) for successful formations and MC for unsuccessful formations). However,
by focusing on the region where both MC and HBP predicted the same outcome, the
success rate for cocrystal prediction reached 81%. This emphasizes the importance of a
multi-criterion approach for virtual screening. Furthermore, a multicomponent score can
also be used to prioritize coformers, resulting in the identification of promising candidates
for further experimental evaluation [168].

Another study [170] explored the utility of MC, HBP, and MEP maps for predicting
linezolid cocrystal formation. Similar to the previous study, MC analysis in Mercury
assessed geometric fit, while HBP calculations evaluated hydrogen bond propensity. MEP
maps, generated with external software (Gaussian16), provided insights into intermolecular
interaction energies. All three methods demonstrated satisfactory performance, but their
strengths differed across the selection process. MC and HBP were recommended for
initial screening due to their focus on geometric fit and hydrogen bonding, with the
multicomponent score of HBP aiding in prioritizing coformers. MEP maps offered a more
energy-based approach for refining the selection, particularly when dealing with a shortlist
of similar coformers.

A case study involving caffeine and 4-chlorophenylboronic acid [171] utilized the CSD
to identify potential coformers based on structural features and HBP. Mercury software ana-
lyzed hydrogen bond patterns, aromatic interactions, and packing similarity of the cocrystal
polymorphs, while CSD-Materials and CSD-Particle provided additional insights into the
energetics and stability of the cocrystals. This study underscored the value of CCDC tools in
identifying potential coformers, predicting interaction types, and analyzing cocrystal struc-
tures in detail. By leveraging extensive databases like the CSD and employing sophisticated
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computational tools such as Mercury, researchers can enhance the efficiency and accuracy
of identifying promising cocrystal candidates. Although these studies [167,168,170,171]
collectively highlight significant advancements in virtual screening for cocrystal prediction,
a recent study compared the effectiveness of a knowledge-based approach for discover-
ing novel pharmaceutical cocrystals to traditional systematic screening and showed that
systematic screening is not better than random screening [172]. In this specific work, the
CSD and Mercury tools were used to search for known examples of interactions between
functional groups of each drug/coformer pair and to estimate the likelihood of obtain-
ing a cocrystal, respectively. Subsequently, experimental cocrystallization screening was
performed between each pair of drugs and coformers. Interestingly, the study revealed
that systematic screening offered no significant advantage over random screening, missing
roughly 25% of successful cocrystal formations. Furthermore, by analyzing intermolecular
interactions within known crystal structures, the CSD offers valuable guidance for cocrystal
design. A study highlights the use of CSD analysis to predict the prevalence of specific
interactions within cocrystals [173]. Employing ConQuest software, the CSD was searched
for structures containing pyrazinecarboxamides and perfluorinated alkanes, prioritizing
those with verified 3D coordinates. The analysis confirmed expectations, revealing that
halogen–aromatic interactions and hydrogen bonds were the dominant forces govern-
ing the assembly of these molecules in the cocrystals. This successful prediction again
underscores the potential of CSD analysis as a tool for guiding cocrystal design.

The importance of virtual screening using the CSD is further emphasized by a case
study on enantiospecific cocrystal formation, underscoring the successful application of
this method in predicting cocrystal formation [174]. While performing a cocrystal screening
on chiral target compounds, researchers also virtually screened the CSD for relevant entries.
The experiment identified 13 novel cocrystal systems, with 11 being enantiospecific. Virtual
screening of over 250 chiral cocrystal structures from the CSD revealed a similar trend,
with 86% exhibiting enantiospecificity. This highlights the effectiveness of CSD analysis
in predicting enantiospecific cocrystal formation. Another example showcasing the utility
of the CSD for virtual screening comes from the design of ionic cocrystals, particularly
for salts with limited representation in the database [175]. While previously established
design principles for neutral cocrystals failed to predict success for ionic cocrystals of
ammonium nitrate, a packing coefficient greater than 83.5% was observed consistently
among all successful coformers. This observation allowed for the targeted identification
of two additional ionic cocrystals. Furthermore, a study demonstrates cocrystal solvate
prediction using CSD and Mercury by analyzing solvent propensity for cocrystal solvate
formation [176]. The study demonstrates the successful synthesis and characterization
of 3,5-dinitrobenzoic acid–acetamide cocrystal solvates. CSD analysis provided valuable
insights into solvent selection for cocrystal solvate formation based on the interplay of
size, shape, and hydrogen-bonding properties. This information can guide future efforts
to design and synthesize novel multicomponent solid forms. Finally, a new web-based
application named Cocrystal Pro was developed to prioritize experimental screening for
cocrystal discovery [177]. It integrates three in silico predictive tools as follows: HBP, HBE,
and MC. HBP analyzes the likelihood of specific hydrogen bond formation between an
API and a coformer based on statistics from the CSD. HBE compares the energy of these
hydrogen bonds using molecular electrostatic potential surfaces. MC uses five molecular
descriptors related to size, shape, and polarity to assess the compatibility between API
and coformer.

Rational cocrystal design, a key component of cocrystal development, involves system-
atically identifying and optimizing cocrystals with desired properties. While computational
methods are valuable, they often face limitations in simultaneously predicting both cocrys-
tal formation and structure. Virtual screening, molecular docking, and HSPs are employed
to identify promising cocrystal pairs. Thermodynamic calculations, such as those using
COSMO-RS, assess the stability of predicted pairs, while QM methods provide accurate
intermolecular interaction calculations. CSP methods generate and evaluate potential
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crystal structures, with lattice energy minimization and molecular dynamics simulations
aiding in optimization. While computational prediction approaches can outperform tradi-
tional systematic screening and potentially identify cocrystals with fewer experiments, the
accuracy of these predictions depends heavily on the chosen methods and tools.

3.2. Challenges Faced in Cocrystal Prediction

Cocrystal prediction and development present several significant challenges that
emanate from data availability [178], limitations in computational modeling [179,180], the
need for robust experimental validation [177], and a comprehensive understanding of both
thermodynamic and kinetic factors [181,182]. These challenges underscore the inherent
complexity of predicting and synthesizing cocrystals, which are crucial for enhancing the
properties of pharmaceuticals and other materials.

One of the primary hurdles is the limited and sometimes inconsistent data about
known cocrystals [178,183]. Computational models heavily rely on accurate and com-
prehensive datasets for training. Incomplete or inaccurate data can lead to misleading
predictions and hinder the ability of the models to generalize to new systems [177]. The
complexity of intermolecular interactions, not fully captured in existing databases, adds
another layer of difficulty in building robust prediction models [184].

The interpretability of complex ML models poses another significant challenge. The
lack of interpretability, often referred to as the “black box” nature, makes it difficult to
understand how predictions are made [185]. This can undermine researcher confidence
and hinder the identification of potential biases or limitations within the model.

Despite advancements, computational predictions are not always reliable. Factors like
crystal packing, the arrangement of molecules within the crystal lattice, and specific interac-
tions not fully accounted for by current methods can lead to inaccuracies [177,179,180,184].
Additionally, different computational methods have varying degrees of accuracy and appli-
cability, depending on the system being studied [110,143]. While current methods predomi-
nantly focus on thermodynamic factors such as interaction energies, kinetic considerations
such as crystal nucleation and growth rates are equally crucial but often overlooked.

Experimental validation remains essential to confirm computational predictions and ac-
curately characterize the properties of cocrystals. However, synthesis challenges may prevent
the facile synthesis of predicted cocrystals, complicating the validation process [183,186,187].
Furthermore, polymorphism adds another layer of complexity. Both APIs and cocrystals
can exist in multiple crystal forms, and predicting the most stable and desirable form
remains a significant challenge [180].

Despite these obstacles, ongoing research efforts aim to address these limitations.
Initiatives include expanding databases with diverse cocrystal structures, improving data
curation and standardization, and developing more interpretable ML models that elucidate
the rationale behind predictions [110,177,188]. Researchers are also working to incorporate
kinetic considerations into prediction methods and enhance experimental techniques for
cocrystal synthesis and characterization [188,189].

Ultimately, by overcoming these challenges and refining both computational and
experimental methods, cocrystal prediction can emerge as a potent tool for accelerating the
discovery and development of novel materials with tailored functionalities. This conver-
gence of efforts holds promise not only for advancing pharmaceutical development but also
for other fields reliant on cocrystals, paving the way for new therapeutic agents, innovative
materials, and potentially revolutionizing diverse technological applications [190].

4. Evaluation of the Methods and Regarding Tools Based on Three Selected Criteria

The programs listed in Section 2, Overview of Cocrystal Formation Prediction Methods,
offer a range of functionalities from basic crystal structure generation to advanced quantum
mechanical calculations and optimization techniques, catering to different needs in cocrystal
formation prediction. The choice of software depends on factors like the specific needs
of the research, the desired level of accuracy, and budget constraints. Some commercial



Int. J. Mol. Sci. 2024, 25, 12045 26 of 45

software might offer more user-friendly interfaces and integrated workflows, while open-
source options provide greater flexibility for customization.

4.1. Evaluation Criteria

Here is a breakdown of key criteria for evaluating cocrystal prediction tools in cocrystal
discovery (Figure 2).

Efficiency is a key consideration in cocrystal formation prediction, as it directly impacts
the practicality and speed of the research process. This criterion evaluates the accuracy
and reliability of the predictions generated by each method, ensuring that the results are
dependable and can be confidently used for experimental validation. Efficient methods
also excel at identifying improbable coformers and prioritizing promising candidates by
ranking them, streamlining the prediction process.

Cost-effectiveness is a critical consideration for researchers, particularly those with
limited budgets. Efficient research is determined by a balance of time and financial re-
sources. Time factors such as computation time, infrastructure requirements, software tools
with employed algorithms, and data availability significantly impact productivity. On the
budget side, perpetual and periodic licensing fees, hardware costs, and database expenses
must be considered. By optimizing the use of these resources, researchers can ensure that
their methods are not only financially available but also time-efficient, maximizing output
while minimizing costs, allowing researchers to allocate their resources effectively.

User-friendliness in computational tools is largely defined by the interplay between
theoretical knowledge and the learning curve associated with their use. It refers to how
easy it is to learn and utilize the software, a crucial factor for experimental researchers
who may not have extensive computational backgrounds. Researchers need to consider
how much and how deep their theoretical knowledge of computational chemistry and
coding is necessary to effectively navigate these tools for predicting cocrystal formation.
However, the learning curve is significantly influenced by the quality of the graphical user
interface (GUI), where a user-friendly interface with clear menus and intuitive functionality
becomes essential, especially for those new to cocrystal prediction. Well-designed GUIs
and minimal coding requirements enhance accessibility, allowing researchers to quickly
become proficient and minimizing the time spent on training and troubleshooting. The
time and effort required to learn the software effectively should also be taken into account.
Comprehensive user guides, tutorials, and online resources can significantly reduce the
learning curve, making the software more approachable. Furthermore, an active user
community and readily available technical support are invaluable for troubleshooting
issues and learning best practices. Access to forums or discussion boards where users
can share experiences and seek assistance can provide significant advantages, fostering a
supportive environment that enhances the overall usability of the software and ultimately
contributes to more effective research outcomes.

4.2. Evaluation of the Selected Methods and Tools

The following subsections will analyze the methods based on three key criteria, namely,
user-friendliness, efficiency, and cost-effectiveness. The focus will be on their usefulness for
an experimental researcher in the workflow of rational cocrystal design. Table 1 summarizes
the methods along with the associated programs/tools, briefly describing their ease of use,
learning curve, accuracy and reliability, time required, initial cost, and hardware requirements.
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Table 1. Evaluation of cocrystal prediction methods and related programs and tools.

Method Program/Tools Ease of Use Learning Curve Accuracy and
Reliability Time Required Initial Cost Hardware

Requirements

Quantum Mechanical
Methods

Gaussian
VASP

Quantum ESPRESSO
Schrödinger suite

(Jaguar and
MacroModel)

Octopus

Requires significant
expertise in quantum

mechanics and
computational

chemistry.

Steep learning curve;
extensive training

needed.

Highly accurate and
reliable for electronic

structure
calculations.

Computationally
expensive and

time-consuming
calculations.

Cost varies; free
open-source options

are available, but
commercial software

can be expensive

Requires access to
powerful computers
or high-performance
computing clusters.

Molecular Docking
AutoDock

GOLD
DOCK

Reasonably
accessible with good

training

Moderate learning
curve; basic

understanding of
molecular

interactions required

Effective for initial
screening and

predicting binding
affinities/poses

Varies depending on
system size and

complexity; generally
faster than QM

methods

Variable; free and
commercial options

available

Modestly powerful
computers; GPUs can

improve speed
(optional)

Molecular Dynamics
GROMACS

AMBER
LAMMPS

Moderately complex

Steep learning curve;
requires

understanding of
molecular mechanics

and scripting

Highly accurate

Highly
time-consuming for
exhaustive cocrystal

exploration

Several free options
are available

Requires powerful
computers or

high-performance
computing clusters

Crystal Structure
Prediction

CALYPSO
XtalOpt
PyXtal

UPACK
GULP

CrystalMaker
CrystalExplorer

Moderately complex
and complex

(requires scripting)
Moderate or steep Varies

Varies (depends on
system complexity

and desired accuracy
and can be

time-consuming)

Variable; free and
commercial options

available

Powerful computer
recommended

COSMO-RS

BIOVIA COSMO-RS
(COSMOquick,
COSMOtherm)

COSMO-RS-ADF-
openCOSMO-RS

Variable;
user-friendly

(menus/interfaces);
Moderate to high

(depending on
experience in QM

calculations)

From moderate
training (some

background helpful)
to a step learning

curve

Potentially high for
thermodynamic
properties and

solubility prediction

Can be efficient for
screening and

routine calculations,
less time-consuming
than full simulations

Variable; commercial
options, open-source

alternative

Variable; moderate
computational
resources; high;

requires access to
powerful computers
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Table 1. Cont.

Method Program/Tools Ease of Use Learning Curve Accuracy and
Reliability Time Required Initial Cost Hardware

Requirements

Hansen Solubility
Parameters HSPiP User-friendly

(menus/interfaces) Moderate training

Accuracy depends on
the data quality and

limitations of the
HSP method

Efficient for
screening

HSP method (free),
HSPiP (commercial

software)

Minimal; HSPiP
requires Windows

PC

Machine Learning

scikit-learn
TensorFlow

PyTorch
WEKA
CrySPY

Depending on the
specific tools,
“black-box “,
Experience in
programming

required

Steep
Depending on the

quality and quantity
of training data

Building models is
time-consuming; the

use of pre-trained
models is more

efficient

The most tools are
free and open-source

Moderate
computational

resources

Quantitative
Structure-Activity

Relationship

KNIME Analytics
Platform

QSAR Toolbox
Moderate-high

Moderate-High
(basic understanding

of QSAR and
depends on the
desired level of

expertise)

Low in cocrystal
prediction

Can be
time-consuming.

Free options and free
core versions

Moderate
computational

resources, but varies
depending on the
complexity of the

QSAR model and the
chosen tools

Database and
Knowledge-Based

Methods

CCDC software suite
(ConQuest, Mercury,

CSD Python API)
COD

ZINC Database
PubChem

ChemSpider
DrugBank

Varies depending on
the specific tool.
CCDC software
requires some

training, while ZINC
and PubChem offer

user-friendly
interfaces.

The learning curve
varies. CCDC

software requires
more understanding

of crystallography
and search criteria,
while ZINC and

PubChem are more
intuitive.

Depends on search
criteria, methods,

and database quality

Efficient for
screening, time
depends on the

screening strategy
and tools

Variable; most
options are free, but
CCDC software is

commercially
available

Minimal (web
browser) or standard

computers
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4.2.1. Quantum Mechanical Methods for Cocrystal Prediction: A Powerful Approach
with Limitations

QM methods offer exceptional accuracy in cocrystal prediction due to their ability to
model electronic structures and intermolecular interactions at a fundamental level. DFT
methods excel in providing highly accurate electronic structure calculations and interaction
energies [25]. This accuracy is crucial for understanding the non-covalent interactions,
like hydrogen bonding, that are critical for cocrystal stability. The quantum mechanical
foundation of DFT methods ensures precise predictions of these interactions, offering a
significant advantage in cocrystal design. However, this high level of accuracy comes
at a cost of computational intensity. Calculations can be time-consuming and resource-
intensive, requiring access to powerful computers or high-performance computing clusters.
Furthermore, DFT methods and MEP calculations performed with QM software are known
for their complex setups and steep learning curves. They demand extensive knowledge of
quantum mechanics and computational chemistry for effective utilization. This significantly
limits their accessibility to researchers without a strong computational background. Many
QM software packages offer extensive user guides, tutorials, and online communities,
whose availability can significantly ease the learning process for researchers with a basic
understanding of quantum mechanics and computational chemistry. While free, open-
source options exist, commercial software can be costly. Therefore, QM methods are often
best suited for researchers with advanced computational expertise or in collaboration with
computational scientists.

4.2.2. Molecular Docking: Accessible Powerhouse for Initial Cocrystal Screening

AutoDock [44] and Vina [45] are renowned for their accessibility and ease of use. They
feature a well-documented GUI through AutoDockTools (ADTs) [191], which simplifies the
preparation of input files and visualization of results. The availability of extensive tutorials
and community support further enhances their user-friendliness, making them suitable
for researchers with varying levels of computational expertise. AutoDock is efficient in
predicting binding affinities and poses for cocrystal candidates. It uses a Lamarckian
genetic algorithm and empirical free energy scoring functions to evaluate interactions.
While it provides reliable results, the computational time can be significant, especially for
larger systems. Both AutoDock and ADT are open-source and freely available, making
them highly cost-effective. Its minimal hardware requirements and no licensing fees make
it an attractive option for academic and budget-constrained research settings.

GOLD [46] is appreciated for its robust graphical user interface (GUI) and intuitive
workflow. It offers detailed documentation and support resources, including user guides
and forums. The interactive nature of the software allows users to easily adjust docking
parameters and visualize docking poses, contributing to its high user-friendliness. GOLD
excels in efficiency due to its genetic algorithm optimization, which is particularly effective
in exploring the conformational space of API–coformer pairs. It provides highly accurate
predictions of binding modes and affinities with reasonable computational times. The
efficiency of GOLD makes it a preferred choice for high-throughput docking studies.
GOLD is commercial software with licensing fees, which can be a significant cost factor.
However, its efficiency and accuracy often justify the investment for researchers requiring
reliable and high-throughput docking capabilities. The cost of GOLD is balanced by its
robust performance and extensive support.

DOCK [49], while powerful, is less user-friendly compared to AutoDock and GOLD.
It primarily operates through command-line interfaces, which can be challenging for users
unfamiliar with such environments. Despite its comprehensive documentation, the steep
learning curve associated with setting up and executing docking simulations can be a
barrier for new users. DOCK is highly efficient in screening large libraries of compounds.
It employs a grid-based approach to evaluate potential binding sites, making it faster for
initial screenings. DOCK, like AutoDock, is an open-source tool, contributing to its cost-
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effectiveness. It requires minimal investment in software but may necessitate additional
resources for computational power, particularly when screening large compound libraries.

Glide [48], part of the Schrödinger suite, is highly user-friendly, featuring an intuitive
GUI that integrates seamlessly with other Schrödinger tools. The software provides step-
by-step wizards for docking setup and analysis, along with extensive support resources.
The design of Glide prioritizes user experience, making it accessible to researchers at all
skill levels. Glide is noted for its exceptional efficiency and accuracy. It employs advanced
algorithms such as the GlideScore scoring function and the hierarchical refinement of
docking poses. Glide consistently delivers high-quality predictions with relatively short
computational times, making it one of the most efficient docking tools available. Glide is
a commercial product with substantial licensing fees. The cost can be a barrier for some
users, but the integration of the software within the Schrödinger suite and its superior
performance often offset the investment. Institutions with the budget for premium software
will find the comprehensive capabilities of Glide and support services valuable.

Molecular docking methods are widely employed in the prediction of cocrystal for-
mation due to their ability to simulate the binding interactions between an API and a
coformer. Docking programs are not ideal for directly predicting the final crystal structure
of a cocrystal. They excel at a different stage of the cocrystal prediction process, that
is, identifying potential binding modes and interactions between the API molecule and
candidate coformers. Understanding docked positions and scoring results requires a combi-
nation of visualization skills, knowledge of molecular interactions, and familiarity with the
specific scoring functions of the docking software. Noted here is that docking programs are
primarily designed for studying protein–ligand interactions. Therefore, their application in
predicting cocrystals may not be straightforward for new users unfamiliar with the software.
Additionally, these algorithms may inadequately describe API–coformer interactions.

4.2.3. Molecular Modeling for Studying Dynamics Within a Known Cocrystal Structure

Molecular dynamics simulations using software like GROMACS, AMBER, and LAMMPS
offer exceptional accuracy in studying the dynamic behavior of molecules within a known
cocrystal structure and can provide valuable insights into intermolecular interactions and
ligand mobility within the crystal lattice. However, their direct application for predicting
new cocrystal formations is limited. The vast number of potential configurations and
the computationally demanding nature of long simulations make exhaustive exploration
through these methods highly time-consuming. Furthermore, a strong background in
computational chemistry and programming to use MDs for cocrystal simulations is needed.
A solid understanding of molecular mechanics force fields is crucial, and choosing an ap-
propriate force field significantly impacts the accuracy of the simulation. Thus, researchers
need to be able to select appropriate force fields for the specific molecules in the cocrystal
and interpret the resulting data from the simulation. The simulation setup defines various
parameters like temperature, pressure, simulation time step, and initial atomic positions.
Data analysis extracts relevant information from the generated large amount of data about
atomic positions, velocities, and energies over time. Therefore, despite the existing user-
friendly interfaces (as noted here that some level of user-friendliness means, for example, a
limited GUI and power and flexibility through scripting languages), a strong foundation in
computational chemistry and programming remains essential for effectively utilizing them
in cocrystal simulations.

4.2.4. Crystal Structure Prediction: Solutions for Varying Skill Levels Catered to by
Different Tools

Crystal structure prediction, though potentially aided by user-friendly software, gen-
erally demands a strong background in both computational chemistry and crystal structure
representation. Understanding the forces between molecules and selecting appropriate
computational methods necessitate knowledge of computational chemistry. Analyzing
the generated data on potential energies and atomic arrangements requires interpreting it
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within the framework of this field. Crystal structure representation expertise is equally im-
portant. Knowledge of space groups and crystallographic data formats allows researchers
to decipher how molecules pack together and visualize the predicted structures effectively.
While the specific depth of knowledge may vary based on the software and system com-
plexity, a solid foundation in both areas is crucial for successful crystal structure prediction.

CALYPSO [61], a freely available software for academic users, caters to researchers
comfortable with command-line interfaces. Despite the lack of a GUI, CALYPSO offers
comprehensive documentation, user guides, and manuals to bridge the gap. An active
forum further enhances its usability by providing a platform for users to share experiences,
troubleshoot issues, and learn best practices from the community. One key advantage of CA-
LYPSO is its ability to interface with several major computational chemistry and materials
science codes, allowing researchers to seamlessly integrate it into their existing workflows.

PyXtal [72], a free Python package, empowers researchers to predict crystal structures.
It transcends a basic command-line tool by leveraging Python scripting for customization
and automation. Users can build crystals from scratch or modify existing ones, defining
parameters like space group, cell dimensions, and even partial atomic occupancy. The
iterative algorithm of PyXtal enforces packing rules to prevent unrealistic atomic proximity
and attempts multiple structure generations. By identifying the lowest-energy form from
these trials, PyXtal offers a valuable tool for computational materials science, potentially
predicting stable phases without needing experiments. Despite its efficiency, due to the
moderate documentation and the lack of GUI, PyXtal is not an attractive solution for
experimental researchers.

UPACK [75], despite being a valuable tool for crystal structure prediction, might not
be ideal for a non-computational chemist due to its complexity. It lacks a user-friendly
interface, requiring knowledge of command-line scripting for operation. There is no
detailed documentation, only a webpage, which itself is targeted towards specialists,
referencing advanced concepts like force fields and space groups. UPACK generates a
vast number of hypothetical crystal structures, requiring expertise in interpreting and
selecting the most relevant ones. Furthermore, the software utilizes a model for electrostatic
interactions and repulsion–dispersion forces, demanding a background in these areas.
While UPACK offers a valuable tool for crystal structure exploration, its usage seems best
suited for researchers with a strong foundation in computational chemistry.

GULP [63], a free and open-source software package for academics, caters to re-
searchers comfortable with scripting and computational workflows. While graphical user
interfaces are accessible through commercial software suites like BIOVIA Materials Studio,
GULP itself is a command-line-driven tool. To compensate for the lack of dedicated sup-
port, GULP offers extensive resources such as manuals, FAQs, examples, and a community
forum. However, it is important to note that GULP is provided “as is”, meaning users are
responsible for troubleshooting and resolving issues independently. Limited support can
be obtained by contacting the developers, but a commercial license with dedicated support
is available through Biovia. Overall, GULP’s free availability and extensive resources make
it a powerful tool for researchers with a strong background in computational chemistry, but
its command-line interface and lack of built-in support may pose challenges for beginners.

XtalOpt [65], a freely available software suite, offers a user-friendly GUI for researchers
in the field of crystal structure prediction. This software caters particularly to those new
to the field, thanks to its clear and comprehensive user guides and documentation. While
XtalOpt excels at generating a vast number of candidate crystal structures through its
evolutionary algorithm, it relies on external software packages for the final geometry
optimization step. Notably, XtalOpt exhibits strong interoperability with established
computational chemistry codes such as VASP, GULP, and CASTEP. This compatibility
allows researchers to seamlessly integrate the structure generation capabilities of XtalOpt
into their existing workflows for complete crystal structure prediction.

CrystalMaker software positions itself as a user-friendly and comprehensive solution
for crystal and molecular structure modeling and diffraction studies [77]. Unlike some



Int. J. Mol. Sci. 2024, 25, 12045 32 of 45

competitors, CrystalMaker boasts a GUI for easy navigation and intuitive use. This can
be particularly beneficial for researchers who are new to crystal structure analysis. Be-
yond user-friendliness, CrystalMaker offers a full suite of functionalities, encompassing
everything from building and manipulating crystal structures to visualizing and analyzing
diffraction patterns. A key highlight is the Packing Explorer, specifically designed to assist
in the creation of novel crystal structures, a valuable tool for material discovery. Addition-
ally, CrystalMaker brings accessible energy modeling and lattice dynamics capabilities to
personal computers, empowering researchers to explore these aspects without the need for
high-performance computing resources. For those seeking support, CrystalMaker offers
“First-Class Support”, ensuring assistance throughout the software usage process. While
CrystalMaker is not free, it provides various pricing options and license solutions to cater
to individual and institutional needs. This combination of user-friendly interface, com-
prehensive functionality, and dedicated support makes CrystalMaker a compelling choice
for researchers in materials science and crystallography without strong computational
chemistry and programing knowledge.

CrystalExplorer [78] stands out as a powerful software suite designed for the inves-
tigation of intermolecular interactions within molecular crystals. Its user-friendly GUI
simplifies navigation and fosters accessibility for researchers with varying computational
backgrounds. CrystalExplorer offers a comprehensive suite of modeling tools, empowering
users to not only visualize but also analyze various aspects of molecular crystals. These
tools likely encompass functionalities for constructing crystal structures, manipulating in-
dividual molecules within the crystal lattice, and exploring different packing arrangements.
Furthermore, CrystalExplorer provides valuable visualization tools for intermolecular inter-
actions. This includes the generation of the Hirshfeld surface, a graphical representation of
intermolecular contacts, along with its corresponding two-dimensional fingerprint, which
offers a quantitative representation of these interactions. The commitment of CrystalEx-
plorer to user support is evident through its extensive documentation, including FAQs and
a user manual, which guides users through its functionalities. Additionally, a dedicated
support page allows researchers to seek assistance with any issues they encounter. Finally,
CrystalExplorer offers flexible licensing options, ensuring affordability and accessibility for
researchers from both academic and industrial settings.

4.2.5. COSMO-RS: A Powerful but Potentially Pricey Tool for Cocrystal Prediction

Both COSMOtherm [85] and COSMOquick [84] offer GUIs designed to be user-friendly.
COSMOquick is specifically designed for rapid screening with a streamlined interface for
quick calculations, making it ideal for efficiently screening large coformer libraries. Some
understanding of COSMO-RS theory and thermodynamic concepts is beneficial for inter-
preting results effectively. Users with a background in chemistry or chemical engineering
will likely find it easier to grasp the underlying principles. Tutorials and documentation
provided by BIOVIA can further aid in learning the software functionalities. Both COS-
MOtherm and COSMOquick leverage the COSMO-RS model, known for its good accuracy
in predicting thermodynamic properties like excess enthalpy of mixing and solubility,
which are valuable for cocrystal prediction. COSMOquick is designed for rapid screening
of potential coformers based on their interaction favorability with the API. COSMOtherm
offers a more detailed analysis of shortlisted candidates, which can be more time-consuming
depending on the desired level of detail and system complexity. COSMOquick focuses on
user-friendliness and rapid screening, making it a good initial step in a cocrystal discovery
workflow. In contrast, COSMOtherm provides a more in-depth analysis of thermodynamic
properties, offering valuable insights for researchers. Both COSMOtherm and COSMO-
quick are commercial software products from BIOVIA and require paid licenses. The
computational demands depend on the size and complexity of the molecules being studied.
While both software programs can likely run on personal computers, larger systems or
high-level calculations might benefit from more powerful workstations.
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COSMO-RS-ADF [88] leverages ADF, a powerful quantum chemistry program, and
offers a user interface that integrates COSMO-RS setup. Tutorials and documentation
are available to assist users, but a good understanding of COSMO-RS theory, quantum
mechanics, and ADF software usage is beneficial. The learning curve can be reduced by
utilizing these resources. COSMO-RS-ADF combines quantum chemical calculations with
the COSMO-RS model, leading to high accuracy in predicting thermodynamic properties
relevant to cocrystal prediction, such as solubility. It is efficient for routine calculations on
smaller molecules; however, for complex systems or large-scale screening, the calculations
can become more time-consuming. COSMO-RS-ADF is part of the commercial ADF
software suite [87,89], requiring a paid license and powerful computers.

The openCOSMO-RS [91] offers Python and C++ codebases, requiring some program-
ming knowledge for setup and execution. Compared to commercial software with graphical
interfaces, it has a steeper learning curve. A good understanding of COSMO-RS theory
and experience with scientific computing is necessary to effectively use openCOSMO-
RS. Familiarity with Python or C++ programming, as well as experience with scientific
computing libraries, is beneficial for advanced users. Tutorials and documentation are
available to assist users, but some background knowledge is helpful. The openCOSMO-RS
can accurately calculate thermodynamic properties like solubility and excess enthalpy of
mixing, relevant for cocrystal prediction, and offers efficient screening capabilities com-
pared to full atomistic simulations. The exact time required depends on the system size,
complexity of calculations, and computing resources available. As open-source software,
openCOSMO-RS is free to use and requires moderate computational resources compared
to complex simulations. While it can be run on personal computers, larger calculations
might benefit from high-performance computing clusters.

In general, the accuracy of COSMO-RS is considered to be very good and performs
well in predicting cocrystals compared with other methods [110,137,143].

4.2.6. Hansen Solubility Parameters: Fast and Easy Screening for Initial Compatibility,
Despite Limitations

HSP concepts are relatively straightforward, involving the calculation of parameters
from group contributions, but using them effectively requires an understanding of solubility
and intermolecular interactions [92]. HSP is a semi-empirical method, and its accuracy
depends on the quality and completeness of the data used for parameter estimation. The
underlying theory of HSP is freely available in the scientific literature, and the method
itself does not require specific hardware. However, the commercially available HSPiP
software [94], which simplifies the process, requires a paid license. The HSPiP software
offers a user-friendly interface for calculations and visualization, which facilitates the
process compared to manual calculation. However, a basic understanding of HSP theory
and interpretation is necessary, and some training or experience with the program might
be needed. HSPiP, as a Windows-based program, requires minimal hardware beyond a
standard computer. Despite the lower reliability of the HSP concept compared to COSMO-
RS calculations in cocrystal predictions [137,145], HSP can still serve as a quick and cost-
effective starting point in the workflow of rational cocrystal design [93].

4.2.7. Machine Learning for Cocrystal Prediction: A Promising but Evolving Field

ML tools for cocrystal prediction vary in their user-friendliness and the level of
programming expertise required. Beginner-friendly options like scikit-learn [98] and
WEKA [101,102] offer lower barriers to entry for users with basic programming knowledge
and familiarity with ML concepts. These tools provide tutorials and documentation to
help users get started with basic cocrystal prediction tasks. However, building custom
models requires significant expertise in data science, ML algorithms, and coding skills,
which presents a high learning curve. Even with user-friendly tools, understanding ML
concepts and data analysis is beneficial for interpreting results and recognizing limitations
in predictions. The accuracy of ML models relies heavily on the quality and quantity of



Int. J. Mol. Sci. 2024, 25, 12045 34 of 45

training data, and limited data on known cocrystals can restrict the ability of a model
to generalize to new systems [110,162,188,192,193]. Additionally, the “black box” nature
of ML models can make it difficult to understand the rationale behind their predictions,
limiting interpretability and trust [185]. Building models is time-consuming, involving
data gathering, training, and optimization. However, using existing models with familiar
software can be relatively quick once the user is acquainted with the process. Hardware
requirements vary, with moderate computational resources typically being sufficient.

ML is a promising field that can significantly aid in prioritizing potential cocrystal
formers for experimental validation, thereby saving time and resources [188,192]. The models
can identify patterns in existing data that might not be apparent through traditional methods,
helping researchers focus on promising cocrystal candidates with desired properties.

4.2.8. Traditional QSAR Approaches: Complex Interaction Limit the Modeling
Cocrystal Formation

The QSAR method offers moderate to high ease of use, but it requires a solid un-
derstanding of chemical properties, model development, and result interpretation. The
learning curve is steep due to the need to grasp underlying QSAR principles, data prepa-
ration, and statistical analysis. Developing QSAR models is time-consuming, involving
extensive data collection, curation, model building, and validation. However, the method
itself is accessible, with various free and open-source software available for model develop-
ment. Tutorials and documentation are available, which can help ease the learning process,
although a background in QSAR concepts is beneficial.

The QSAR Toolbox, with its moderate ease of use, provides a user-friendly interface
with pre-built models and functionalities. While some knowledge of QSAR is helpful, the
availability of tutorials, manuals, webinars, and a helpdesk makes it accessible. Prediction
time using existing models with the QSAR Toolbox is efficient, and the software is freely
available, offering a good balance between ease of use and functionality for those familiar
with QSAR concepts.

The KNIME Analytics Platform offers a moderate to high ease of use with its visual
programming interface. It requires some familiarity with data analysis and potentially
scripting for advanced workflows. The learning curve is moderate to high; while the visual
interface lowers the entry barrier, advanced functionalities might necessitate scripting
knowledge or data science expertise. KNIME workflows for QSAR analysis can be efficient
for established workflows, but building complex workflows can be time-consuming. The
core version of KNIME is free, with paid options for additional features, providing a flexible
platform for custom workflows that integrate QSAR models with other data analysis tools,
although it demands more technical knowledge compared to the QSAR Toolbox.

Both tools are valuable for researchers predicting chemical properties or activities
based on structure. Hardware requirements also vary with the complexity of the QSAR
model and tools used, but generally, moderate computational resources are sufficient.

In general, the accuracy and reliability of QSAR models vary depending on the specific
model, data quality, and chosen endpoints. In the case of cocrystal prediction, QSAR models
have low accuracy and reliability [193]. Due to the multifaceted nature of intermolecular
interactions governing cocrystal formation, including hydrogen bonding, van der Waals
forces, and π–π stacking, a complex network of forces dictates successful cocrystallization.
This complexity poses a challenge for traditional QSAR methods, which typically focus
on simpler, more direct relationships between chemical structure and a singular biological
activity. Consequently, capturing the intricate interplay of forces involved in cocrystal
formation may be beyond the capabilities of standalone QSAR models, potentially limiting
their effectiveness in this specific application. While QSAR remains a valuable tool for
understanding various aspects of molecular behavior, its application to cocrystal prediction
might necessitate additional considerations or complementary methods to account for
the complex interplay of forces at play. However, novel approaches combining different
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descriptors can significantly improve the accuracy of QSAR cocrystal prediction, addressing
some of the complexities involved [156].

4.2.9. Database and Knowledge-Based Methods: A User-Friendly and Efficient Starting
Point for Cocrystal Discovery

Public databases like ZINC [14,15], PubChem [16], and ChemSpider [116] are ex-
tremely user-friendly, featuring mostly web interfaces with search filters that require a
very low learning curve. These platforms are designed for ease of use, necessitating only
a basic understanding of search terms, thanks to their intuitive interfaces. The CCDC
software suite [47], which includes tools like ConQuest [111], Mercury [112], and the CSD
Python API [113], has a moderate level of ease of use and requires some understanding
of crystallography concepts. Tutorials and documentation are available to assist users,
leading to a moderate learning curve. DrugBank [115] also has a moderate ease of use
with a user-friendly interface, though familiarity with biological data is beneficial. The
learning curve for DrugBank is moderate, as it helps to have knowledge of bioinformatics
and cheminformatics concepts.

The accuracy and reliability of these tools depend significantly on the specific tool and
the quality and comprehensiveness of the underlying data. For virtual screening methods,
the accuracy and reliability hinge on the quality of the search criteria and the methods
chosen, such as shape/size versus functional group matching. While virtual screening
provides an initial filtering based on user-defined criteria, it is not a definitive prediction
method, serving rather as a preliminary step in the drug discovery process.

5. Comparative Analysis and Recommendations for Experimental Researchers

Creating an objective scoring model to rank in silico screening methods for cocrystal
formation predictions based on our three criteria—efficiency, cost-effectiveness, and user-
friendliness—is nearly impossible. Although we have made efforts to establish a scoring
model (Figure 5) that minimizes subjectivity, some intuitiveness remains.

Efficiency is the most complex criterion in our evaluation. Based on our literature
review, we conclude that each method is capable of predicting the formation of cocrystals
between the selected API and the investigated coformer. To establish a clearer ranking, we
have categorized the methods into three groups based on their efficiency: very high, high,
and moderate, corresponding to scores of 3, 2, and 1 points, respectively.

The score of cost-effectiveness is defined as the average of the budget and time require-
ments points. Considering the budget, low cost (free, open-source tools compatible with
standard computers), moderate cost (free, open-source tools requiring high-performance
computers, or licensed software with standard computers), and high cost (licensed software
requiring high-performance computers) scored by 3, 2, and 1 points, respectively. When
the time requirements of the in silico screening are fast, variable, time-consuming, or highly
time-consuming, earn 4, 3, 2, or 1 point, respectively.

The average of the theoretical knowledge and learning curve points results in the
user-friendliness score. Low, medium, and high computational chemistry and coding
knowledge receives 3, 2, and 1 point. While low, moderate, step, and extensive learning
curves get 4, 3, 2, and 1 point.

Figure 6 compares the performance of different in silico methods for cocrystal for-
mation prediction across the scoring categories of the key criteria, such as efficiency, cost-
effectiveness, and user-friendliness. While Figure 7 identifies clusters of methods with
similar characteristics.

Although both QM and MD methods offer high accuracy in predicting stable cocrystal
structures, they are not recommended for most experimental researchers due to several
limitations, such as advanced knowledge requirements in quantum chemistry and pro-
gramming, computational intensity, including extended periods of simulation runs, and
supercomputing resources; furthermore, the associated software licenses and computa-
tional resources can be expensive.
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Developing reliable QSAR models requires significant time investment, and the soft-
ware’s user-friendliness can be moderate. CSP offers a slightly more user-friendly envi-
ronment compared to QSAR, but the cost is generally higher. Additionally, refinement of
predicted structures often necessitates advanced QM methods. Docking programs are user-
friendly, but they are not specifically designed for API–coformer interactions. This can lead
to questionable reliability for cocrystal prediction. While docking offers a cost advantage
over QM methods, its limitations make it less suitable for this specific application.

The ML models hold significant promise for cocrystal prediction. Several free pro-
grams exist for model building; however, these models can be challenging to use due to
their “black-box” nature. Programming skills (e.g., Python) are beneficial for effective uti-
lization. With appropriate data training, ML models can deliver accurate predictions. With
continued development, the future looks bright for user-friendly and accurate ML-based
cocrystal prediction tools.
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Database and Knowledge-Based Methods offers a cost-effective approach, with many
databases freely accessible. However, the reliability of data in these databases can vary,
and manual data collection can be time-consuming. Utilizing available software, such as
Mercury, can facilitate efficient screening in a short time.

The COSMO-RS method takes the top spot due to its exceptional accuracy in predicting
cocrystal formation. User-friendly software readily available in commercial markets further
enhances its appeal. While the HSP method with HSPiP software provides an excellent
entry point for researchers new to cocrystal design. This popular method is highly user-
friendly, with readily available software at a low cost. While its predictions may not
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be the most detailed compared to other techniques, the HSP method offers a rapid and
easy-to-understand approach for initial cocrystal exploration.

This ranking provides a framework for researchers to select the most suitable cocrystal
prediction method based on their individual needs and resources. The choice of the
methods depends on the specific needs of the researcher (Figure 8). If efficiency is the
primary concern, QM or MD might be preferred. If cost-effectiveness and user-friendliness
are more important, then HSP and COSMO-RS with GUI could be suitable.
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6. Conclusions

The prediction of cocrystal formations is a crucial step in rational cocrystal design.
It utilizes a multifaceted approach, combining computational and theoretical methods
to forecast the stability of cocrystal formation between an API and a coformer molecule.
This predictive capability empowers researchers to prioritize promising candidates for
experimental synthesis. This significantly enhances the efficiency of drug development
processes by focusing efforts on candidates with a higher likelihood of success.

While various methods exist for cocrystal prediction, user-friendliness, efficiency, and
cost-effectiveness are crucial factors in selecting the most suitable approach. Any method
can effectively predict the potential for cocrystal formation if applied correctly, while none
will yield satisfactory results if misused. However, if the primary objective is to identify
the molecules most likely to form a cocrystal, the simplest approach—when configured
appropriately—is often the best choice. By starting with more straightforward methods and
gradually advancing to more complex ones as needed, researchers can efficiently identify
promising cocrystal systems and optimize their properties.
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Recommendations for researchers are as follows:
First Choice—HSP with HSPiP: HSP combined with HSPiP is our top recommendation

due to its ease of use [93], fast screening, and reasonable cost. With careful parameteriza-
tion, its accuracy can be significantly enhanced. The method only provides a formation
prediction without providing any cocrystal structural insights.

Second Choice—COSMO-RS with GUI: For researchers seeking a balance between com-
putational effort and ease of use, COSMO-RS with a GUI is a solid choice [82]. The GUI
simplifies interaction, making it accessible even for users with limited computational expertise.

Third Choice—Virtual Screening in CSD with Mercury: Virtual screening in the CSD
using Mercury offers a powerful advantage in cocrystal formation prediction. Researchers
can efficiently search a vast database of crystal structures, identifying potential cocrystal
partners with similar packing motifs and favorable intermolecular interactions [114]. It
provides a formation probability and plausible structure, which is a valuable starting point
for experimental cocrystal design.

It is important to acknowledge the inherent subjectivity in method selection. Individ-
ual user experience and familiarity with computational tools can significantly influence
the perceived effectiveness and ease of use. Ultimately, the choice of prediction method
should be based on a careful consideration of specific project needs, available resources,
and user expertise.
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