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Abstract: Gossypetin (GTIN) is a naturally occurring flavonoid recognised for its pharmacological
properties. This study examined the effects of GTIN on cardiovascular function in a diet-induced pre-
diabetic rat model, which has not been previously studied. Pre-diabetes was induced using a high-fat
high-carbohydrate (HFHC) diet supplemented with 15% fructose water for 20 weeks. Thereafter,
the pre-diabetic animals were sub-divided into five groups (n = 6), where they were either orally
treated with GTIN (15 mg/kg) or metformin (MET) (500 mg/kg), both in the presence and absence
of dietary intervention for 12 weeks. The results demonstrated that the pre-diabetic (PD) control
group exhibited significantly higher plasma triglyceride, total cholesterol, low-density lipoprotein
and very low-density lipoprotein levels, along with decreased high-density lipoprotein (HDL) levels
in comparison to the non-pre-diabetic (NPD) group. This was accompanied by significantly higher
mean arterial pressure (MAP), body mass index (BMI), waist circumference (WC) and plasma
endothelial nitric oxide (eNOS) levels in PD control. Additionally, there were increased heart
malondialdehyde levels, reduced heart superoxide dismutase and glutathione peroxidase activity as
well as increased plasma interleukin-6, tumour necrosis factor alpha and c-reactive protein levels
present in the PD control group. Notably, both GTIN-treated groups showed significantly reduced
plasma lipid levels and increased HDL, as well as decreases in MAP, BMI, WC and eNOS levels
in comparison to PD control. Additionally, GTIN significantly decreased heart lipid peroxidation,
enhanced antioxidant activity and decreased plasma inflammation markers. These findings may
suggest that GTIN administration in both the presence and absence of dietary intervention may
offer therapeutic potential in ameliorating cardiovascular disturbances associated with the PD state.
However, future studies are needed to determine the physiological mechanisms by which GTIN
improves cardiovascular function in the PD state.

Keywords: Gossypetin; natural flavonoid; cardiovascular; diet-induced pre-diabetes

1. Introduction

High-caloric diets have been linked to an increased risk of metabolic disorders,
including pre-diabetes, which is a multifactorial condition influenced by genetic, en-
vironmental and lifestyle factors [1–3]. Pre-diabetes is an intermediate state between
normal glucose tolerance [4] and overt type 2 diabetes mellitus (T2DM) [5]. The Interna-
tional Diabetes Federation estimated that about 298 million adults worldwide have been
diagnosed with pre-diabetes, with projections showing that this number will increase
to about 414 million by the year 2045 [6]. This condition is characterised by moderate
hyperglycaemia, moderate insulin resistance and impaired glucose tolerance [5]. Studies
have shown that many of the complications seen in T2DM begin in the pre-diabetic
(PD) state [7,8]. Excess saturated fatty acids, trans fatty acids and pro-inflammatory
adipokines have been shown to promote the development of insulin resistance, which
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is a risk factor for pre-diabetes [9–12]. Pre-diabetes has been shown to be associated
with an increased risk of cardiovascular diseases (CVDs) and endothelial dysfunction [9].
This condition has been shown to promote adverse effects through multiple pathways
by generating reactive oxygen species (ROS) [13]. Increased oxidative stress reduces the
bioavailability of nitric oxide (NO), promoting increased blood pressure [14]. Chronic
low-grade inflammation has been observed in the PD state, and this has been charac-
terised by increased levels of pro-inflammatory markers, including tumour necrosis
factor (TNF)-α, interleukin (IL)-6 and c-reactive protein (CRP) [15,16]. This has further
been accompanied by increased plasma levels of triglycerides (TG), low-density lipopro-
teins (LDL) and decreased high-density lipoproteins (HDL), which have been shown to
promote foam cell accumulation in artery walls and, subsequently, atherosclerosis [17].

The current strategy for the management of pre-diabetes involves both the combina-
tion of lifestyle modification and pharmacological intervention [18]. However, patients
often neglect lifestyle modifications due to the financial burden of dietary changes and
ease of access to pharmacological treatment [19]. Furthermore, studies have shown that
individuals with lower educational backgrounds may lack knowledge of healthy dietary
habits and preventive behaviours [20–22]. Limited nutrition education is a contributing
factor to the development of pre-diabetes, as individuals with insufficient knowledge tend
to make unhealthy lifestyle choices, including the consumption of high-calorie, nutrient-
deficient foods that contribute to insulin resistance and metabolic dysfunction [23–26].
Additionally, a lack of understanding about the importance of dietary changes and higher
prices of healthier foods may lead to an over-reliance on pharmacological treatments in-
stead of lifestyle modifications, delaying the potential benefits of dietary intervention in
reducing the risk of T2DM development [19,27–29]. Studies have shown that pharma-
cological intervention in the absence of dietary modification shows limited effectiveness
in the treatment of pre-diabetes [30,31]. This highlights the need for pharmacological
treatments that can effectively manage pre-diabetes and its associated complications in
both the presence and absence of dietary intervention [32]. Flavonoids are natural polyphe-
nolic compounds generated by secondary metabolism in plants [33]. They function as
antioxidants and possess anti-inflammatory properties in the cardiovascular system by
modulating inflammatory response pathways [34,35]. Quercetin is a well-known flavonol
that has shown efficacy in alleviating hyperglycaemia, hyperlipidaemia, hypertension and
oxidative stress [36,37]. Studies have shown that quercetin administration was associated
with reduced CVD risk [38,39]. Interestingly, GTIN (Figure 1) is structurally similar to
quercetin, with an extra hydroxyl group [40,41]. It exhibits many of the same biological
activities as quercetin and has demonstrated more potent antioxidant activity [40,42,43].
The capacity of GTIN to scavenge free radicals assists in cell protection and may reduce
the risk of CVDs [41,44]. Furthermore, a recent study revealed that GTIN administration
significantly enhanced insulin sensitivity, improved glucose tolerance and lowered fasting
blood glucose levels [45]. Despite these findings, no studies have investigated the effects of
GTIN on cardiovascular complications in the PD state. Hence, this study investigated the
effects of diet-induced pre-diabetes on cardiovascular complications in both the presence
and absence of dietary modification
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2. Results
2.1. Lipid Profile Markers

Lipid profile marker concentrations were measured in all experimental groups at week 32
of the treatment period (n = 6, per group). The results (Table 1) showed that the PD control
group had significantly (p < 0.05) higher levels of plasma TG, total cholesterol (TC), LDL and
very low-density lipoproteins (VLDL), along with lower HDL levels in comparison to the NPD
group. However, PD animals receiving GTIN with a normal diet (GTIN + ND) and with a
HFHC diet (GTIN + HFHC) showed a significant (p < 0.05) reduction in these parameters and
an increase in plasma HDL levels in comparison to the PD control group. Additionally, PD
animals receiving MET with a normal diet (MET + ND) and with a HFHC diet (MET + HFHC)
exhibited significantly (p < 0.05) similar results as the GTIN-treated groups.

Table 1. The effects of GTIN on lipid profile markers in both the presence and absence of dietary mod-
ification at week 32 of the treatment period (n = 6, per group). Values are presented as mean ± SEM.

Parameters
Experimental Groups

NPD PD GTIN + ND GTIN + HFHC MET + ND MET + HFHC

TG
(mmol/L) 1.03 ± 0.077 2.27 ± 0.22 * 0.91 ± 0.04 # 1.18 ± 0.050 # 1.05 ± 0.071 # 1.19 ± 0.013 #

TC
(mmol/L) 2.65 ± 0.12 4.36 ± 0.05 * 2.80 ± 0.058 #ˆ 3.08 ± 0.091 # 2.84 ± 0.045 # 3.25 ± 0.076 #

HDL
(mmol/L) 1.38 ± 0.084 0.70 ± 0.12 * 1.52 ± 0.093 # 1.41 ± 0.066 # 1.56 ± 0.11 # 1.22 ± 0.10 #

LDL
(mmol/L) 0.74 ± 0.14 2.79 ± 0.14 * 0.72 ± 0.10 #ˆ 1.06 ± 0.07 # 0.69 ± 0.094 # 1.30 ± 0.066 #

VLDL
(mmol/L) 0.53 ± 0.024 0.87 ± 0.011 * 0.56 ± 0.012 #ˆ 0.62 ± 0.018 # 0.56 ± 0.0065 # 0.64 ± 0.012 #

* = p < 0.05 denotes comparison with NPD, # = p < 0.05 denotes comparison with PD, ˆ = p < 0.05 denotes
comparison with MET + HFHC. NPD: non-pre-diabetic control; PD: pre-diabetic control; gossypetin and normal
diet (GTIN + ND); gossypetin and high-fat high-carbohydrate diet (GTIN + HFHC); metformin and normal diet
(MET + ND); metformin and high-fat high-carbohydrate group (MET + HFHC).

2.2. MAP Levels

The MAP levels of all the animals were determined from week 20 to week 32 of the
experimental period (n = 6, per group). The results (Figure 2) showed that the MAP levels
were significantly (p < 0.05) higher in the PD control group throughout the treatment
period in comparison to the NPD. However, both GTIN-treated groups showed significant
(p < 0.05) reductions to MAP levels at weeks 28 and 32 in comparison to the PD control.
Additionally, both the MET-treated groups exhibited significantly (p < 0.05) similar results
as the GTIN-treated groups at weeks 28 and 32 of the treatment period.

2.3. BMI and WC

The BMI and WC of all the animals were determined from week 20 to week 32 of the
experimental period (n = 6, per group). The results (Figure 3) showed that the BMI and
WC in the PD control group were significantly (p < 0.05) higher throughout the treatment
period in comparison to the NPD group. However, both GTIN-treated groups exhibited
a significant reduction in BMI and WC at week 28 and week 32 of the treatment period in
comparison to the PD control. The MET + ND group showed significantly reduced BMI
and WC at week 28 in comparison to the PD control. Additionally, both MET-treated
groups showed significantly (p < 0.05) similar results at week 32 in comparison to the
PD control.
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modification from week 20 to week 32 of the experimental period (n = 6, per group). Values are
presented as mean ± SEM. * = p < 0.05 denotes comparison with NPD, # = p < 0.05 denotes com-
parison with PD. NPD: non-pre-diabetic control; PD: pre-diabetic control; gossypetin and normal
diet (GTIN + ND); gossypetin and high-fat high-carbohydrate diet (GTIN + HFHC); metformin and
normal diet (MET + ND); metformin and high-fat high-carbohydrate group (MET + HFHC).
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Figure 3. The effects of GTIN on (a) BMI and (b) WC in both the presence and absence of dietary
modification from week 20 to week 32 (n = 6, per group). Values are presented as mean ± SEM.
* = p < 0.05 denotes comparison with NPD; # = p < 0.05 denotes comparison with PD. NPD: non-pre-
diabetic control; PD: pre-diabetic control; gossypetin and normal diet (GTIN + ND); gossypetin and
high-fat high-carbohydrate diet (GTIN + HFHC); metformin and normal diet (MET + ND); metformin
and high-fat high-carbohydrate group (MET + HFHC).

2.4. eNOS Levels

The plasma eNOS concentrations were measured in all experimental groups at week 32
of the treatment period (n = 6, per group). The results (Figure 4) showed significantly
(p < 0.05) higher eNOS levels in the PD control group in comparison to the NPD group.
However, both GTIN-treated groups showed significantly (p < 0.05) lower eNOS levels
in comparison to the PD control. The MET + ND groups exhibited significantly (p < 0.05)
similar results in comparison to the PD control. The GTIN + HFHC and MET-HFHC groups
had significantly higher eNOS levels in comparison to the NPD.
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Figure 4. The effects of GTIN on eNOS in both the presence and absence of dietary modification at
week 32 of the treatment period (n = 6, per group). Values are presented as mean ± SEM. * = p < 0.05
denotes comparison with NPD; # = p < 0.05 denotes comparison with PD. NPD: non-pre-diabetic
control; PD: pre-diabetic control; gossypetin and normal diet (GTIN + ND); gossypetin and high-fat
high-carbohydrate diet (GTIN + HFHC); metformin and normal diet (MET + ND); metformin and
high-fat high-carbohydrate group (MET + HFHC).

2.5. Lipid Peroxidation, Antioxidant and Inflammatory Markers

The concentrations of heart lipid peroxidation, antioxidants and plasma inflamma-
tory markers were assessed in the experimental groups at week 32 of the treatment period
(n = 6 per group). The results (Table 2) indicated that the PD control group showed signifi-
cantly (p < 0.05) higher malondialdehyde (Bhowmik, #69) levels along with reduced heart
SOD and Gpx activity in comparison to the NPD group. Furthermore, the PD control group
showed significantly (p < 0.05) higher plasma levels of IL-6, TNF-α and CRP in comparison to
the NPD group. However, both GTIN-treated groups demonstrated a significant (p < 0.05)
reversal in the level of these markers relative to the PD control. Additionally, the MET + ND
group exhibited significantly (p < 0.05) similar effects on heart MDA, SOD and Gpx activity
in comparison to the GTIN-treated groups. Notably, both MET-treated groups significantly
(p < 0.05) lowered plasma inflammatory markers in comparison to the PD control.

Table 2. The effects of GTIN on heart oxidative stress, antioxidant and plasma inflammatory markers
in both the presence and absence of dietary modification at week 32 of the treatment period (n = 6,
per group). Values are presented as mean ± SEM.

Parameters
Experimental Groups

NPD PD GTIN + ND GTIN + HFHC MET + ND MET + HFHC

MDA
(nmol/g protein) 3.95 ± 0.59 7.73 ± 0.18 * 4.42 ± 0.47 #ˆ 5.38 ± 0.23 # 4.97 ± 0.28 # 6.68 ± 0.24 #

T-SOD Activity
(U/mgprot) 19.88 ± 0.89 6.88 ± 0.83 * 17.65 ± 0.59 #ˆ 13.74 ± 0.30 # 16.98 ± 0.73 # 9.80 ± 0.68

GPx Activity
(U/mgprot) 941.00 ± 27.93 415.10 ± 9.69 * 932.60 ± 40.95 #ˆ 837.3 ± 20.84 # 842.10 ± 16.60 # 463.00 ± 49.69

IL-6
(pg/mL) 20.22 ± 3.55 54.98 ± 3.56 * 18.79 ± 1.10 #ˆ 22.60 ± 0.65 # 22.80 ± 0.99 # 25.76 ± 0.89 #

TNF-α
(pg/mL) 14.96 ± 0.31 31.77 ± 0.51 * 13.09 ± 0.31 #ˆ 21.15 ± 3.03 # 13.77 ± 0.61 # 25.83 ± 0.81 #

hs-CRP
(pg/mL) 4.98 ± 0.58 15.91 ± 0.18 * 5.12 ± 0.71 #ˆ 6.58 ± 0.074 #ˆ 6.03 ± 0.18 # 7.74 ± 0.11 #

* = p < 0.05 denotes comparison with NPD; # = p < 0.05 denotes comparison with PD, ˆ = p < 0.05 denotes
comparison with MET + HFHC. NPD: non-pre-diabetic control; PD: pre-diabetic control; gossypetin and normal
diet (GTIN + ND); gossypetin and high-fat high-carbohydrate diet (GTIN + HFHC); metformin and normal diet
(MET + ND); metformin and high-fat high-carbohydrate group (MET + HFHC).
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3. Discussion

High-calorie diets have been shown to lead to the development of pre-diabetes by
promoting insulin resistance (IR) and hyperinsulinaemia [47]. This diet further contributes
to the development of obesity, oxidative stress and low-grade inflammation [47]. This
combination increases the risk of developing CVDs such as hypertension, myocardial in-
farction and stroke [48]. Various scientific studies recommend that a combination of lifestyle
and pharmacological intervention is necessary to effectively manage pre-diabetes [18,49].
However, the over-reliance on pharmacological interventions without making necessary
dietary changes may hinder the benefits of dietary modifications [50,51]. Flavonoids such
as quercetin have been shown to mitigate the risk of CVDs during pre-diabetes by improv-
ing endothelial function, reducing inflammation and enhancing insulin sensitivity [52].
Gossypetin is present in various plant species, including Hibiscus sabdariffa, Hibiscus viti-
folius, Gossypium herbaceum and Gossypium arboretum from the Malvaceae family [53–56]. It
has also been found in Empetrum nigrum from the Ericaceae family and Acacia constricta
from the Fabaceae family [53–56]. Notably, the majority of studies have focused on the
qualitative analysis of GTIN, with scarce studies quantifying the percentage content [57–60].
A previous study showed that of the seven compounds isolated from Hibiscus sabdariffa
phenolic extract, GTIN exhibited the highest yield of 23% [61]. Interestingly, the phenolic
content in Hibiscus sabdariffa ranges from 24.36 to 44.43 mg of gallic acid/100 g of dried
calyces [58,62,63]. Furthermore, studies have shown that GTIN exhibits potent antioxidant
and anti-inflammatory properties [41,64]. The multiple hydroxyl groups present within
GTIN’s structure facilitate its ability to mitigate oxidative stress [41,64]. Despite these
findings, the effects of this compound on cardiovascular function in the PD state have not
been investigated.

Under normal physiological conditions, plasma lipid levels are regulated through the
assistance of lipoproteins [65]. VLDLs transport hepatic TG while LDLs primarily transport
cholesterol within the bloodstream [65]. HDLs facilitate reverse cholesterol transport to the
liver [66]. In individuals with normal metabolic function, the lipid profile is characterised
by TC levels below 5.2 mmol/L, LDL cholesterol concentrations less than 2.6 mmol/L, HDL
cholesterol levels greater than 1.1 mmol/L, TG below 1.7 mmol/L and VLDL levels less than
0.8 mmol/L [67–69]. In contrast, individuals with pre-diabetes have been shown to exhibit
disturbed lipid profiles, which may be characterised by elevated plasma TG, TC, LDL and
VLDL, along with decreased HDL levels [4,70–73]. These abnormalities may include plasma
TG levels ranging from 1.7 mmol/L to 2.2 mmol/L, TC levels exceeding 5.2 mmol/L, LDL
levels greater than 2.6 mmol/L, VLDL concentrations between 0.8 and 1.2 mmol/L and
HDL levels below 1.0 mmol/L in comparison to healthy individuals [4,70–73]. The chronic
consumption of high-calorie diets, which include high sugar, saturated fats and processed
foods, leads to dyslipidaemia by inducing IR and oxidative stress [74–76]. These conditions
stimulate increased lipolysis, which in turn promotes TG synthesis and raises plasma VLDL
levels [77]. Additionally, increased ROS levels promote LDL oxidation which inhibits LDL
clearance [78]. This has been associated with foam cell formation and an increased risk of
developing arteriosclerosis [79]. In this study, plasma TG, TC, LDL and VLDL levels were
significantly higher along with lower plasma HDL levels in the PD control in comparison to
the NPD group. This study’s results corroborated with previous findings of dyslipidaemia
present during pre-diabetes [31,80]. However, the GTIN + ND and GTIN + HFHC groups
significantly reduced these parameters while increasing plasma HDL levels in comparison
to the PD control.

Flavonoids have been shown to reduce LDL oxidation by targeting oxidative stress
and decrease TG levels by promoting fatty acid oxidation [81,82]. Quercetin promotes
HDL synthesis, which helps maintain cholesterol homeostasis [83]. A previous study has
shown that GTIN reduced oxidised LDL-induced foam cell formation and intracellular
lipid accumulation [84]. Similarly, in our study, GTIN may have improved the lipid profile
during pre-diabetes by enhancing LDL clearance, promoting fatty acid oxidation and HDL
synthesis. Additionally, the MET + ND and MET + HFHC groups demonstrated similar
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effects on lipid profiles compared to the GTIN-treated groups. MET has been shown
to improve dyslipidaemia by enhancing insulin sensitivity and regulating hepatic lipid
metabolism [85,86]. While the MET + ND and MET + HFHC groups were effective in
improving lipid profile markers in the PD state, GTIN exhibited more pronounced effects.

Under normal physiological conditions, the regulation of MAP levels involves the
integration of neural, hormonal and local mechanisms [87]. NO is a vasodilator that is
produced by eNOS and is important in the regulation of vascular tone [88]. However,
intermediate hyperglycaemia promotes mitochondrial dysfunction and the formation of
advanced glycated end products and triggers inflammatory pathways [89]. These mech-
anisms contribute to increased oxidative stress, which damages endothelial cells [90,91].
Endothelial dysfunction reduces NO availability, which subsequently increases vascular
resistance and MAP levels [90,91]. In this study, MAP levels were significantly higher
throughout the treatment period in comparison to the NPD group. This was further ac-
companied by elevated plasma eNOS levels at week 32 in the PD control group. These
results corroborated with previous studies, which have reported similar findings in the
PD state [80,92]. The findings may suggest that eNOS levels increased to compensate for
elevated MAP levels. However, the GTIN + ND and GTIN + HFHC groups exhibited signif-
icantly lower MAP levels at week 28 and week 32 in comparison to the PD control. This was
further accompanied by decreased plasma eNOS levels at week 32 of the treatment period.

Studies have shown that quercetin improves MAP levels by reducing oxidative
stress and activating eNOS synthesis [93,94]. Furthermore, previous literature has shown
that 15 mg/Kg and 20 mg/Kg GTIN administration ameliorates intermediate hypergly-
caemia, reduces oxidative stress and enhances AMP-activated protein kinase (AMPK)
activity [41,95]. AMPK activation enhances the NO pathway, which promotes vasodila-
tion [95]. Similarly, in our study, 15 mg/Kg GTIN may have decreased MAP levels by
facilitating vasodilation through its effects on intermediate hyperglycaemia and oxidative
stress. The plasma eNOS levels in the GTIN + ND and GTIN + HFHC groups may have
been attributed to reduced oxidative stress. Additionally, both MET-treated groups exhib-
ited effects on MAP levels that were similar to the GTIN-treated group. This was further
accompanied by decreased plasma eNOS levels in the MET + ND group in comparison
to the PD control. This may suggest that MET is effective in controlling MAP levels when
used in conjunction with dietary intervention.

Adiposity is influenced by caloric intake, energy expenditure and hormonal con-
trol [96]. This condition promotes chronic inflammation, which accelerates plaque buildup
in the arteries and subsequently increases the risk of CVDs [97]. BMI and WC are useful
in monitoring adiposity and visceral fat in the management of pre-diabetes [98,99]. The
chronic consumption of high-caloric diets has been shown to contribute to weight gain by
stimulating increased lipogenesis, inhibiting lipolysis and interfering with appetite regula-
tion [81]. This further leads to increased BMI and WC observed in PD individuals [100]. In
this study, both BMI and WC were significantly higher throughout the treatment period
in the PD group in comparison to the NPD group. Previous research has established
that chronic high-caloric intake promotes adiposity, which is commonly observed in PD
individuals [80,101]. This study’s results support these findings. However, the GTIN + ND
and GTIN + HFHC groups showed significantly lower BMI and WC at week 28 and
week 32 of the treatment period in comparison to the PD control. In a recent study, it was
shown that GTIN administration significantly reduced caloric intake and weight gain by
decreasing plasma ghrelin levels [45]. This may account for the reduced BMI and WC
circumference observed in the GTIN-treated groups. Interestingly, the MET + ND group
showed significantly lower BMI at week 28 in comparison to the PD control. However,
both MET-treated groups exhibited similar effects on BMI and WC levels at week 32 as the
GTIN-treated group. MET has been shown to reduce BMI and WC by targeting insulin
resistance, appetite suppression and hepatic glucose production [102,103]. While both
MET-treated groups were effective in reducing BMI and WC by week 32, the GTIN-treated
groups had already shown effectiveness by week 28. This may suggest that 15 mg/kg
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GTIN administration both in the presence and absence of dietary modification exhibits a
faster onset of effectiveness than MET.

Under normal conditions, there exists a balance between ROS levels and antiox-
idants [104]. However, intermediate hyperglycaemia has been shown to promote the
accumulation of increased ROS through mitochondrial dysfunction [15,105]. Furthermore,
elevated advanced glycated end-products and free fatty acids observed in the PD state
trigger inflammation-induced ROS production [106]. The accumulation of ROS contributes
to oxidative stress, which triggers lipid peroxidation [107]. MDA is the toxic by-product
produced by lipid peroxidation and is responsible for damaging cellular functions [108].
The redox imbalances observed during pre-diabetes may contribute to the development of
CVDs [109]. In this study, heart MDA levels were significantly higher in the PD control
group compared to the NPD group. This was further accompanied by significantly lower
heart SOD and Gpx activity in the PD control. These results may suggest that the reduced
antioxidant capacity of heart tissue may have compromised its ability to maintain redox bal-
ance, leading to increased lipid peroxidation. However, the GTIN + ND and GTIN + HFHC
groups showed significantly lower heart MDA levels in comparison to the PD control. This
was further accompanied by increased heart SOD and Gpx activity in both GTIN-treated
groups. Previous studies have shown that GTIN exhibits potent antioxidant effects, which
have been attributed to its free radical scavenging capability [44,110]. Interestingly, the
specific arrangement of hydroxyl and methoxy groups on the flavonoid backbone structure
of GTIN (Figure 1) may contribute to its antioxidant effects [41,111]. This study’s results
may suggest that 15 mg/kg GTIN administration in both the presence and absence of
dietary modification reduces oxidative stress and lipid peroxidation by enhancing the
antioxidant enzyme activity of heart tissue. Additionally, both MET-treated groups showed
significantly similar effects on heart MDA levels as the GTIN-treated groups. This was
further accompanied by increased heart SOD and GPx activity in only the MET + ND group.
Previous studies have shown that MET decreases oxidative stress by promoting AMPK
activation, improving insulin sensitivity, upregulating antioxidant enzyme expression and
improving mitochondrial function [112,113]. This may suggest that MET exhibits beneficial
effects on antioxidant enzyme activity when used in conjunction with dietary modification.

Under normal physiological conditions, inflammation is essential in the response to
injury and tissue healing [114]. This has to be regulated to prevent chronic inflammation,
which promotes tissue damage observed in CVDs [115]. However, during pre-diabetes, ox-
idative stress has been shown to activate pathways that release pro-inflammatory cytokines
such as TNF-α, IL-6 and CRP [15,116]. The inflammatory response recruits and activates
immune cells at the site of injury [117]. Activated immune cells produce ROS and cytokines,
which further worsen inflammation and tissue damage [118]. In this study, inflammatory
markers such as plasma IL-6, TNF-α and CRP levels were significantly higher in the PD
control group in comparison to the NPD group. This study’s findings corroborate previous
studies that reported the presence of low-grade inflammation in the PD state [116,119].
However, the GTIN + ND and GTIN + HFHC groups showed significantly lower inflamma-
tory marker levels in comparison to the PD control. A previous study showed that GTIN
reduces inflammation by targeting ROS accumulation [64]. Therefore, it may be speculated
that GTIN reduces low-grade inflammation by targeting oxidative stress due to its potent
antioxidant properties [95]. Additionally, both MET-treated groups exhibited effects on
these parameters similar to the GTIN-treated groups. Previous studies have shown that
MET reduces inflammation by activating the AMPK, which inhibits nuclear factor kappa B
(NF-kB) signaling [120,121]. By suppressing NF-κB, MET reduces the production of TNF-α
and IL-6, improving cardiovascular function [122]. The anti-inflammatory effects of the
conventional anti-diabetic drug MET were comparable to GTIN.

This study highlights the potential of 15 mg/kg GTIN as an effective compound for
improving cardiovascular function in the PD state. The results demonstrated that GTIN
significantly improved lipid profile markers, reducing plasma TC, TG, LDL and VLDL
while increasing HDL in comparison to the NPD group. Additionally, GTIN administration
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decreased MAP, BMI, WC and plasma eNOS levels. It also reduced heart oxidative stress
by lowering MDA levels and enhanced antioxidant activity through increased SOD and
Gpx activity. Moreover, GTIN decreased inflammation, as indicated by lower plasma IL-6
and TNF-α levels. Notably, these beneficial effects were observed both in the presence
and absence of dietary intervention, highlighting GTIN’s potential role in cardiovascular
health management.

4. Materials and Methods
4.1. Chemicals and Drugs

All chemicals and drugs were of analytical grade and purchased from standard com-
mercial suppliers (Merck Chemicals (PTY) Ltd., Wadeville, Gauteng, South Africa).

4.2. Animals and Housing

This study utilised 36 male Sprague Dawley rats (150–180 g), which were bred and
housed in the Biomedical Research Unit (BRU) at the University of KwaZulu-Natal (UKZN),
Westville campus. The animals were maintained under standard laboratory conditions,
which included a constant temperature of 22 ± 2 ◦C, a carbon dioxide (CO2) content of
<5000 p.m., a relative humidity of 55 ± 5% and illumination (12 h light/dark cycle, lights
on at 07h00). The noise level was maintained at less than 65 decibels. All animals were
allowed access to food and fluids ad libitum. The Animal Research Ethics Committee of
the University of KwaZulu-Natal (ethics: AREC/0000495/2022) granted permission for all
animal experimentation and protocols. Before exposure to the experimental diets, the rats
were allowed to acclimatise to their new environment while consuming standard rat diet
and tap water [123]. The care and handling procedures were followed in accordance with
the Animal Research Ethics Committee (AREC) of UKZN.

4.3. Induction of Pre-Diabetes

The animals were randomly assigned into two dietary groups: group A (n = 6) and
group B (n = 30). Experimental pre-diabetes was induced in the animals using a method pre-
viously outlined by Luvuno et al. [123]. Group A animals received a standard rat diet with
tap water while group B received the HFHC diet supplemented with 15% fructose-enriched
water for the induction of pre-diabetes (AVI Products (Pty) Ltd., Waterfall, South Africa).
At week 20, the animals were assessed for pre-diabetes based on the American Diabetes
Association (ADA) criteria [124]. Animals with a fasting blood glucose concentration of 5.6
to 6.9 mmol/L, 2 h oral glucose tolerance test glucose concentration of 7.8 to 11.0 mmol/L
and a glycated haemoglobin concentration of 5.7 to 6.4% were classified as the pre-diabetic
group. The animals that received the standard diet were also evaluated at week 20 to
confirm normoglycaemia and were classified as the non-pre-diabetic group.

4.4. Experimental Design and Treatment

Following the induction of pre-diabetes, the pre-diabetic group (n = 30) was further
divided into five sub-groups (Group B to Group F), consisting of six animals each. The pre-
diabetic animals either continued the HFHC diet or changed to a normal standard diet (ND)
while receiving either 15 mg/kg GTIN or 500 mg/kg MET orally once every third day for
12 weeks. We selected an oral dose of 15 mg/kg GTIN based on previous studies showing
its effectiveness and safety within the 10 mg/kg–20 mg/kg range [44,45,125,126]. Similarly,
500 mg/kg MET was chosen due to its proven therapeutic effects at this dose and minimal
side effects [127–129]. The timing of dosage was chosen to minimise drug accumulation
and toxicity [31,130,131]. The non-pre-diabetic control (Group A) animals continued the
ND while the pre-diabetic control group (PD, Group B) remained on the HFHC diet and
received as the vehicle 3 mL/kg of diluted dimethyl sulphoxide (2 mL DMSO: 19 mL
normal saline, p.o.)(Merck Chemicals (PTY) LTD, Wadeville, Germiston, Gauteng, South
Africa). Group C (GTIN + ND) animals received GTIN and were changed to the ND diet
while Group D (GTIN + HFHC) received GTIN and continued the HFHC diet. The Group
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E (MET + ND) animals received MET and changed to the ND diet while Group F animals
(MET + HFHC) received MET and continued the HFHC diet. Parameters such as body mass
index (BMI), waist circumference (WC) and blood pressure were monitored at weeks 20, 24,
28 and 32 as described in the established protocol [31]. The systolic and diastolic pressure
of all experimental animals was measured using a non-invasive tail-cuff method and the
MAP was calculated using the formula MAP = [(2 × diastolic) + systolic]/3 [31,132].

4.5. Blood Collection and Tissue Harvesting

At the end of week 32, all animals were anaesthetised with Isofor (100 mg/kg) (Safe-
line Pharmaceuticals (Pty) Ltd., Roodeport, South Africa) for 3 min using a gas anaesthetic
chamber (BRU, UKZN, Durban, South Africa). Once the animals were unconscious, blood
samples were obtained from the animals through cardiac puncture and transferred into
individual pre-cooled heparinised containers. The blood samples were centrifuged (Eppen-
dorf AG, Eppendorf centrifuge 5403, Hamburg, Germany) at 4 ◦C, 503× g for 15 min to
obtain plasma. Each plasma sample was aspirated into plain sample bottles and stored at
−80 ◦C in a Bio Ultra freezer (Snijers Scientific, Tilburg, The Netherlands) until ready for
biochemical analysis. Thereafter, the heart was removed and snap-frozen in liquid nitrogen
before storage in a BioUltra freezer (Snijers Scientific, Tilburg, The Netherlands) at −80 ◦C
until biochemical analysis.

4.6. Biochemical Analysis

At the end of week 32, the plasma lipid profile was analysed by measuring TG, TC and
HDL according to manufacturer instructions using their respective assay kits (Elabscience
Biotechnology Co., Ltd., Houston, TX, USA). The absorbance of the samples for TG and TC
was measured at 510 nm, while HDL absorbance was measured at 600 nm using a Spec-
trostar Nanospectrophotometer (BMG Labtech, Ortenberg, Baden-Württernberg, LGBW,
Germany). VLDL and LDL cholesterol levels were calculated using Friedewald’s formula:
LDL = TC − HDL − (TG/2.2) and VLDL = 2.2/TG [133]. Heart malondialdehyde [70]
levels were assessed following a previously published protocol [134]. Heart SOD and
GPx activity as well as plasma eNOS, TNF-α, IL-6 and CRP were measured using their
respective ELISA kits (Elabscience Biotechnology Co., Ltd., Houston, TX, USA).

4.7. Statistical Analysis

The statistical data were presented as mean ± SEM. The data were analysed by
one-way analysis of variance [116] followed by Tukey–Kramer via GraphPad Prism 5 soft-
ware. Statistical significance was determined at p < 0.05.

5. Conclusions

Taken together, GTIN administration both in the presence and absence of dietary
modification reduced elevated MAP levels, oxidative stress and inflammation, as well
as improved endothelial function and antioxidant enzyme activity in diet-induced pre-
diabetes. The results were comparable to those observed with MET administration, indicat-
ing that GTIN may serve as a viable alternative for managing cardiovascular complications
in the PD state. Nonetheless, further research is necessary to elucidate the mechanisms
underlying the observed effects of GTIN administration.
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