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Abstract: The gut microbiome is essential for regulating host metabolism, defending against pathogens,
and shaping the host’s immune system. Mounting evidence highlights that disruption in gut microbial
communities significantly impacts cancer development and treatment. Moreover, tumor-associated
microbiota, along with its metabolites and toxins, may contribute to cancer progression by promoting
epithelial-to-mesenchymal transition, angiogenesis, and metastatic spread to distant organs. Bones,
in particular, are common sites for metastasis due to a rich supply of growth and neovascularization
factors and extensive blood flow, especially affecting patients with thyroid, prostate, breast, lung, and
kidney cancers, where bone metastases severely reduce the quality of life. While the involvement
of the gut microbiome in bone metastasis formation is still being explored, proposed mechanisms
suggest that intestinal dysbiosis may alter the bone microenvironment via the gut-immune-bone
axis, fostering a premetastatic niche and immunosuppressive milieu suitable for cancer cell colo-
nization. Disruption in the delicate balance of bone modeling and remodeling may further create a
favorable environment for metastatic growth. This review focuses on the link between beneficial or
dysbiotic microbiome composition and bone homeostasis, as well as the role of the microbiome in
bone metastasis development. It also provides an overview of clinical trials evaluating the impact of
gut microbial community structure on bone parameters across various conditions or health-related
issues. Dietary interventions and microbiota modulation via probiotics, prebiotics, and fecal micro-
biota transplantation help support bone health and might offer promising strategies for addressing
bone-related complications in cancer.
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1. Introduction

Trillions of bacteria, viruses, fungi, archaea, and eukaryotic organisms inhabit the
human gastrointestinal tract (GIT). The gut microbiome represents a complex community
of all microorganisms residing in GIT, along with their genes and metabolic potential. Its
composition changes throughout life due to various intrinsic and extrinsic factors, includ-
ing gender, age, antibiotic use, dietary changes, physical activity, and many others [1,2].
Favorable microbiota composition is characterized by broad microbial diversity and high
colonization resistance.

Recently, our understanding of the human gut microbiome about health and disease
has rapidly expanded, primarily due to advances in sequencing technologies and bioin-
formatics methods. The importance of the microbiome in metabolism, nutrition, shaping
the host’s immune system, and preventing numerous diseases is now well-established [3].
Mounting evidence highlights that disrupted gut microbiome composition significantly
influences the onset and progression of cancer. Moreover, bacteria were found to be an
integral part of the tumor microenvironment (TME), opening new possibilities for potential
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microbiome-based strategies. Ongoing research reveals that both the gut and tumor micro-
biomes can influence the response to anti-cancer therapies, especially chemotherapy and
immunotherapy [4,5]. Tumor-associated bacteria can interact with immune cells and modu-
late their response to malignant cells. Numerous studies highlight the correlation between
the favorable composition of gut microbial communities and improved therapy outcomes,
leading to remission and prolonged patient survival. On the other hand, dysbiotic micro-
biome composition, characterized by a reduced diversity and high levels of pathogens, is
associated with a diminished treatment response and poorer patient outcomes [6].

Alterations in gut microbial composition contribute to oncogenesis and might affect
metastatic spreading to distant organs. As shown, microbial metabolites can not only
initiate malignant cell transformation but also promote tumor progression and the for-
mation of distant metastases [7]. The structured distribution of bacteria within tumors
influences immune and epithelial cell activity [8], may regulate epithelial-to-mesenchymal
transition (EMT)-related pathways [9], and alters the actin cytoskeleton in circulating tumor
cells [10]. Thus, gut microbiota modulation offers a promising approach to enhancing
cancer treatment efficacy [11,12] and metastatic spreading [13].

Several studies identified a close relationship between the immune and skeletal sys-
tems [14,15], and complex interactions were further explored through the field of “osteoim-
munology” [16]. In 2018, Ohlson and Sjogren coined the term “osteomicrobiology” to
describe a rapidly growing field of research focused on the impact of the gut microbiome
on bone health. This interdisciplinary area bridges gastroenterology, immunology, micro-
biology, and bone physiology [17]. While previous studies have demonstrated that the
gut microbiome, microbes, and immune cells are pivotal players in bone homeostasis, the
research field of osteoimmunology evolved into a more complex area of osteomicrobiology.
Analysis has progressed from animal studies to carefully designed clinical trials evaluating
the effects of probiotics on bone health in postmenopausal women. An increasing num-
ber of trials aim to determine whether the gut microbiome can be targeted as a potential
treatment for osteoporosis [17].

The current research is focused on revealing osteomicrobiology in the context of bone
metastases. Osteomicrobiology describes the associations between the bone microenviron-
ment and gut microbiome in health and disease [18]. However, how the gut microbiome
affects bone metastasis development is still unknown [19]. The proposed mechanisms
include processes in which the gut microbiome might promote bone metastases via stim-
ulation of metastatic cancer cells, shaping the immune system, and affecting the bone
microenvironment [20]. In this review, we summarize recent knowledge regarding the role
of the gut microbiome in bone metastasis and assess the potential of microbiota modulation
in bone metastatic spreading. Microbiota modulation by probiotics, prebiotics, and fecal
microbiota transplantation (FMT) can contribute to restoring gut homeostasis, reducing in-
flammatory reactions, and might influence bone remodeling processes, potentially leading
to improved outcomes for cancer patients.

2. Bone Metastasis Formation

Bone represents a common site for the development of metastases from lung, breast, or
prostate tumors, but also kidney and thyroid cancer can metastasize to bone as well [21,22].
The phenomenon of bone metastases points to the importance of the bone microenvi-
ronment during cancer, as these metastases disrupt the balance between bone-forming
osteoblasts and bone-resorbing osteoclasts, resulting in skeletal complications (e.g., bone
pain, fractures, compression of the spinal cord, and disability) that adversely affect patient
morbidity and quality of life [23,24]. During tumor metastasis, cancer cells first undergo
EMT to dissociate from the primary tumors and enter the circulation [22,25]. Subsequently,
these circulating tumor cells (CTCs) can extravasate from blood vessels and migrate to
premetastatic niches (especially vascular and osteoblastic or endosteal niches present in the
bone marrow), where they become disseminated tumor cells (DTCs) [23,26]. In general,
DTCs interact with various cells in the bone microenvironment (e.g., endothelial cells,
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mesenchymal stromal cells, hematopoietic stem cells, and bone cells) [27]. Moreover, DTCs
can either immediately colonize and proliferate or remain dormant before eventually devel-
oping into detectable metastases [28]. Only 0.02% of cancer cells that enter the bloodstream
are thought to produce clinically observable metastases [29]. However, once metastases
appear, they account for 90% of cancer-related deaths [30].

The bone marrow is the preferred metastatic site for DTCs due to its rich sources of
neovascularization factors, growth factors, chemokines, and cytokines [24,25]. Furthermore,
its endothelial and spongy structure and high blood supply pose a challenge for tumor
cells to colonize and grow [31]. Therefore, bones rich in hematopoietically active red bone
marrow and trabecular bone tissue, such as vertebrae, pelvis, ribs, and metaphysis of
long bones, are the most common sites for skeletal metastases [32]. Current investigations
have revealed the close involvement of bone remodeling during the progression of bone
metastasis. Any disturbance in the dynamic balance between bone formation and resorption
leads to diseases such as osteoporosis (excessive bone loss) and osteopetrosis (excessive
bone formation), which create a more favorable bone metastasis environment for various
primary tumor types [25,33]. It is widely recognized that osteoblasts and osteoclasts
contribute to the regulation of DTCs in bone directly through interaction and indirectly
through secreted factors. In general, bone formation has been shown to initiate and
maintain tumor cell dormancy, whereas bone resorption reactivates DTCs. On the other
hand, DTCs may hire osteoclast progenitors and elevate local osteoclast activity, potentially
reactivating them from dormancy. This indicates that the ‘on-and-off dormancy switch’ of
osteoblasts and osteoclasts could be influenced by DTCs [25,34,35]. It has been proven that
inflammatory cytokines, primarily produced by osteoblasts during bone remodeling, play
a dual role in regulating tumor cell dormancy. This may help explain why osteoblasts can
both promote tumor cell growth (through the action of interleukin-1-beta: IL-1β and tumor
necrosis factor-alpha: TNF-α) and induce tumor cell dormancy (by secreting factors such
as leukemia inhibitory factor (LIF), CXC chemokine: CXCL12, and growth-arrest-specific
protein 6 (Gas6)) in the bone marrow [36–40].

The growth of metastatic tumor cells in the bone niche is generally associated with
either elevated production of molecules that disrupt bone homeostasis by stimulating
osteolysis by osteoclasts or osteosclerosis by stimulating osteoblast activity [41]. Increased
bone resorption, which is the result of excessive osteoclast activation, contributes to the
formation of osteolytic bone metastasis. Tumor cells release factors that either directly (e.g.,
IL-8) or indirectly (e.g., parathyroid hormone-related peptide: PTHrP, IL-6) stimulate bone
resorption. The aforementioned factors trigger the release of signaling molecules from the
bone, including receptor activator of nuclear factor kappa beta ligand (RANKL), osteopro-
tegerin (OPG), transforming growth factor-beta (TGF-β), insulin-like growth factors (IGFs),
platelet-derived growth factor (PDGF), and calcium (Ca), which in turn stimulate tumor
proliferation and perpetuate the vicious cycle related to bone metastases. This cycle is
reinforced by the secretion of tumor factors (dickkopf-related protein 1: DKK-1, sclerostin
1: SOST-1, BMP inhibitor noggin, and activin A) inhibiting osteoblast activity, which is
manifested by damaged bone with decreased bone mineral density (BMD) [23,24,28,29].
Sclerotic bone metastases arise as a result of excessive osteoblast activation due to factors
secreted by some tumors, including PDGF, IGF-1, bone morphogenetic proteins (BMPs),
fibroblast growth factors (FGFs), and the activated Wnt pathway. In addition, endothelin-1
(ET-1) and OPG promote osteoblast growth due to inhibition of osteoclast activity. Con-
versely, osteoblasts respond to this stimulation by secreting IGF-1, IL-6, IL-8, FGFs, and
TGF-β, all of which are able to stimulate tumor growth. Both tumor cells and osteoblasts
secrete vascular endothelial growth factor (VEGF) to ensure vascularization. The interplay
between tumor cells and osteoblasts creates a vicious circle supporting sclerotic lesions with
impaired spongiosa [23,28,42,43]. Although the vast majority of bone metastases from solid
tumors contain both osteolytic and osteoblastic components, one or the other phenotype
predominates in specific bone metastatic cancers [41]. Osteolytic metastases occur in breast,
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kidney, and lung cancer as well as multiple myeloma, while prostate cancer is related to
osteoblastic (sclerotic) lesions [28,44].

The modulation of immune responses is crucial in the progression and regulation of
metastatic cancer. In the bone microenvironment, numerous immune cells (e.g., cytotoxic
T cells: Tc cells, natural killer cells: NK cells, macrophages, regulatory T cells: Treg cells,
myeloid-derived suppressor cells: MDSCs, and dendritic cells) contribute to the develop-
ment of skeletal metastases [45]. Among these cells, Treg cells are particularly significant
in the immune response to bone metastases, as they infiltrate tumor tissues and promote
an immunosuppressive condition [46]. Targeting Tregs in cancer therapy is promising, as
inhibition of Tregs may elevate response to radiotherapy and improve control of disease
progression [23].

Primary tumor development followed by anti-cancer treatment can induce microbial
dysbiosis by reducing intestinal colonization resistance and increasing the abundance
of pathogenic microorganisms. As a result, an imbalanced gut microbiome might trig-
ger a pro-inflammatory cascade and affect immune cells’ trafficking to the bone, where
they prepare the microenvironment for the development of secondary bone metastasis.
However, a deeper understanding of complex processes involved in bone metastasis devel-
opment, where aggressive cancer cells leave primary tumors and migrate to distant bones,
and the role of osteomicrobiology in this metastatic cascade remains essential for further
investigation and precise characterization.

3. Microbiome and Cancer Progression

Maintaining intestinal homeostasis and mucosal barrier integrity represent the critical
roles of the gut microbiome. Additionally, the impact of intestinal bacteria on the host
immune system has been the subject of intense research [47]. Increasingly, studies doc-
umented associations between the gut microbiome, host organism, signaling pathways,
and immune cells in cancer [7,48]. The improved concept “The Hallmarks of Cancer”
summarized several characteristics that participate in tumor initiation and progression
across the spectrum of different cancer types. As documented, polymorphic variability
of oral, skin, lung, gut, tumor, and vaginal microbiomes might contribute to tumor initia-
tion and progression via metastatic cascade promotion or affect the efficacy of anti-cancer
therapies [49,50]. Battaglia et al. analyzed the presence of microbes in 4160 metastatic
tumor samples using metagenomics and transcriptomics. The results showed that bacterial
communities differed among anatomical sites, depended on primary tumor location, and
correlated with therapeutic response [51].

A dysregulated microbiome affects the production of microbial metabolites and toxins,
which might support EMT, angiogenesis, and tumor progression [7]. Lithocholic acid
(LCA), a bacterial metabolite, can damage the intestinal barrier via produced reactive
oxygen species, resulting in resistance to apoptosis and increased cell proliferation [52]. This
metabolite might act as a tumor promoter implicated in colorectal cancer (CRC) metastases
since LCA increased IL-8 expression by Erk1/2 activation and STAT3 suppression in CRC
cells. IL-8 is considered a critical player in angiogenesis, and its blockade might inhibit
tumor progression and angiogenesis [53]. Pathogenic microbe Fusobacterium nucleatum is
implicated in CRC via the production of virulence factors involved in invasion, EMT, and
disease progression [54]. Higher levels of Fusobaterium nucleatum in CRC tissue samples
correlated with higher expression of disease progression markers, including E-cadherin,
N-cadherin, and Nanog [55]. Similarly, the abundance of this pathogen was documented in
stool and tumor samples from advanced-stage patients. Fusobacterium nucleatum promoted
tumor-derived CCL20 expression in CRC tumors. In an animal model, the knockdown
of CCL20 decreased Fusobacterium-induced CRC lung metastatic formation [56]. Also,
Bacteroides fragilis toxin supports a loss of cell adhesion, leading to EMT [57]. Roje et al.
revealed the underlying mechanisms by which gut microbiota facilitates the development
of chemically-induced tumors and accelerates cancer progression in distant organs through
microbiota-related metabolism of environmental carcinogens [58].



Int. J. Mol. Sci. 2024, 25, 12086 5 of 27

On the other hand, microbiota-derived metabolites such as short-chain fatty acids
(SCFAs), including acetate, propionate, and butyrate, have anti-cancer properties [48]
and might inhibit cancer stem cell proliferation, delay tumor development, and promote
the expression of silenced tumor suppressor genes [59]. Butyrate decreased cell viability,
migration, and invasion in breast cancer cell lines [60]. However, tumor microbiome-
derived butyrate supported lung cancer metastases by inhibiting HDAC2 and increasing
H3K27 acetylation at the H19 promoter, triggering M2 macrophage polarization. Depleted
macrophages attenuated butyrate-induced metastasis formation [61]. Besides its anti-
inflammatory effect [62], propionate promoted cell cycle arrest and apoptosis in lung cancer
cell lines [63]. Moreover, sodium propionate treatment reduced glioblastoma cell migration
and viability [64]. Changes in propionate metabolism supported metastatic and aggressive
properties of breast and lung cancer cells [65]. Propionibacterium-related production of
propionate and acetate had a protective effect via suppressed colon cancer cell proliferation
and induced cancer cell death [66]. Furthermore, higher levels of SCFAs are positively
correlated with response to immunotherapy in patients with metastatic or advanced solid
tumors [67].

Probiotic bacteria can mitigate cancer progression via decreased inflammatory pro-
cesses and elevated cancer cell apoptosis. Specific probiotic species can modulate the ex-
pression of oncogenes and tumor suppressor genes, impacting angiogenesis and metastatic
formation [68]. The anti-cancer properties are also attributed to microbial structural compo-
nents and bacterial metabolites [69]. A probiotic mixture containing Lactobacillus rhamnosus
GG, viable Escherichia coli Nissle 1917, and heat-inactivated VSL#3 decreased liver tumor
growth and downregulated proangiogenic genes. Probiotics also changed gut microbiome
composition towards elevated levels of Prevotella and Oscillibacter, leading to the produc-
tion of anti-inflammatory metabolites [70]. In a murine model, a capsaicin-rich diet had
pro-metastatic potential by increasing pro-inflammatory cytokines, including IL-12, IL-6,
TNF-α, and INF-γ. A higher dose of capsaicin might promote CRC cell metastasis to the
liver by creating a metastatic niche. According to the findings, capsaicin diet dysregulated
levels of mucin-related Akkermansia and Muribaculaceae, as well as other microorganisms
involved in bile acid metabolism [71]. As recently shown, high-fat diet (HFD)-associated
gut microbiota accelerates cancer progression by stimulating the production of polymor-
phonuclear myeloid-derived suppressor cells (PMN-MDSCs) through the activation of
the mTORC1 signaling pathway in myeloid progenitor cells. Additionally, an increased
prevalence of Desulfovibrio in the fecal microbiome of overweight breast cancer patients has
been positively linked to cancer progression, along with elevated levels of fecal leucine and
PMN-MDSCs [72].

The connection between osteomicrobiology and cancer progression is still in the early
stages of research. However, findings indicate that a disrupted gut microbiome has a
significant impact not only on primary tumors but also on spreading cancer cells to the
liver, lung, brain, or bone due to favorable interaction with these distant organs. In the
context of advanced cancer stage and bone metastasis, it is necessary to describe the
complex underlying mechanisms by which microorganisms, microbial toxins, and altered
immune system responses participate in the development of secondary bone cancer.

4. The Relationship Between Microbiome and Bone Homeostasis in Cancer

The gut microbiome can influence the bone microenvironment, and intestinal dysbiosis
has been identified in individuals with several bone-related diseases, including osteoporo-
sis, rheumatoid arthritis, osteoarthritis, bone cancer, or diabetes mellitus [73–75]. According
to recent findings, the microbiome plays a critical role in regulating bone homeostasis via
the gut-immune-bone axis, gut-brain axis, endocrine function, and host metabolism [75,76].
Microbiota-derived metabolites, such as SCFAs, can modulate immune responses and bone
homeostasis [77]. Dysbiotic changes in gut microbiome composition result in altered levels
of microbial metabolites, potentially promoting or inhibiting the cancer cell spreading and
colonization within the bones (Figure 1).
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Figure 1. Proposed mechanisms linking dysbiotic gut and tumor microbiomes to bone metastasis. 
Anti-cancer therapies and pre-treatment with broad-spectrum antibiotics negatively affect the rigid-
ity of the intestinal barrier, and changes in gut microbiome composition lead to a dysbalance be-
tween favorable bacteria and pathogens. Elevated gut permeability causes LPS translocation into 
circulation, which might promote cancer cell mobility. LPS or other bacterial metabolites interact 
with osteoclasts and osteoblasts, disrupting the balance between bone modeling and remodeling 
with accelerated metastasis building. The balance between osteoclast and osteoblast activity in bone 
is necessary for normal bone development. LPS support osteoclast function and activity in bone 
destruction via upregulated NFATc1 and TNF-α. Inappropriate osteoclast activity through bone 
degradation might prepare a favorable microenvironment (premetastatic niche) for early metastatic 
tumor cell colonization. Moreover, excessive osteoclast activity affects many pathophysiological 
processes in bones, leading to bone loss, fragility, fractures, and cancer-induced bone pain. An al-
tered microbiome is associated with decreased production of favorable SCFAs, which play a role in 
osteoblastogenesis and bone health. Communication between the microbiome and bone metastases 
may occur through immune-mediated pathways. Considering the essential role of microbiome in 
immune system development, broad-spectrum antibiotics can affect the migration of NK and Th1 
cells from the gut to the bone marrow. Reduced populations of Th1 and NK cells might support 
tumor growth within the bones. Typically, NK cells are developed in the bone marrow before mi-
grating via the bloodstream to secondary lymphoid tissues, such as Peyer’s patches. Favorable mi-
crobiota interacts with NK cells, enhancing their activation and promoting cytolytic activity through 
the expression of granzyme B. Additionally, tumor-associated microbiota contributes to metastatic 
processes, including immune system modulation, EMT-related pathways, and matrix metallopro-
teinase regulation. Microorganisms residing in the TME can help cancer cells resist fluid shear stress 
by altering the actin cytoskeleton, which supports their survival in circulation and facilitates migra-
tion. Notably, a dysbiotic microbiome can modify the bone microenvironment, making it more con-
ducive to cancer cell colonization. This allows tumor cells to adapt to the biochemical factors present 
in the premetastatic niche and subsequently initiate a metastatic cascade [18,19,78]. Abbreviations: 
EMT, epithelial-to-mesenchymal transition; LPS, lipopolysaccharides; NFATc1, nuclear factor of ac-
tivated T cells, cytoplasmic 1; NK cells, natural killer cells; SCFAs, short-chain fatty acids; Th1 cells, 
type 1 T helper cell; TNF-α, tumor necrosis factor-alpha; TME, tumor microenvironment 

4.1. The Role of the Microbiome in Bone Development 
Maintaining bone health is essential for supporting the body’s construction, protect-

ing vital organs, and serving as a reservoir for critical minerals. Ca and vitamin D are key 
players in structural bone integrity. A deficiency of vitamin D weakens bones, contrib-
uting to fracture development [79]. Furthermore, the interplay between the immune sys-
tem and bone metabolism is crucial for optimal skeletal development. Since the gut mi-
crobiome positively affects immune cell maturation, the favorable composition of micro-
bial communities contributes to skeletal health [80,81]. Moreover, microbiota-derived 
SCFAs increase Ca accessibility and Ca resorption and support bone mineralization and 
growth [82,83]. SCFAs are involved not only in energy metabolism but also affect osteo-
clast and osteoblast activity [79]. Mounting evidence from in vivo studies with ovariecto-
mized mice documented a strong link between gut microbiome composition and bone 
metabolism, including BMD [84,85]. Despite some contraindicatory results, evidence 
highlights that gut microbiome composition is a BMD regulator via the immune system 
[86]. The altered gut microbiome is associated with the changes in bone mass and 

Figure 1. Proposed mechanisms linking dysbiotic gut and tumor microbiomes to bone metastasis.
Anti-cancer therapies and pre-treatment with broad-spectrum antibiotics negatively affect the rigidity
of the intestinal barrier, and changes in gut microbiome composition lead to a dysbalance between
favorable bacteria and pathogens. Elevated gut permeability causes LPS translocation into circulation,
which might promote cancer cell mobility. LPS or other bacterial metabolites interact with osteoclasts
and osteoblasts, disrupting the balance between bone modeling and remodeling with accelerated
metastasis building. The balance between osteoclast and osteoblast activity in bone is necessary
for normal bone development. LPS support osteoclast function and activity in bone destruction
via upregulated NFATc1 and TNF-α. Inappropriate osteoclast activity through bone degradation
might prepare a favorable microenvironment (premetastatic niche) for early metastatic tumor cell
colonization. Moreover, excessive osteoclast activity affects many pathophysiological processes in
bones, leading to bone loss, fragility, fractures, and cancer-induced bone pain. An altered microbiome
is associated with decreased production of favorable SCFAs, which play a role in osteoblastogenesis
and bone health. Communication between the microbiome and bone metastases may occur through
immune-mediated pathways. Considering the essential role of microbiome in immune system devel-
opment, broad-spectrum antibiotics can affect the migration of NK and Th1 cells from the gut to the
bone marrow. Reduced populations of Th1 and NK cells might support tumor growth within the
bones. Typically, NK cells are developed in the bone marrow before migrating via the bloodstream to
secondary lymphoid tissues, such as Peyer’s patches. Favorable microbiota interacts with NK cells,
enhancing their activation and promoting cytolytic activity through the expression of granzyme B.
Additionally, tumor-associated microbiota contributes to metastatic processes, including immune sys-
tem modulation, EMT-related pathways, and matrix metalloproteinase regulation. Microorganisms
residing in the TME can help cancer cells resist fluid shear stress by altering the actin cytoskeleton,
which supports their survival in circulation and facilitates migration. Notably, a dysbiotic micro-
biome can modify the bone microenvironment, making it more conducive to cancer cell colonization.
This allows tumor cells to adapt to the biochemical factors present in the premetastatic niche and
subsequently initiate a metastatic cascade [18,19,78]. Abbreviations: EMT, epithelial-to-mesenchymal
transition; LPS, lipopolysaccharides; NFATc1, nuclear factor of activated T cells, cytoplasmic 1; NK
cells, natural killer cells; SCFAs, short-chain fatty acids; Th1 cells, type 1 T helper cell; TNF-α, tumor
necrosis factor-alpha; TME, tumor microenvironment.

4.1. The Role of the Microbiome in Bone Development

Maintaining bone health is essential for supporting the body’s construction, protect-
ing vital organs, and serving as a reservoir for critical minerals. Ca and vitamin D are
key players in structural bone integrity. A deficiency of vitamin D weakens bones, con-
tributing to fracture development [79]. Furthermore, the interplay between the immune
system and bone metabolism is crucial for optimal skeletal development. Since the gut
microbiome positively affects immune cell maturation, the favorable composition of mi-
crobial communities contributes to skeletal health [80,81]. Moreover, microbiota-derived
SCFAs increase Ca accessibility and Ca resorption and support bone mineralization and
growth [82,83]. SCFAs are involved not only in energy metabolism but also affect osteoclast
and osteoblast activity [79]. Mounting evidence from in vivo studies with ovariectomized
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mice documented a strong link between gut microbiome composition and bone metabolism,
including BMD [84,85]. Despite some contraindicatory results, evidence highlights that gut
microbiome composition is a BMD regulator via the immune system [86]. The altered gut
microbiome is associated with the changes in bone mass and structure. In antibiotic-treated
mice, femur bending strength was reduced, and treatment with ampicillin and neomycin
led to the absence of B and T cells. The findings indicated that antibiotics altered the gut
microbiome, resulting in depletions of members belonging to Bacteroidetes and enrichment
of the Proteobacteria phylum [87]. Sjogren et al. showed that the frequency of CD4+ T
cells and osteoclast precursor cells was reduced, together with decreased osteoclasts per
bone surface in germ-free (GF) mice compared to conventionally raised mice. In addition,
reduced expression levels of TNF-α and IL-1 and elevated IL-6 levels were detected in GF
mice. The colonization of GF mice with normal microbiota led to increased bone mass.
These findings indicated that the bone mass was affected by the impact of the gut micro-
biome composition on the immune system [88]. The colonization of sexually mature GF
mice with microbiota obtained from conventionally specific pathogen-free mice elevated
bone formation, but the results might depend on the duration of colonization. Moreover,
data showed that broad-spectrum antibiotics or vancomycin inhibited bone formation,
decreased serum levels of IGF-1, and changed gut microbiome in conventionally raised
mice. IGF-1 is known for its role in skeletal growth. Antibiotics have been shown to
decrease fecal levels of acetate and butyrate, but supplementation with SCFAs restored
circulating IGF-1 levels [89]. Sex hormones play an important role in bone homeostasis, but
their decreased level might affect the gut microbiome and contribute to bone loss [90,91].
GF mice were protected from trabecular bone loss induced by sex steroid deprivation. How-
ever, their recolonization restored the ability of sex steroid deficiency to induce bone loss.
These results demonstrated that the microbiota is key in affecting cortical and trabecular
bone volume in sex steroid deficiency [92]. Schwarzer et al. observed that bone growth
parameters (cortical thickness, cortical and trabecular bone fractions, and femoral length)
were reduced in GF mice but BMD did not change. Moreover, GF mice were 4% shorter in
body length than wild-type mice and also had lower body weights [93].

Recent studies demonstrated a beneficial effect of favorable probiotic bacteria on
bone development and metabolism (Figure 2). The supplementation with Lactobacillus
rhamnosus GG increased bone mass, leading to elevated levels of Treg cells in eugonadic
mice. Probiotic supplementation enhanced transcription of the gene encoding the enzyme
butyryl-CoA:acetate CoA-transferase [94], which is responsible for butyrate production
by intestinal lactate-utilizing bacteria [95,96]. An earlier study observed that Lactobacillus
rhamnosus GG usage prevented sex steroid deficiency-induced bone resorption and bone
loss in rodents [92]. Research data therefore suggests that the microbiota can influence bone
metabolism, BMD, and bone mechanical properties.
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Figure 2. The impact of the gut microbiome on bone development. Gut microbiome composition
regulates bone metabolism through the immune cascade along the microbiome-gut-bone axis. Studies
focusing on the microbiome-bone crosstalk have shown that disruptions in the microbiome and
the production of pro-inflammatory factors might promote bone resorption and lead to bone loss.
However, microbiota modulation through lifestyle and dietary interventions, as well as probiotic
supplementation, appears to support enhanced bone formation and increased bone mass. A healthy
microbiome supports the processes of bone modeling and remodeling, maintaining the balance
between bone resorption and formation. The production of microbiota-derived metabolites, such as
SCFAs, prevents bone loss. Mounting evidence highlights the critical role of the gut microbiome in
shaping the host’s immune system. An imbalance between Treg and Th17 immune cells has opposing
effects on bone remodeling. Higher levels of Treg cells contribute to osteoblast differentiation and
bone mass increase, whereas an increased amount of Th17 cells is associated with bone resorption
and loss. Activation of key factors involved in osteoblastogenesis, including Wnt, BMP, and IGF-1,
stimulates bone formation. Conversely, osteoclastogenesis is supported by essential factors such as
RANKL and M-CSF [97–99]. Abbreviations: BMP, bone morphogenetic protein; IGF-1, insulin-like
growth factor 1; IL, interleukin; LPS, lipopolysaccharides; M-CSF, macrophage colony-stimulating
factor; RANKL, receptor activator of nuclear factor kappa beta ligand; SCFAs, short-chain fatty
acids; TGF-β, transforming growth factor-beta; Th17 cells, T helper 17 cells; TNF-α, tumor necrosis
factor-alpha; Treg cells, regulatory T cells.
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4.2. Targeting the Microbiome in Bone Metastases and Treatment

Bone metastases remain an incurable condition, leading to significant health issues,
including pain and fractures, adversely impacting patients’ quality of life. Consequently,
palliative treatment is employed to alleviate pain and prevent bone metastasis-related
complications [100,101]. Improved characterization of the metastatic environment in bones
can help to develop novel therapeutic strategies. Immunotherapy might be considered as
one of the few remaining options since bone serves as a secondary immune organ where
bone marrow cells interact with immune cells [102–104]. However, cancer cells within the
microenvironment create an immunosuppressive niche, contributing to decreased anti-
cancer treatment response [105]. In contrast to primary tumors, bone metastases have
lower immunogenicity, which causes decreased response to immunotherapy. Only limited
data documented the effect of immunotherapies on bone metastases [102]. Patients with
non-small cell lung cancer (NSCLC) and bone metastases did not respond to combined PD-1
blockade and anti-angiogenic therapy [106]. Overall survival was prolonged in patients
with advanced renal cell carcinoma and bone metastases treated by nivolumab compared
to patients treated by everolimus [107]. In a bone metastatic murine model, nivolumab
injection protected against bone destruction by inhibiting TRAP+ osteoclast differentiation
in the tumor-bearing femur [108]. Remarkably, Moseley et al. first reported skeletal adverse
effects such as osteoporotic fractures and focal bone resorptive lesions related to PD-1,
CTLA-4, or both therapies [109].

Recently, increasing data has shown a connection between the gut microbiome and
therapy efficacy with a potential effect on bone health. The imbalanced microbiota, domi-
nated by pathogenic species, could lead to reprogramming the bone microenvironment
and creating a metastatic niche [110]. The gut microbiome can influence the process of bone
remodeling through immune modulation, affecting the activity of both osteoclasts and
osteoblasts and potentially fostering a microenvironment that allows tumor cells to thrive
in bone tissue. The gut microbiome regulates the processes of activation, differentiation,
and migration of T cells [111]. In addition, intestinal microorganisms influence NK cells,
which have a critical role in anti-tumor immunity [112].

Broad-spectrum antibiotic administration (ampicillin, vancomycin, neomycin sulfate,
and metronidazole) facilitated intra-bone tumor growth and osteolysis in the melanoma
murine model [19]. Microbiota deficiency negatively affected the expansion of NK and Th1
cells in the bone marrow and Peyer’s patches, leading to enhanced tumor progression and
bone loss via the gut-immune-bone axis [19]. A recent study by Dutta et al. demonstrated
that antibiotic usage (vancomycin, neomycin, metronidazole, amphotericin, and ampicillin)
damaged intestinal homeostasis, increased tumor growth, and promoted tumor cell dis-
semination in mice with triple-negative mammary cancer. The results showed a lower
amount of Lactobacillus, Oscillospira, Ruminococcus, Bifidobacterium, and Anaeroplasma in the
experimental model compared to controls. Antibiotic exposure resulted in elevated levels of
gram-negative bacteria, while gram-positive taxa were diminished. Metagenome analysis
revealed that the pathways associated with carbohydrate metabolism, energy metabolism,
signal transduction, and metabolism of cofactors or vitamins positively correlated with a
group of antibiotic-treated bone metastatic breast cancer mice. IL-4, an anti-inflammatory
cytokine, showed decreased expression in the antibiotic-treated group. Moreover, the ex-
pression of inflammatory markers, including granulocyte-colony-stimulating factor (G-CSF)
and matrix metalloproteinase-9 (MMP-9), was higher in serum samples from antibiotic-
treated and untreated bone metastatic breast cancer mice compared to control mice. The
study of bone marrow samples confirmed that macrophages, B cells, Tc, and helper T cells
(Th cells) decreased in tumor-bearing and antibiotic-treated animals, which indicated that
the immunosuppressive environment of bone marrow might be associated with successful
bone metastasis development [110].

Uzelac et al. performed RNA sequencing of bone and tissue biopsies obtained from
patients with metastatic castration-resistant prostate cancer. The results identified 31 differ-
ently presented bacterial species in bone metastases, 65 species in the liver, and 70 species
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in the lymph node samples. Bacterial species, including Escherichia coli, Acinetobacter spp.,
and Mycobacterium leprae, were presented in all cohorts [113]. Fernandes et al. confirmed
that radiotherapy negatively impacts the presence of favorable gut bacteria. In castration-
resistant prostate cancer patients with two or more bone metastases, the therapy based on
radium-223 (Ra-223) led to gut microbiome changes, and the results showed that levels
of Clostridium coccoides, Clostridium leptum, and Bacteroides fragilis were decreased in fecal
samples after treatment [114]. In Longhua Hospital (China), Wenshen Zhuanggu Formula
is used as complementary herbal medicine for the treatment of breast cancer bone metas-
tases. The authors wanted to access the activity of 6 coumarins (psoralen, isopsoralen,
bergapten, xanthotoxin, osthole, and imperatorin) in normal mice and a xenograft model
of breast cancer bone metastases due to potentially affecting the pharmacokinetic prop-
erties of orally given formula in pathological conditions. Metastatic tumors negatively
affected the pharmacokinetics and absorption of coumarins after oral administration. As
concluded, gut microbiota composition might be responsible for decreased biotransforma-
tion of coumarin glycosides in breast cancer bone-metastatic mice. Therefore, coumarins
might have reduced absorption in the bloodstream after oral administration of Wenshen
Zhuanggu Formula [115].

A retrospective study on a large cohort of breast cancer patients showed acceler-
ated bone metastasis progression in patients with untreated osteoporosis [116]. Wenhui
et al. first assessed the composition of the gut microbiome in patients with breast can-
cer with/without bone metastases vs. normal controls. Their results confirmed a lower
amount of Megamonas, Clostridia, Akkermansia, Gemmiger, and Paraprevotella while bacteria
including Lactobacillales, Bacilli, Veillonella, Streptococcus, Campylobacter, Epsilonproteobacteria,
Acinetobacter, Pseudomonadales, Moraxellaceae, and Collinsella had a higher prevalence in
the presence of bone metastases. Moreover, the authors predicted the increased metabolic
activity in the gut microbiome of breast cancer patients with bone metastasis in contrast
to individuals without metastases. The detailed results revealed higher activity of bio-
logical processes, including secondary metabolite biosynthesis, transport and catabolism,
steroid hormone biosynthesis, nitrogen metabolism, taurine/hypotaurine metabolism,
and sulfur metabolism. Another comparison between patients with metastases and nor-
mal controls showed that pathways involved in lipid/nitrogen/folate/ascorbate/steroid
hormone biosynthesis and bile acid metabolism and synthesis were upregulated in can-
cer patients [117]. The luminal A or B subtype of breast cancer is associated with the
development of bone metastases [118].

Although the link between breast microbes and bone metastases remains poorly un-
derstood, Naik et al. provided an excellent review of the role of breast and gut microbiomes
in the development of bone metastases. Microbiomes might affect EMT, metabolism of
steroid hormones, immunity, bone remodeling, and secretion of metabolites that change
TME and contribute to potential metastases from breast tumors [78].

4.3. The Impact of Microbiota Modulation on Bone Health

Combining immunotherapy with immune checkpoint inhibitors and strategies for
microbiota modulation could improve cancer treatment efficacy [119–122]. Gut microbiome
composition influences degenerative bone-related diseases characterized by reduced bone
mass and damaged bone microarchitecture [99,123]. Recent studies propose the potential
of a microbiome-based approach for maintaining bone health and potentially managing
bone metastasis formation.

Various diets and nutritional strategies successfully preserve bone health [97], and
numerous ongoing clinical trials aim to comprehensively evaluate the associations between
microbiome composition and bone parameters (Table 1).
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Table 1. The list of ongoing clinical trials characterizing gut microbiome composition, bone health, or bone/body parameters under several conditions or health-related
issues. Moreover, several trials evaluated the effect of different interventions on skeletal health and microbial diversity (according to https://ClinicalTrials.gov/, accessed
on 22 October 2024).

ClinicalTrials.gov ID Study Type Conditions/
Health-Related Issues Purpose Subjects

(n) Intervention/Treatment Study Status

NCT05348694

An interventional
randomized

placebo-controlled
double-blinded study
parallel assignment

Postmenopausal
osteopenia/
bone loss/

age-related sarcopenia/
glucose metabolism

disorders/
age-related

cognitive decline

To study the impact of
probiotics on BMD and
assess the shifts in gut

microbiome composition
and changes in serum

levels of bone turnover
markers, focusing on Treg

cells in blood samples

160 participants

Women will be supplemented
with placebo or probiotic

capsules containing
Clostridium butyricum,
Clostridium beijerinckii,

Anaerobutyricum hallii, and
Bifidobacterium infantis, plus

chicory inulin and magnesium
stearate (2 per day).

Active, not recruiting

NCT06265246

An interventional
randomized

non-label study
parallel assignment

Osteoporosis/
obesity

To examine the effect of
milk and fermented milk

products on the gut
microbiome, BMD,

femoral neck BMD, serum
levels of osteocalcin,

procollagen, N-terminal
telopeptide of type 1

collagen, serum
C-terminal telopeptide of
type 1 collagen, and IGF-1

99 participants

Participants will be divided
into groups supplemented
with habitual diet/habitual

diet + 1.5 servings of
milk/habitual diet + 2

servings of yogurt.

Recruiting

NCT06050018

An interventional
randomized

open-label study
crossover assignment

Menopause

To analyze how milk
influences gut microbiome

diversity,
pro-inflammatory

cytokines, and bone
remodeling through serum
C-telopeptide, osteocalcin,
and parathyroid hormone

measurements.

15 participants

The diet will include milk and
dairy products for 4 weeks, or
an alternative protein source

without any milk or dairy
products for 4 weeks.

Not yet recruiting

https://ClinicalTrials.gov/
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Table 1. Cont.

ClinicalTrials.gov ID Study Type Conditions/
Health-Related Issues Purpose Subjects

(n) Intervention/Treatment Study Status

NCT05548517

An interventional
randomized

open-label study
parallel assignment

Weight loss/
time-restricted feeding/

bone loss

To monitor weight loss,
BMD, bone volume, blood

pressure, and
microbiome composition

48 participants

Analyzed subjects will adhere
to time-restricted eating and

daily calorie restriction or
daily calorie restriction alone.

Active, not recruiting

NCT05213780 An observational
prospective study Child development

To evaluate the
relationship between

maternal soy intake, the
infant gut microbiome,

and a child’s bone
development while

examining BMD, dynamic
bone formation

parameters, and the
mRNA expression of

bone markers.

240 participants No intervention is involved. Recruiting

NCT05160675 An observational
prospective study Healthy state

To determine gut
microbiome composition,
its function, bone health,
and bone development

from birth to 3 years and
analyze dietary intakes,

health outcomes, urinary
markers of bone

metabolism, and breast
milk composition

2760 participants No intervention is involved. Active, not recruiting

NCT06519877
An interventional
randomized study

crossover assignment
Aging

To investigate the impact
of soluble corn fiber on the
gut microbiome, intestinal

Ca absorption, and
biochemical markers of

bone turnover

30 participants
The intervention will include
soluble corn fiber or placebo
(maltodextrin) for 4 weeks.

Not yet recruiting
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Table 1. Cont.

ClinicalTrials.gov ID Study Type Conditions/
Health-Related Issues Purpose Subjects

(n) Intervention/Treatment Study Status

NCT06324084
An observational

cross-sectional
case-control study

Osteoporosis/
bone fracture/
cortisol excess

To evaluate the prevalence
of hidden hypercortisolism
in osteoporotic/osteopenic

patients and investigate
serum markers related to

bone health, such as
osteocalcin, bone alkaline

phosphatase, and the
amino-terminal

propeptide of type 1
procollagen, along with

potential new serum
biomarkers. Moreover, the
study aims to analyze the

composition of the gut
microbiome.

1500 participants No intervention is involved. Recruiting

NCT06389539
An interventional
randomized study

parallel assignment

Osteoporosis/
inflammation/

aging

To measure BMD of the
lumbar spine, integral and
vertebral trabecular BMD,
and biochemical marker of
bone resorption/formation

and analyze gut
microbiome function

220 participants

Subjects will be daily
supplemented with SBD111
medical food (oligofructose,

dried berry powder,
Pseudomonas fluorescens,

Lactobacillus brevis, Leuconostoc
mesenteroides, Lactobacillus

plantarum, and Pichia
kudriavzevii) or placebo

capsules over 18 months.

Not yet recruiting

NCT06133530
An interventional
randomized study

parallel assignment
Healthy state

To characterize bone
formation/resorption

markers, fecal calprotectin,
inflammation markers in
blood, fecal SCFAs, and

gut microbiome

26 participants

Prebiotic human milk
oligosaccharide or placebo

(maltose) will be
applied orally.

Enrolling by
invitation
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Table 1. Cont.

ClinicalTrials.gov ID Study Type Conditions/
Health-Related Issues Purpose Subjects

(n) Intervention/Treatment Study Status

NCT04730622 An observational
prospective study

Osteoporotic fracture
of femur/

Osteoarthritis

To study IGF-1 serum
level, serum markers of
bone metabolism, and

inflammatory markers and
characterize gut

microbial diversity

100 participants
Patients who are candidates
for hip replacement surgery

will be enrolled.
Recruiting

NCT05623098 An observational
prospective study Sepsis

To investigate whether
nutrients containing

dietary fiber affect bone
metabolic markers, gut

microbiome, SCFAs, and
IL-6, TNF-α, and

procalcitonin levels

2 participants Subjects will receive dietary
fiber enteral nutrition. Active, not recruiting

NCT02822378

An interventional
randomized

open-label study
parallel assignment

Postmenopausal
osteoporosis

To determine BMD of the
lumbar spine, total hip,
and femoral neck and

evaluate gut microbiome
changes and serum

concentrations of bone
signaling markers (i.e.,

IGF-1, RANKL,
osteoprotegerin, and

sclerostin) before and after
the intervention

322 participants

All subjects will be
randomized into 50 g or 100 g

dried plum group
supplementation together
with Ca and vitamin D for

52 weeks.

Active, not recruiting
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Table 1. Cont.

ClinicalTrials.gov ID Study Type Conditions/
Health-Related Issues Purpose Subjects

(n) Intervention/Treatment Study Status

NCT03455868 An observational
prospective study

Morbid Obesity/
diabetes mellitus type 2

To evaluate the impact of
the bariatric procedure on
BMD at the lumbar spine,
hip, tibia, and radius and
assess changes in serum
bone formation markers,

hormones involved in
bone metabolism, and gut
microbiome composition
before and after surgery

105 participants
20 controls

Patients with type 2 diabetes
and obesity will undergo
bariatric surgery (sleeve

gastrectomy, Roux-in-Y gastric
bypass, or biliopancreatic

diversion with
duodenal switch).

Recruiting

NCT06323538 An observational
multi-center study

Cardiovascular
diseases/diabetes

mellitus type 2

To determine the health
benefits/risks of diets,

measure body
composition, bone health
via hormones involved in

bone metabolism,
cardiovascular risk factors,

and diabetes risk, and
analyze gut microbiome

6000 participants

Intervention will consist of
vegan diet/vegetarian

diet/pescetarian
diet/mixed diet.

Not yet recruiting

NCT05802121
An interventional
randomized study

parallel assignment

Metastatic,
castration-sensitive

prostate cancer/
metabolic syndrome/

obesity/
cardiovascular

morbidity

To evaluate whether oral
acetate can improve the
amount of Akkermansia

muciniphila in the
microbiome, metabolic
parameters, and bone

health via vitamin
K2 levels

30 participants

Participants will take 6 enteric
slow-release acetate capsules

vs. 6 placebo capsules per day
for 3 months.

Not yet recruiting
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Table 1. Cont.

ClinicalTrials.gov ID Study Type Conditions/
Health-Related Issues Purpose Subjects

(n) Intervention/Treatment Study Status

NCT02916862
An interventional
randomized study

parallel assignment
Osteoporosis

To analyze body fat, BMD,
vitamin D status, serum
levels of Ca, phosphate,
alkaline phosphatase,

osteocalcin, IGF-1, and
creatinine, and

characterize gut
microbiome with a

diversity of bacterial
communities

240 participants

Subjects will consume soluble
corn fiber/soluble corn fiber +

Ca/placebo/placebo + Ca
twice a day for 1 year.

Recruiting

NCT05332626

An interventional
randomized,

double-blinded
placebo-controlled study

parallel assignment

Postmenopausal
osteoporosis

To measure the
concentration of Ca, BMD,

body parameters,
biomarkers of bone

turnover, and determine
gene polymorphism

60 participants

The intervention will contain
probiotic Lactobacillus
acidophilus UALa-01 or
placebo, which will be
administered daily for

12 weeks.

Active, not recruiting

NCT03518268
An interventional
randomized study

parallel assignment

Breast cancer/
osteoporosis/

osteopenia

To assess changes in bone
formation markers, IL-17,

and TNF-α
40 participants

Probiotic intervention
Vivomixx with 8 bacterial

strains: Lactobacillus,
Bifidobacterium, and

Streptococcus vs. placebo will
be administered for 6 months.

Unknown status

NCT06375668
An interventional
randomized study

parallel assignment

Postmenopausal
osteoporosis,

To identify the effect of the
intervention on BMD,

levels of Ca, phosphorus,
alkaline phosphatase, and
vitamin D and determine

types of stool and the
number of bowel

movements or
adverse events

170 participants

A probiotic supplement will
contain Lactobacillus plantarum

and Lactobacillus paracasei
while placebo capsules

contain maltodextrin. All
participants will receive 1
capsule per day for 1 year.

Active, not recruiting
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Table 1. Cont.

ClinicalTrials.gov ID Study Type Conditions/
Health-Related Issues Purpose Subjects

(n) Intervention/Treatment Study Status

NCT05350579

An interventional
randomized

open-label study
parallel assignment

Osteoporosis/
inflammation

To reveal changes in serum
markers of bone formation
and resorption, as well as
inflammatory cytokines,
while also analyzing gut
microbiome composition

and SCFAs in
fecal samples

33 participants

Participants will receive
yogurt intervention containing

2 probiotic strains of
Streptococcus thermophilus and

Lactobacillus bulgaricus.

Terminated

Abbreviations: BMD, bone mineral density; Ca, calcium; IGF-1, insulin-like growth factor 1; IL-6/IL-17, interleukin-6/interleukin-17; mRNA, messenger ribonucleic acid; RANKL,
receptor activator of nuclear factor kappa beta ligand; SCFAs, short-chain fatty acids; TNF-α, tumor necrosis factor-alpha.
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An orally administered diet enriched with polyamine-rich Saccharomyces cerevisiae
S631 prevented osteoclastic activation in the ovariectomized murine model [124]. Also,
there is a connection between iron metabolism and bone health. Excess iron might be
responsible for bone loss [125]. Therefore, patients with sickle cell disease, thalassemia, and
hereditary hemochromatosis had a higher prevalence of fractures and osteoporosis [126].
The exposure to high fat and high sugar within a Western-style diet led to polarized bone
marrow-derived macrophages toward their inflammatory state and subsequently induced
gut dysbiosis [127]. The extent to which modulating the macrophage response through the
restoration of the gut microbiome may protect against the development of a premetastatic
microenvironment and subsequent metastatic formation has not been thoroughly inves-
tigated yet [128]. The Mediterranean diet (MD), considered one of the healthiest diets,
is associated with changes in the gut microbiome with an increase in Bifidobacterium an-
imalis in the Spanish population [129]. Takimoto et al. observed that a higher level of
favorable Bifidobacterium improved BMD via decreased bone resorption, as reflected by a
reduced level of the bone resorption marker tartrate-resistant acid phosphatase isoform
5b (TRACP-5b) [130]. However, some studies documented the contraindicatory effect of
MD on bone health [131]. MD enriched with virgin olive oil for 24 months had a protective
effect on bone through elevated levels of bone formation markers osteocalcin and pro-
collagen type I N-propeptide in elderly men [132]. The adherence to MD decreased hip
fracture incidence in adult participants [133]. On the contrary, Feart et al. noted that MD
did not correlate with a lower risk of fractures at any site in French older persons. When
authors focused on diet components, the results showed that greater fruit consumption
was associated with a higher risk of hip fractures, while low consumption of dairy products
correlated with a doubled risk of wrist fractures [134]. In adult Greek women, MD did not
significantly affect bone mass maintenance. Conversely, dietary compounds similar to MD,
including fish and olive oil, and their higher intake were positively related to total body
bone mineral content (BMC) and lumbar spine BMD [135].

Probiotic supplementation, in particular, has been shown to boost the activity of
immune effector T cells while reducing the activity of immune suppressor T cells [20].
Supplementation with Lactobacillus reuteri NCIMB 30,242 increased serum levels of 25-
hydroxyvitamin D and reduced the risk of osteoporosis in healthy hypercholesterolemic
participants [136]. Engineered probiotic strain Lactococcus lactis is capable of expressing a
fusion protein of Fms-like tyrosine kinase 3 ligand and co-stimulator OX40 ligand (FOLac-
tis), which might effectively activate immune cells (dendritic and T cells). The injection of
FOLactis into the bone marrow had a suppressive effect on tumor growth in established
murine models of bone metastasis. The authors demonstrated that FOLactis increased
mature dendritic cells and CD8+ T cells and prolonged the survival of tumor-bearing
mice [137].

Certain microbial metabolites produced by the gut microbiome might have an impact
on cancer and bone cells, including processes implicated in forming specific microenvi-
ronments for cancer cells [78]. Supplementation with SCFAs increased bone mass while
decreasing trabecular separation in C57BL/6J mice. Both propionate and butyrate showed
a protective effect on bone mass via inhibited osteoclast differentiation and decreased
bone resorption. However, the treatment with acetate did not reduce the osteoclast num-
bers [77]. In vitro experiments demonstrated that butyrate inhibited osteoclast formation
and resorption and promoted osteogenic differentiation of mesenchymal stromal cells.
Subsequent in vivo experiments showed reduced levels of pro-inflammatory cytokine
IL-6 in butyrate-treated mice after osteotomy. On the other hand, antibiotic treatment
reduced the cecal level of SCFAs, changed gut microbiome composition, and increased the
level of pro-inflammatory markers (TNFα, IL-6, IL-17a, and IL-17f). Moreover, antibiotics
delayed bone healing in the animal osteotomy model, while butyrate supplementation
did not significantly affect this process [138]. Although SCFAs are crucial regulators of
bone homeostasis, their excessive intake might negatively affect host organisms [139]. The
pathogenic strain Escherichia coli O157 produces a harmful substance known as Shiga toxin.
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This toxin can bind to globotriaosylceramide, the expression of which was enhanced in
butyrate presence. Infection with Escherichia coli O157, along with supplementation of a
high-fiber diet, resulted in increased butyrate production and elevated expression of globo-
triaosylceramide, leading to an intensive binding of Shiga toxin in a murine model. The
high fiber diet also changed gut microbiome composition with reduced native Escherichia
spp. and increased Shiga toxin-producing Escherichia coli. Therefore, the individual diet
habits and ability of gut microbes to produce butyrate might affect the development of
infection after Escherichia coli O157:H7 ingestion [140]. A new strategy in the prevention of
cancer progression might be the modulation of gut microbiome via prebiotics. Polyphenols
and plant-derived phytochemicals act as prebiotics, and the studies assessed their effect on
tumor growth and metastases [141]. Castillo-Pichardo et al. tested the impact of combined
supplementation with resveratrol, quercetin, and catechin (5 mg/kg each polyphenol) on
mammary tumor progression in a murine model with an injected bone metastatic variant
of MDA-MB-435 (ER−) cancer cells. The results revealed reduced mammary tumor growth
by the aforementioned dietary polyphenols. Moreover, only 2/8 mice had metastatic foci
in their femurs after oral gavage of combined polyphenols [142].

An experimental study showed that prebiotic fibers increased mineral absorption and
BMD in the weanling rat model [143]. In a human study, a prebiotic mixture of short and
long degrees of polymerization inulin-type fructan products promoted Ca absorption and
bone mineralization in pubertal adolescents [144]. Another strategy for gut microbiota
modulation is FMT. This method allows the transfer of microbiota from precisely selected
donors to the intestinal tract of corresponding recipients to reshape microbiome compo-
sition and restore microbial diversity. Zhang et al. proposed that microbiota modulation
via FMT might play a role in the regulation of bone metabolism and maintaining a balance
between bone formation and resorption by repairing the mucosal barrier [145]. Transfer of
feces from healthy C57BL/6 mice as donors prevented bone loss and osteoclastogenesis
in ovariectomy-induced recipient mice. Ovariectomy altered the gut microbiome with a
decreased amount of Bacteroidia and increased levels of Melainabacteria, while feces transfer
restored this imbalance. Moreover, the results revealed a higher level of fecal SCFAs and
increased expressions of tight junction proteins, including Zonula occludens protein 1
(ZO-1) and Occludin after FMT [146].

Modulating the gut microbiota through the aforementioned strategies promotes the
growth of favorable gut microbes that help to eliminate harmful pathogens by enhancing
both adaptive and innate immune responses while also supporting the integrity of the
intestinal barrier. In the context of bone metastasis, restoring an intestinal balance is
supposed to influence the bone microenvironment by creating specific conditions not
suitable for the nidation of metastatic cancer cells.

5. Conclusions and Future Directions

Beneficial gut microorganisms exert a protective effect against pathogens, produce
various metabolites and vitamins, and interact with the immune system, thereby shaping
immune responses in the human body.

The connection between the changes in gut microbiome composition and severe dis-
eases has garnered more attention. Mounting evidence highlights the impact of microbial
communities on both cancer development and treatment outcomes. Moreover, the gut
microbiome plays an emerging role in cancer progression and bone metastasis spreading by
influencing immune responses, producing microbiota-derived metabolites, and affecting
cancer cell features. According to the findings, several pathogenic microbes, including
Escherichia coli, Fusobacterium nucleatum, Bacteroides fragilis, or Helicobacter pylori, along with
their harmful metabolites, possess a pro-metastatic potential that facilitates the metastatic
cascade of aggressive cancer cells, promoting their seeding, survival, and proliferation in
secondary organs with a supportive microenvironment. On the other hand, probiotic Lacto-
bacillus, Bifidobacterium, and microbiota-derived SCFAs can attenuate cancer progression,
prevent the formation of metastatic lesions in distant organs, and prolong survival.
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Recent findings uncovered several mechanisms by which bacteria residing in TME
interact with cancer cells in a way that facilitates their invasive and migratory properties.
Gut bacteria may help cancer cells adapt to new environments in metastatic niches, such as
bone, by providing necessary signals for survival and proliferation. However, multifaceted
challenges are faced when attempting to modulate the microbiota to improve outcomes
in bone metastasis. First, further research is required to evaluate the specific mechanisms
by which the gut microbiome affects bone health and cancer progression. Additionally,
detecting and studying low-abundance microorganisms that might be involved in bone
metastasis remains a technical challenge.

In conclusion, microbiome composition is a key player in maintaining bone health.
A decreased bone formation coupled with increased bone resorption contributes to estab-
lishing a microenvironment conducive to bone metastasis development through immune-
related mechanisms. The characterization of the gut microbial profile in patients with
cancer and bone metastases, along with a deeper understanding of outlined correlations,
may help to develop diagnostic, prognostic, and therapeutic tools for personalized treat-
ment strategies. Targeting the microbiome-gut-bone signaling pathways, including those
affecting SCFA production, may enhance patient outcomes and improve the management
of bone-related complications in cancer care.
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