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Abstract: The gut–brain axis (GBA) plays a pivotal role in human health and wellness by orchestrating
complex bidirectional regulation and influencing numerous critical processes within the body. Over
the past decade, research has increasingly focused on the GBA in the context of inflammatory bowel
disease (IBD). Beyond its well-documented effects on the GBA–enteric nervous system and vagus
nerve dysregulation, and gut microbiota misbalance—IBD also leads to impairments in the metabolic
and cellular functions: metabolic dysregulation, mitochondrial dysfunction, cationic transport, and
cytoskeleton dysregulation. These systemic effects are currently underexplored in relation to the
GBA; however, they are crucial for the nervous system cells’ functioning. This review summarizes
the studies on the particular mechanisms of metabolic dysregulation, mitochondrial dysfunction,
cationic transport, and cytoskeleton impairments in IBD. Understanding the involvement of these
processes in the GBA may help find new therapeutic targets and develop systemic approaches to
improve the quality of life in IBD patients.

Keywords: gut–brain axis; IBD; inflammation; metabolome; lipidome; mitochondrial function;
cationic transport; cytoskeleton

1. Introduction: The GBA Imbalance in IBD

The gut–brain axis (GBA) is a complex and bidirectional communication system driven
by neural, hormonal, metabolic, immunological, and microbial signals, playing a crucial
role in linking the state of the gastrointestinal tract with neural functions. The GBA can
influence intestinal motility and secretion, cause visceral hypersensitivity, and induce cell
modifications in the enteroendocrine and immune systems [1,2]. Numerous neurological
disorders have been shown to be associated with changes in gut health [3,4]. Systematic
data have shown that both brain–gut and gut–brain dysfunctions occur, with the former
being particularly dominant in irritable bowel syndrome [5]. In patients with inflammatory
bowel diseases (IBDs), the quality of life is significantly reduced, and eating behaviors and
nutritional patterns often undergo inevitable changes [6,7]. IBD is characterized by chronic
inflammation of the gastrointestinal tract, encompassing Crohn’s disease and ulcerative
colitis, which are differentiated by the location of the lesions. Crohn’s disease is marked by
inflammation and lesions along the entire length of the gastrointestinal tract, predominantly
in the terminal ileum and proximal colon [8], whereas ulcerative colitis mainly affects the
colon and rectum [9]. Regardless of injury location, both diseases share common symptoms:
persistent diarrhea, abdominal pain, blood in stools, weight loss, and chronic fatigue [8,10].
Various factors contribute to the development of IBD: genetic predispositions (with several
hundred associated genes identified [11–18]), immune response dysregulation [19–22],
impaired intestinal microbiota (due to antibacterial and other drug administrations or
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specific dietary patterns) [23–25], and changes in environmental factors (such as nutrition,
stress, toxins, etc.) [26]. IBD is a serious global issue, as the number of diagnosed patients
continues to rise [27–29]. Increasing evidence suggests a connection between IBD and
neuroinflammatory as well as neurodegenerative diseases [30,31]. According to the meta-
analysis results published in 2024, IBD is moderately associated with an increased risk
of stroke, dementia of various etiologies, and Parkinson’s disease [32]. In addition, the
risk for the development of depression and anxiety in patients and animal models with
IBD has been found higher compared to the general population, and stress is a significant
trigger that causes exacerbation of the disease [33,34]. Moreover, IBD-related negative
effects including intestinal inflammation, dysbiosis, poor nutrition, physical and psychical
discomfort, chronic fatigue, and stress are frequently self-reinforcing due to the GBA
imbalance resulting from IBD [34–36].

1.1. The Current Gut–Brain Axis Paradigm

The GBA commonly accepted key components include the vagus nerve, the enteric
nervous system (ENS), and the gut microbiota. The vagus nerve serves as the primary
neural pathway connecting the gut and the brain, comprising sensory and motor fibers
that facilitate bidirectional communication [37]. Sensory fibers transmit impulses from
the gut to the brain, relaying signals related to satiety, nutrient availability, and gastroin-
testinal discomfort, while motor fibers convey instructions from the brain to modulate gut
functions such as gastric secretion and motility [38]. This bidirectional communication
ensures continuous feedback and regulation between the gut and the brain. The ENS is an
extensive network of intrinsic neurons throughout the gastrointestinal tract, functioning
independently of the central nervous system (CNS) and regulating essential gastrointesti-
nal processes, including peristalsis, nutrient absorption, and gut motility [39]. Although
numerous studies highlight the evident disruption of vagus nerve and ENS functions
in IBD [40–42], the underlying molecular and cellular processes, as well as the involved
signaling triggers, remain underexplored. In the following sections, we describe the rele-
vant data on the processes significantly disrupted in IBD that have yet to be investigated
in the context of GBA dysregulation. These underexplored areas may hold the key to
understanding the intricate mechanisms linking gut and brain health in IBD.

The gut microbiota, a diverse community of microorganisms within the gastrointesti-
nal tract, plays beneficial roles in metabolism, vitamin and essential metabolite synthesis,
and pathogen inhibition [43–45]. As the result of inflammation in IBD, as a consequence
of specific IBD treatments, gut microbiota undergoes dramatic changes, observed in both
patients and animal models [46,47]. An imbalance in the gut microbiota reflected in the
disproportion between pathogenic and symbiotic bacteria may occur in addition to the
loss of bacterial diversity calling dysbiosis. Dysbiosis, through effects on certain cytokines
like tumor necrosis factor, interleukin 6, and interleukin beta, can induce an inflammatory
process associated with an increase in the permeability of the intestinal barrier due to the
depletion of apical junction complexes’ (AJCs) proteins [48–50]. Animal and human studies
have shown that dysbiosis can affect the onset and progression of IBD, as well as autism,
diabetes, Alzheimer’s, and Parkinson’s diseases [51–57]. Animal studies have shown that
microbiota can significantly impact brain function and behavior, with “germ-free” mice
displaying deviations in brain volume, myelination, as well as CNS deficits, such as anxiety-
like behaviors, memory and sociability impairments, and depressive symptoms [58–60].
Both animal and human studies demonstrate that individuals with depression often present
a microbial imbalance characterized by reduced microbial abundance and species diversity.
It has been demonstrated that the transfer of microbiota from patients with depression to
rats induces depression-like behavior along with alterations in tryptophan metabolism
in the recipient animals [61]. In another experiment involving the transfer of microbiota
from patients to “germ-free” mice, not only were neurobehavioral changes observed, but
there was also evidence of shifts in metabolic regulation [62]. Changes in the microbiota
composition have been observed in patients with autism, and the ability of fecal super-
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natant from autism spectrum disorder patients to induce gastrointestinal epithelium and
ENS malfunctions in mice has also been demonstrated [63,64]. Therefore, symbiotic and
pathogenic microbiota can also be involved in the GBA by producing biologically active
metabolites: short-chain fatty acids and their precursors, particular neurotransmitters, and
a variety of signaling molecules that can influence neural activity, immune response, as
well as other physiological processes within the host organism [65,66]. In this review, we
compile evidence regarding the currently underrated processes through which microbiota
may contribute to the GBA imbalance in the course of IBD pathogenesis.

1.2. Diet Effects and Food Behavior in IBD

Studies exploring the involvement of diet in IBD patients have uncovered a significant
impact of dietary preferences and food behavior both on neural functions and IBD progres-
sion. IBD patients with high food involvement tend to seek pleasurable food; however,
individuals with high health engagement levels have a better emotional state and demon-
strate lower hospitalization rates and relapses [7,67]. At the same time, avoidant eating
behaviors common in IBD patients pose a high risk of avoidant/restrictive food intake
disorder (ARFID). This, along with impaired absorption of nutrients in IBD, can result in
supplemental deficits, digestive malfunction, and metabolic dysregulation [68]. Murine
studies have found dietary effects on intestinal microbial diversity associated with changes
in cognitive ability and behavior [69–71] and similar observations have been made in
human studies [72,73]. Specific dietary schemes are now widely discussed as an approach
to ameliorate mental health, with growing evidence from preclinical and clinical studies
of the dietary impact on neurologic and psychiatric disorders, including neuroinflamma-
tion, cognitive decline, depression, autism spectrum disorder, epilepsy, Alzheimer’s, and
Parkinson’s diseases [74,75].

Thus, the interrelation between gut microbiota, diet, and metabolism represents a
finely balanced equilibrium that not only plays an essential role in the overall health but
also in brain physiology, influencing behavior and mental health. In IBD, this equilibrium is
inevitably imbalanced, along with chronic and recurrent inflammatory processes. Together,
these factors lead to malfunctions of fundamental cellular mechanisms such as metabolic
homeostasis, ion transport, and cytoskeletal and mitochondrial functions. In turn, these
profound changes make IBD difficult to treat and cause associated disease complications,
substantially involving GBA dysregulation [76,77]. The GBA in IBD has been the focus of
recent research, with accumulating data on the impact of main IBD-related processes on
the GBA, including inflammation, microbiome, and vagus nerve and ENS functions. At the
same time, cellular and molecular processes essential for nervous system function that are
impaired in IBD remain largely unexplored.

The purpose of this review is to summarize research data on metabolic homeostasis,
mitochondrial function, ion transport, and cytoskeleton function involvement in IBD-
related pathological processes concerning GBA imbalance (Figure 1) and consider in detail
the possible pathways and cellular and molecular mechanisms that link these effects to each
other, leading to the self-exacerbation of the negative effects of IBD. This review intends to
put a research focus on these currently underexplored areas in regard to GBA. We believe
that elucidating the role of these mechanisms in the GBA could open prospects for new
systemic therapeutic approaches in IBD.
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mune responses, oxidative process dysregulation, mitochondrial malfunction [82–85], 
and remarkable lipidome deregulation [86,87]. In animal models of colitis, mass spec-
trometry assays have also revealed substantially altered lipid ratios and levels of en-
zymes that regulate major metabolic signaling cascades, including oxidative stress, 
β-oxidation, glycolysis, and the citric acid cycle [88–92] (Figure 2а). The lipidome home-
ostasis is fundamental to neural cell function and the nervous system makes great use of 
all classes of lipids (fatty acids, triglycerides, phospholipids, sterol lipids, and sphin-
golipids) and also contains the greatest proportion of lipids in the human body [93]. Li-
pids also play a key role in maintaining total metabolic homeostasis through cellular 
processes mediated by leukotriene, prostanoid, and endocannabinoid signaling; they also 
attenuate inflammation, regulate metabolic diseases, and control physiological processes 
[94–98]. The involvement of fatty acids and their derivatives in intracellular signaling is 
well documented [99–101]. Since phospholipids are main structural components of cel-
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chondrial dysfunction via membrane structure impairments [102–104]. Transmembrane 
proteins’ conformation and functionality, including receptors and ion channels’, are also 
highly dependent on membrane lipid composition [104,105]. Therefore, regarding met-
abolic dysregulation in IBD, the lipidome imbalance may play a key role in GBA 
dysregulation (Figure 2b). Despite the critical role of lipid metabolism and energy ho-
meostasis in neural functions, the involvement of these processes in GBA dysregulation 
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Figure 1. Schematic overview of metabolic dysregulation, mitochondrial function, cationic transport,
and cytoskeletal dysregulation roles within GBA imbalance in IBD pathogenesis. Blue arrows indicate
normal interactions; red arrows and broken arrows indicate negative effects of IBD-related processes
and IBD treatment, accordingly.

2. Metabolic Dysregulation

In IBD patients, significant alterations in metabolic processes and pathways are com-
monly observed [78–80]. Metabolic profiling is currently being explored as a method
for early identification of IBD [79–81]. Specific interrelationships have been established
between changes in metabolite levels in IBD and the induction and development of im-
mune responses, oxidative process dysregulation, mitochondrial malfunction [82–85], and
remarkable lipidome deregulation [86,87]. In animal models of colitis, mass spectrom-
etry assays have also revealed substantially altered lipid ratios and levels of enzymes
that regulate major metabolic signaling cascades, including oxidative stress, β-oxidation,
glycolysis, and the citric acid cycle [88–92] (Figure 2a). The lipidome homeostasis is fun-
damental to neural cell function and the nervous system makes great use of all classes of
lipids (fatty acids, triglycerides, phospholipids, sterol lipids, and sphingolipids) and also
contains the greatest proportion of lipids in the human body [93]. Lipids also play a key
role in maintaining total metabolic homeostasis through cellular processes mediated by
leukotriene, prostanoid, and endocannabinoid signaling; they also attenuate inflammation,
regulate metabolic diseases, and control physiological processes [94–98]. The involvement
of fatty acids and their derivatives in intracellular signaling is well documented [99–101].
Since phospholipids are main structural components of cellular and organelle membranes,
dysregulation of the lipidome may contribute to mitochondrial dysfunction via membrane
structure impairments [102–104]. Transmembrane proteins’ conformation and functional-
ity, including receptors and ion channels’, are also highly dependent on membrane lipid
composition [104,105]. Therefore, regarding metabolic dysregulation in IBD, the lipidome
imbalance may play a key role in GBA dysregulation (Figure 2b). Despite the critical role
of lipid metabolism and energy homeostasis in neural functions, the involvement of these
processes in GBA dysregulation in IBD remains poorly understood.

2.1. PUFAs’ Role and Therapeutic Potential in GBA Balance Restoration in IBD

Among major classes of lipids in CNS, polyunsaturated fatty acids (PUFAs) have the
most well-defined regulatory role. n-3 PUFAs have been shown to be a limiting factor
for proper neurodevelopment during the perinatal period [106]. PUFAs are implicated in
neuronal signaling, neurogenesis control, vesicular processes, and central glucose home-
ostasis and are known for their ability to affect the mood and cognition [101,107]. Neural
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tissue is enriched with two major PUFAs, arachidonic acid and docosahexaenoic acid,
which are crucial for brain development and neural functions [108–110]. PUFAs’ primary
targets are fatty acid-activated receptors, the most studied of which are the peroxisome
proliferator-activated receptors (PPARs). PPARβ and PPARδ in the brain have been shown
to regulate inflammatory responses and fatty acid metabolism [111]. PUFAs’ involvement
is also known in multiple distinct signaling pathways in neural cells. Anandamide and
2-arachidonoylglycerol, the arachidonic acid derivatives, are the major forms of endo-
cannabinoids in the brain and are known to bind to cannabinoid receptor types 1 and 2 both
in neuronal and glial cells to suppress neurotransmitter release [112,113]. This has been
shown to mediate short-term synaptic plasticity and long-term depression in excitatory
and inhibitory synapses [114]. A relationship between n-3 PUFAs and the gut microbiota
has been shown: n-3 PUFAs intake alters the abundance and species composition of the mi-
crobiome. An imbalanced consumption of n-3/n-6 PUFAs in the diet can induce dysbiosis,
in particular a significant increase in the Firmicutes/Bacteroidetes ratio, which was shown
to be associated with metabolic imbalance [115]. An n-3 PUFA deficit has been shown to
impair the microbiota composition in metabolic disorders. Conversely, the gut microbiota
can also significantly affect the metabolism and absorption of PUFAs [116].
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Figure 2. Schematic overview of mechanisms of metabolic dysregulation impact on GBA functions
in IBD. (a) Schematic presentation of IBD-induced metabolic dysregulation effects on neural cells’
functions and signaling within GBA. Red boxes indicate metabolic processes found impaired in
IBD; blue boxes indicate neural cellular functions subject to metabolic dysregulation effects; red
arrows indicate negative effects of IBD-related processes; (b) Schematic presentation of IBD-related
lipidome dysregulation effects on cellular and organelle membranes and functions; biosignaling
processes; and extracellular transport and blood–brain barrier permeability. Red boxes indicate
classes of compounds whose metabolism is impaired in IBD; blue boxes indicate cellular functions
subject to the corresponding lipidome dysregulation effects; red arrows indicate negative effects of
lipidome dysregulation.

The beneficial effects of PUFAs on the GBA balance have been demonstrated in both
murine models and clinical trials, leading to their consideration as a supportive sup-
plement in the complex therapy of neuropsychiatric pathologies [117,118]. In IBD, the
anti-inflammatory effects of PUFAs have been observed in murine colitis models [119–121],
along with a preventive effect on liver inflammation and oxidative stress [120,122]. How-
ever, clinical studies on the effects of PUFAs intake in IBD have produced contradictory
results [123,124]. PUFAs likely exert an indirect regulatory effect on IBD-related pro-
cesses [125] and are possibly involved in the complex regulation of lipid homeostasis. Thus,
PUFAs have been shown to downregulate Sterol Regulatory Element Binding Protein 1
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(SREBP1) activity, which is a crucial actor in mitochondrial lipogenesis [126]. Studying
specific PUFA supplements that may benefit GBA in IBD and understanding the involved
regulatory pathways appear to be a promising direction for the research and therapeutic
implication.

2.2. Phospholipid Involvement in GBA Misbalance in IBD

Lipidome dysregulation can lead to cellular membrane damage, as well as significant
changes in crucial cell signaling, excitotoxicity due to excitatory amino acid production rise,
and increased apoptosis [94]. A growing body of evidence highlights the importance of
phospholipid (PL) metabolism dysregulation in the pathological changes associated with
neuronal functions [127,128]. Dysregulation of PL metabolism is implicated in Alzheimer’s
and Parkinson’s diseases, as well as other neural pathologies [102,129]. At the same time,
PL play a significant role in the pathological processes related to IBD [130]. Inflammation-
induced cell membrane destruction, a common trait of IBD, can affect both enterocytes and
ENS cells during both acute and chronic phases of IBD. Consequently, receptor-mediated
pathways involving PL cleavage into secondary messengers may substantially contribute
to the GBA imbalance in IBD.

The catabolism of the major membrane phospholipid, phosphatidylcholine (PC), is asso-
ciated with crucial regulatory pathways in both enteric epithelial and neural cells [130–132].
PC was found to have an effect in the IBD treatment by the gut barrier function modu-
lation, polarization of macrophages regulation, and by reducing the inflammation and
is also known to have a potential in remodeling gut microbiota [133–135]. Concurring
mechanisms are known for PC hydrolysis, including protein kinase C (PKC)-dependent
and independent pathways. The activation of M-cholinergic receptors due to an increased
need for choline, the precursor of acetylcholine, induces the stimulation of PC-sensitive
phospholipase D [136]. Cholinergic neuron hyperactivation reduces the concentration of
extracellular choline, potentially limiting its entry into neighboring neurons and interfering
with the synthesis of membrane PC [132]. Additionally, phospholipase D activation is
mediated by adrenergic stimulation [137], glutamate, and metabotropic receptors’ stimu-
lation [138]. The PKC impact on phospholipase D catalytic activity is dual: stimulation
via an ATP-independent pathway or inhibition under phosphorylation [139,140]. PC can
also be utilized via the activation of phospholipase A2 that is mediated by the glutamate
effect on NMDA receptors [141,142]. Notably, NMDA receptor stimulation, which mediates
the cleavage of choline from PC, prevents its reutilization into PC by inhibiting choline
phosphotransferase activity. This pathway of glutamatergic activation for acetylcholine
synthesis can precede neuronal death [138]. Therefore, PC is a crucial component and
biochemical regulator of neuronal functions, and its impaired levels and catabolism in IBD
may act as a trigger in GBA imbalance.

Phosphatidylinositol (PI) and its metabolites also play a crucial role in neuronal
functions, orchestrating the membrane transport of mediators, including processes like
endocytosis, exocytosis, and vesicle binding [136,143]. PI metabolism and the formation
of its derivatives have been shown to be impaired in IBD both in patients and in animal
models [144–146]. Phosphorylated forms of PI are crucial regulators in neurotransmission
through the mediators’ release from presynaptic membranes modulation acting on postsy-
naptic receptors [147]. At least 15 cytoskeletal actin-binding proteins have been reported
to interact with or being regulated by phosphoinositides, whose synthesis is regulated
by extracellular signals [148]. Hyperinduction of phosphoinositides hydrolysis leads to
calcium transport impairments that can result in neuronal damage and death [149]. The
decrease in neuronal level PI metabolite, PI-(4,5)-diphosphate, enhances the formation of
β-amyloid from APP, and this process is Ca2+-dependent [150]. PI-(3,4,5)-trisphosphate has
been found to be reduced in the brain of Alzheimer’s disease patients and in mouse models,
in association with endosomal system impairments [151]. Conversely, β-amyloid is known
to affect transmembrane signaling, affecting the metabolism of PI and PI-(4,5)-diphosphate.
PI and PI-(4)-monophosphate are thought to perform a neuroprotective role, since their ad-
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dition to the culture of hippocampal neurons eliminated the toxic effect of β-amyloid [152].
Low concentrations of β-amyloid peptide were shown to stimulate, but high concentrations
to inhibit, phospholipase C activity [153]. Decreased phospholipase C expression in the
brain is associated with the terminal stage of dendrite degradation [154]. Catabolism of
PI is under the control of phospholipase A2, which exhibits activity both under increased
Ca2+ concentration (Ca2+-dependent phospholipase A2) or in Ca2+ absence, the latter being
limited by PL metabolites (Ca2+-independent phospholipase A2) [155]. The activation of
phospholipase A2 is responsible for the biosynthesis of secondary PL messengers: arachi-
donic acid, eicosanoids, PAF, and diglycerides [156]. Phospholipase A2 is also involved in
processes associated with increased dendritic growth and neuronal differentiation during
the nervous system development, as well as involved in cognitive functions [157,158].

Dietary modulation and therapeutic approaches towards normalizing PL metabolism,
as far as the PL membrane composition maintaining the organelle health, may emerge as a
novel approach in the systemic therapy of IBD and its related effects on the GBA.

2.3. Bile Acids’ Shift in IBD and Their Regulatory Potential in GBA

Bile acids (BAs) are among key metabolic regulators of microbial origin in the intestine;
primary bile acids, cholic acid (CA) and chenodeoxycholic acid (CDCA), are synthesized in
liver hepatocytes from cholesterol. The intestinal microflora is responsible for deconjuga-
tion, desulfation, conjugation with amino acids, and the formation of secondary BAs in the
intestinal lumen [159,160]. Bacteria belonging to the phylum Firmicutes, such as Clostridium
cluster XIVa, are responsible for the production of secondary BAs [161,162]. BAs perform a
range of regulatory functions, acting as signaling molecules in cholesterol, lipid, steroid,
and glucose metabolic cycles [163]. Changes in the composition of the microbiota and its
enzymatic activity, characteristic of IBD, lead to alterations in the luminal pool of BAs and
the range of functions they perform; this contributes to the maintenance of chronic inflam-
mation and the formation of metabolic disorders [164–168] (Figure 2b). BA metabolism and
signaling are substantially altered in IBD, with bacteria producing significant amounts of
unusual BAs, whose roles remain to be fully elucidated [165,169]. In IBD patients, particu-
larly those with Crohn’s disease, the impairments in the deconjugation, transformation,
and desulfation activities of the gut microbiota are observed. This disruption leads to
increased levels of sphingolipids and the primary bile acids CA and CDCA in the stool,
alongside a depletion of secondary bile acids (lithocholic acid (LCA) and deoxycholic acid
(DCA)) [170]. Significant reductions in secondary BAs (LCA and DCA) have been observed
in the stool and serum samples of Crohn’s disease patients with psychological disorders.
These patients’ stool samples showed an enrichment of primary BAs (CA and CDCA),
while their serum exhibited elevated concentrations of dehydrocholic acid (DHCA) com-
pared to healthy volunteers [171]. Additionally, levels of taurodeoxycholic acid (TDCA),
taurolithocholic acid (TLCA), and tauro-β-muricholic acid (TβMCA) in feces positively
correlated with anxiety scores [171,172]. High levels of sulfated fatty acids have also been
identified in the feces of IBD patients, a characteristic trait of the disease [165]. Furthermore,
Crohn’s disease patients exhibit elevated levels of BAs conjugated with phenylalanine,
tyrosine, or leucine [160]. Comprehensive omics analyses of fecal samples from patients
with various types of IBD have shown shifts in bacterial taxa with marked sensitivity to
BA-rich environments, including Faecalibacterium prausnitzii, Gammaproteobacteria u Blautia
spp. [173,174]. IBD patients with significant depression or anxiety displayed markedly
reduced fecal microbiota diversity and lower counts of Faecalibacterium prausnitzii com-
pared to patients without psychological disorders [171]. Studies in rats have demonstrated
that these bacteria possess therapeutic effects in alleviating depressive and anxious states,
highlighting their potential role in managing psychological symptoms in IBD patients [175].
Recent clinical findings have confirmed the involvement of gut microbiota dysbiosis and
altered BA metabolism in the psychological disorders associated with Crohn’s disease [171].

BAs have been shown to penetrate the blood–brain barrier [176], and numerous studies
have identified both primary and secondary BAs in the brains of humans and rats [177–180].



Int. J. Mol. Sci. 2024, 25, 12125 8 of 36

The unconjugated bile acids CA, CDCA, DCA, and ursodeoxycholic acid (UDCA) can
pass through the phospholipid bilayer of the blood–brain barrier due to their hydrophobic
properties [173,177], and their concentrations in the brain correlate with their concentrations
in serum [141]. Conjugated BAs, due to their greater hydrophilicity and size, can pass
through the blood–brain barrier via active transport. Expression of mRNAs of various bile
acids transporters was found in the vascular plexus of rat brain ventricles [181]. It was
shown that the increase in BA concentration in the blood serum in rats after bile duct ligation
or intravenous injection of DCA and CDCA caused structural damage, increased blood–
brain barrier permeability, and increased concentration of these BAs in the brain [182,183].
In vitro studies have demonstrated that BAs can disrupt tight junctions in monolayers
of rat brain microvascular endothelial cells by causing phosphorylation of occludins and
increasing permeability via a Rac1-dependent pathway [182]. In a mouse model of non-
alcoholic steatohepatitis (NASH) combined with moderate chronic colitis, alterations in
the composition and levels of BAs were observed. These changes were accompanied by an
increase in the protein S100β, a marker of brain permeability and glial cell activation, in
the blood serum, along with a significant reduction in the tight junction proteins ZO-1 and
occludins [184].

The most extensively studied bile acid receptors are the nuclear receptor farnesoid X
receptor (FXR) and the membrane-bound receptor G protein-coupled bile acid receptor 1
(GPBAR1), also known as Takeda G protein-coupled receptor 5 (TGR5) [185,186]. These
receptors are highly conserved in humans and mice [187]. FXR is the primary regulator
of BA synthesis and enterohepatic circulation. The signaling pathways and molecular
mechanisms through which FXR and TGR5 interact with BAs in the enterohepatic organs
are comprehensively reviewed in [188]. These and other BA receptors have also been
identified in the brains of humans and rodents [189]. Studies on FXR knockout mice have
demonstrated that FXR plays a role in the homeostasis of glutamatergic, GABAergic, sero-
tonergic, and noradrenergic neurotransmitter systems in the hippocampus and cerebellum,
influencing locomotor and cognitive functions as well as behavior [190]. In mouse mod-
els of hepatic encephalopathy, the activation of FXR receptors in brain neurons by bile
acids is associated with neurological decline [191]. Increased expression of FXR in the
hippocampus of naïve rats induces depressive-like behavior and reduces the expression of
brain-derived neurotrophic factor (BDNF) [192]. Conversely, the knockdown of hippocam-
pal FXR completely prevents the negative effects of chronic unpredictable mild stress on rat
behavior [192]. In cell culture studies, conjugates with the amino acids phenylalanine, tyro-
sine, or leucine have been identified as potent agonists of the human FXR. These conjugates
are comparable in efficacy to CDCA, the most powerful natural FXR agonist. It was shown
that the level of BAs conjugated with the three listed amino acids was significantly higher
in the dysbiotic state of patients with Crohn’s disease but not in patients with ulcerative
colitis [160]. When mice were fed these compounds, there was a notable reduction in
the expression of downstream FXR target genes responsible for bile acid synthesis in the
liver. [160]. In the brain, the bile acid receptor TGR-5 is present on neurons, astrocytes,
and microglial cells. Studies on a mouse model of hepatic encephalopathy, as well as
in vitro studies on primary neurons and the mouse microglia cell line (EOC-20), have
shown that the central activation via intracerebroventricular infusion of a TGR-5 agonist
leads to reduced neuronal expression of chemokine ligand 2 (CCL-2), decreased production
of pro-inflammatory cytokines, and reduced microglial proliferation [193]. Both in vitro
and in vivo studies in mouse models of acute neuroinflammation have demonstrated that
the binding of tauroursodeoxycholic acid (TUDCA) to TGR-5 exerts anti-inflammatory
effects, influences microglial phenotype, reduces NFκB activation, and induces the TGFβ
pathway [194]. Another bile acid receptor, sphingosine-1-phosphate receptor (S1PR2), is
expressed by endothelial cells and neurons. In mice, S1pr2−/− knockout showed weaker
disruption of the blood–brain barrier and reduced neutrophil infiltration during systemic
inflammation induced by lipopolysaccharide compared to S1pr2+/− littermates, indicating
S1PR2’s role as a mediator of cerebrovascular inflammation [195]. In an azoxymethane-



Int. J. Mol. Sci. 2024, 25, 12125 9 of 36

induced mouse model of hepatic encephalopathy, high levels of the conjugated primary
bile acid taurocholic acid in the blood led to the activation of S1PR2 in brain neurons
(cortex and hippocampus), resulting in increased expression of mRNA and secretion of
CCL2. This activation subsequently stimulated microglia, leading to increased expression
of pro-inflammatory cytokines and sustained neuroinflammation [196]. The specific ways
of brain-localized bile acid receptors’ contribution to neurological changes remain largely
unclear. However, many of these receptors are considered potential therapeutic targets for
treating neurodegenerative diseases and psychiatric disorders [194,195,197,198].

Recently, the first clinical data confirming the involvement of gut dysbiosis and BA
metabolism alteration in psychological disorders in Crohn’s disease were obtained [171]. As
our understanding of BAs’ roles in neural functions grows, they are becoming perspective
actors in the gut–brain axis in the context of IBD and gut microbiota misbalance.

Metabolic dysregulation is fundamentally involved in IBD and should be considered in
relation to the GBA dysregulation. Currently, data are fragmentary, and specific pathways
are poorly understood, necessitating a systematic approach to identify the metabolic
pathways disrupted in IBD and their involvement in the GBA, as far as targeted strategies
for their normalization are concerned. A promising avenue in diagnostics is a personalized
metabolomics analysis approach. Potential methods for metabolic correction may include
(i) the therapeutic and dietary compensation of supplementary deficiencies, addressing
specific metabolic deficits defined, and (ii) the development of pharmaceuticals to modulate
metabolic pathways and restore metabolic homeostasis.

3. Mitochondrial Functions

Currently, an increasing number of studies identify mitochondria as a crucial compo-
nent of the GBA [199,200]. In IBD pathogenesis, mitochondrial dysfunction significantly
contributes to the disruption of the intestinal epithelial barrier [90,201]. Mitochondria play
a central role in cellular energy supply, ATP production, neural signal transduction, actin
cytoskeleton dynamics (Figure 3); they are also involved in the homeostasis of cellular
cations such as calcium and potassium, thereby participating in the regulation of various
signaling pathways that either prevent or initiate inflammation and cell death [202–204].
Mitochondria are believed to adapt to intracellular changes in energy balance to maintain
homeostasis. However, when metabolic dysregulations exceed the adaptive capabilities,
mitochondrial dysfunction occurs, resulting in decreased energy production, the generation
of reactive oxygen species (ROS), and oxidative stress-induced apoptosis [105,205]. Given
the pivotal roles that mitochondria play in the physiology of neural cells, understanding
the mechanisms of mitochondria involvement in GBA dysregulation in connection with
IBD-related pathological processes, including metabolic dysregulation, could open new
avenues for IBD research and therapy (Figure 3a).
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droplets and mitochondrion-associated membranes’ role in mitochondrial functions and calcium
transport regulation. MAM—mitochondria-associated endoplasmic reticulum membrane, IP3R—
inositol triphosphate receptor (a membrane glycoprotein complex that acts as a Ca2+ channel),
VDAC—voltage-dependent anion channels, PLN1 and PLN5—surface proteins of lipid droplets
involved in the contact of lipid droplets with mitochondria, MIGA2 is an outer mitochondrial
membrane protein that directly links mitochondria to lipid droplets. (c) Mitochondria regulate actin
filament dynamics that are crucial for intracellular junctions’ integrity through ATP production.
Mitochondrial respiration also promotes mitochondria-associated intra-axonal translation of actin
regulatory proteins involved in axonal branching. Both the mitochondria-dependent regulation
of actin dynamics and intra-axonal translation are regulated by the modulation of mitochondrial
respiration by metabolic signals and cytoskeleton dynamics. Blue arrows indicate the directions of
influence between the interconnected processes shown in the schemes.

3.1. Lipid Homeostasis Interrelation with Mitochondrial Functions

Lipid metabolism begins with the emulsification and absorption of lipids in the intes-
tine and continues through their uptake and transport into cellular organelles, including
mitochondria [130,206]. Depending on the availability of metabolic substrates, energy
balance, and endocrine signaling, fats are either stored in lipid droplets within adipose
tissue or oxidized in mitochondria and peroxisomes. Mitochondria are one of the main
compartments for the synthesis of PL, such as phosphatidylethanolamine, which is the sub-
strate for biosynthesis of PC, the main phospholipid of membranes and lipid droplets [104].
Unlike the transfer of free fatty acids (FFAs) from lipid droplets to mitochondria for energy
production, mitochondria–lipid droplet contact can also facilitate the transfer of lipids from
mitochondria to lipid droplets. Both mitochondria and lipid droplets are highly dynamic
organelles. Contact sites between mitochondria and lipid droplets have been shown to sup-
port the expansion of lipid droplets by increasing ATP synthase-dependent triacylglycerol
(TAG) synthesis or by stimulating lipid droplet transport [207,208]. It was hypothesized
that atypical contacts between mitochondria and lipid droplets increased under conditions
of high energy demand and were essential for both lipolysis and lipogenesis in response
to various metabolic triggers [209]. Several members of the nuclear receptor superfamily
influence all aspects of lipid metabolism [210]. PPARs and liver X receptors (LXRs), acting
in concert with PPARγ coactivator 1α (PGC-1α), regulate insulin sensitivity and lipid
processing [211–213]. These receptors are the focus of intensive pharmacological research
aimed at expanding the arsenal of small molecule ligands for the treatment of diabetes and
metabolic syndrome [210].

Increasing evidence suggests that mitochondria, endoplasmic reticulum (ER), and lipid
droplets are functionally interconnected to facilitate the exchange of small molecules and
metabolites through membrane contact sites. These contact sites are critical for maintaining
organelle function and overall cellular homeostasis, including lipid homeostasis [214,215].
Current research highlights the importance of contact sites between mitochondria and
the ER, as well as between mitochondria and lipid droplets, in regulating cellular lipid
metabolism [216]. For instance, under starvation conditions, cells adapt by switching
their metabolism from glycolysis to fatty acid oxidation. This metabolic shift is primarily
achieved through the breakdown of lipid droplets and the subsequent transport of FFAs
into the mitochondria for β-oxidation [217]. Given the chronic digestion and absorption
impairments in IBD [218], ENS cells may enter the starvation condition. Additionally, cells
can activate autophagy as an adaptive response to starvation, breaking down organelles
and cell membrane proteins to generate biomolecules, such as amino acids and FFAs,
necessary for survival [219]. However, excessive FFAs can be toxic to cells, generating
ROS and mitochondrial damage leading to cell death due to lipotoxicity [220,221]. In
the nervous system, autophagy is the most important mechanism for regulating cellular
functions and neuronal homeostasis; impairments in autophagy are associated with many
neurodegenerative diseases [222–224]. Both constitutive and stress-induced autophagy in
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neural cells is involved in the control and renewal of damaged mitochondria ER and other
organelles [219]. Lipid homeostasis also has a significant impact on autophagy processes
in neural cells [225], and the related mitochondrial dysfunction in IBD may be one of the
clues to the GBA dysregulation in IBD.

3.2. The Role of Lipid Droplets and Mitochondrion-Associated Membranes in Mitochondrial
Functions and Pathology

Mitochondria contain most of the enzymes necessary for triglyceride metabolism,
emphasizing their close functional connection with lipid substrates. Lipid droplets are
dynamic intracellular organelles that vary in size and primarily store TAG and sterol esters
as sources of bioenergy [208]. Lipid droplets are typically located near the rough ER,
and lately, their regulatory role is emerging, particularly in lipid metabolism and energy
regulation [226]. Lipid droplet accumulation in nervous cells has been widely shown as
the characteristic trait upon neuroinflammation and neurodegenerative processes [227].
Despite the lack of research on lipid droplets in IBD-related processes, lipid droplets in the
enterocytes are considered as a functional link between lipid homeostasis and inflammatory
processes [228]. Two types of interactions between lipid droplets and mitochondria are
distinguished: dynamic contact, where lipid droplets bind to mitochondria via protein
complexes, and stable contact, where proteins facilitate a strong and stable membrane
attachment of mitochondria to lipid droplets [229]. Proteins involved in the contact be-
tween mitochondria and lipid droplets include the surface proteins of lipid droplets PLN1,
PLN5, and the outer mitochondrial membrane protein MIGA2, which directly connects
mitochondria with lipid droplets (Figure 3b). These contacts promote the synthesis of
fatty acids, their conversion to triglycerides, and their accumulation in lipid droplets [209].
Peridroplet mitochondria, which are located in close proximity to lipid droplets, have
a distinct biochemical profile compared to the rest of the cytosolic mitochondria popu-
lation [209]. The fusion of lipid droplets with the mitochondrial matrix is thought not
only to facilitate the use of lipids for metabolic needs but also their accumulation, as the
mitochondrial matrix contains most of the enzymes of the tricarboxylic acid cycle, which
remain active in peridroplet mitochondria [209,230]. The fusion of mitochondria with
lipid droplets, observed in macula cells of the human vocal cords, suggests the use of
triglycerides from lipid droplets for the cell’s metabolic needs [231]. Impaired glycolysis,
characteristic of intestinal tissues in IBD [232], can be assumed to secondarily inhibit mito-
chondrial metabolism due to a decrease in the amount of pyruvate entering the glycolytic
pathway. This inhibition, in turn, may activate transcription factors and corresponding
enzymes that promote more active oxidation of fatty substrates, as well as stimulate mi-
tochondrial biogenesis necessary to restore ATP production and compensate for energy
deficits [233]. Increased lipid droplet biogenesis was found in association with oxidative
stress and elevated ROS production [234]. The recent elegant study in a mouse model
demonstrating the involvement of the GBA showed an association between targeting ROS
in the intestine and behavioral changes [235].

The outer membrane of mitochondria and the membrane of the adjacent ER can
form common areas, known as mitochondrion-associated membranes (MAMs), which
are essential for proper communication between these organelles (Figure 3b). Currently,
MAM contacts are associated with the regulation of metabolism, autophagy, aging, and
the production of ROS [236]. One of the primary functions of MAMs is the transport of
calcium from the ER to mitochondria, allowing fine regulation of organelle activity and their
role in executing physiological and pathological signals within the cell [237]. The protein
composition of MAMs is dynamic and depends on the conditions and metabolic activity
of the cell; according to proteomic data, MAMs can include more than 1000 proteins [238].
The structure and function of MAMs are critical for many cellular processes. Recent studies
have shown that ion transport regulation is supported by the transmission of signals
between the ER and mitochondria through MAMs by several proteins located within
these structures. These proteins include those encoded by the PARK genes and some
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proteins associated with neurodegeneration, such as huntingtin and presenilin [239]. The
alteration of MAMs contributes to pathogenesis features such as autophagy dysregulation,
mitochondrial dysfunction, oxidative stress, and more recently, neuronal death. These
alterations are associated with neurodegenerative diseases such as Parkinson’s disease,
Alzheimer’s disease, and Huntington’s disease [103,240,241].

3.3. The Mitophagy Regulation Importance in Neuronal Cell Health and Function

In neuronal cells, the efficient removal of damaged mitochondria through mitophagy,
a highly conserved cellular process, is fundamental for maintaining mitochondrial and
metabolic homeostasis, energy provision, and neuronal survival [242,243]. In healthy tis-
sue, damaged and dysfunctional mitochondria are removed by mitophagy, preventing the
accumulation of defective organelles and the development of pathological effects [242,244].
Maintaining mitochondrial function is crucial for cellular homeostasis and viability, and
cells have developed a broad arsenal of quality control mechanisms to detect and eliminate
defects in mitochondrial activity [244]. These mechanisms include mitochondrial biogenesis
control, integrated stress response, fission and fusion events, and the selective autophagic
removal of damaged or excess organelles via mitophagy. Defects in mitophagy, partic-
ularly in neuronal cells, have been found in association with neuropathology, including
Alzheimer’s, Parkinson’s, and Huntington’s diseases [245,246]. Mitophagy is mediated by
the major proteins PTEN-induced kinase 1 (PINK1) and Parkin [247]. In normal mitochon-
dria, PINK1 resides on the outer mitochondrial membrane but is degraded by the inner
mitochondrial membrane protease PARL, suppressing the mitophagy signal [247]. How-
ever, in damaged mitochondria with reduced membrane potential, PINK1’s amount was
shown to be elevated and recognized by the Parkin protein, an E3 ubiquitin ligase, marking
the mitochondria for subsequent degradation [248]. Most Parkin ubiquitination targets are
localized within the mitochondria. During the early stage of mitophagy, Parkin translocates
to dysfunctional mitochondria, activates PINK1, and ubiquitinates outer mitochondrial
membrane (OMM) proteins [249]. During mitophagy induction, PINK1 accumulates on the
OMM of damaged mitochondria, where it recruits and activates Parkin through phosphory-
lation. Subsequently, the factor p62 binds to ubiquitinated mitochondrial proteins, resulting
in the encapsulation of mitochondria by LC3 autophagosomes, which are then degraded
with the lysosomes involvement [250]. Animal models have shown that knockout of key
genes responsible for mitophagy, particularly Atg5 or Pink1, leads to an increase in ROS
levels [251]. The accumulation of a large number of dysfunctional mitochondria contributes
to cell damage, a further increase in ROS levels, and a general inhibition of cellular en-
ergy production [219,243]. Impaired mitophagy results in the accumulation of damaged
mitochondria and cellular dysfunction, contributing to neurodegeneration [244,246,252].

Mitophagy ensures the removal of dysfunctional mitochondria through several path-
ways that control, initiate, and facilitate this process. Mitophagy disruptions can adversely
affect neuronal functions, as functional mitochondria are crucial for neurotransmitter
synthesis, release, and reuptake at the synapse [243,244]. The accumulation of damaged
mitochondria can lead to synaptic dysfunction and neurodegeneration, whereas mitophagy
maintains synaptic integrity by eliminating damaged organelles. Damaged mitochondria
can also be removed via autolysosomes, and if mitophagy is blocked, mitochondria can
induce cell death (apoptosis and necrosis) [243,253]. Signal transduction between microglia,
astrocytes, and neurons, which is essential for glial cell function, is also modulated by
mitophagy-related pathways. Transcellular mitophagy, a process in which cells release
mitochondria to be engulfed and degraded by neighboring cells, has been demonstrated in
the brain [254]. For instance, glial cells can transfer mitochondria to neurons during a stroke.
Dysregulation of this process can lead to neuroinflammation and loss of proteostasis [255].
Receptor-mediated transcellular mitophagy, activated under specific conditions, is driven
by mitochondrial receptor proteins located on the outer or inner mitochondrial membrane
containing various motifs. Although the process of transcellular mitophagy is not yet well
understood and requires further study, it holds significant implications for neuronal health.
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Mitophagy and mitochondrial health control are valuable questions requiring further re-
search in the context of the GBA [202,256]. Maintaining a functionally active mitochondrial
network and the approaches to regulate the population of these organelles in IBD-related
conditions could be ultimately essential for the GBA function.

Thus, understanding the roles of mitochondrial functions in the GBA could reveal
novel insights into the IBD pathophysiology and related dysfunctions, leading to the
development of new therapeutic strategies aimed at preserving or restoring mitochondrial
health in IBD. The interactions between lipid droplets and mitochondria, particularly
through membrane contact sites, are believed to be crucial for the regulation of lipid
metabolism and the maintenance of cellular homeostasis. Further research into the roles
and regulation of these processes within the context of GBA may provide valuable insights
into restoring metabolic pathways in IBD.

4. Cationic Transport Dysregulation

Dysregulation of cationic balance is a crucial factor in the pathogenesis of numerous
diseases, including those affecting the nervous system. The study of the roles of cations
(Zn2+, Ca2+, Na+, K+, Mg2+) in CNS function remains highly relevant both under normal
conditions and in pathological processes [257–260]. Calcium ions (Ca2+) play a decisive
role in maintaining physiological and biochemical processes within cells. As a vital intracel-
lular messenger, Ca2+ is actively involved in numerous physiological functions, including
neuronal excitation, muscle contraction, blood clotting, and enzyme activation. It also plays
roles in cell differentiation, apoptosis, the immune response, and tumorigenesis. This broad
range of functions necessitates a homeostatic regulatory system [261]. It is also involved
in cell differentiation and apoptosis, in the immune response, and plays a significant role
in tumorigenesis [262,263]. This broad range of functions necessitates a homeostatic regu-
latory system [264]. The CNS is particularly dependent on calcium homeostasis, and its
deregulation is closely associated with several diseases, notably neurodegenerative and in-
flammatory diseases [260], including IBD [265]. It is highly plausible that Ca2+ homeostasis
plays a significant role in the GBA (Figure 4).
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significantly affects mitochondrial function’s and actin dynamics in both enterocytes and neurons;
TRP ion channels perform crucial functions in enteric nervous system (ENS) neurons and regulate
calcium transport and response to various signals; calcium transport affects gut epithelial integrity,
and calcium deficit induces “leaky gut” syndrome; TRP ion channels and cationic transport regulate
immune responses via immune cells receptors’ signaling.

Modulating calcium influx into cells and targeting calcium-mediated signaling path-
ways may represent promising therapeutic approaches for these diseases. In this context,
calcium channels are considered potential targets in IBD [266–268]. Intracellularly, three
major groups of channels are responsible for releasing calcium from the ER: ryanodine re-
ceptors (RyR) [269], inositol-3-phosphate receptors (IP3R) [264,269], and two-pore channels
(TPC) [270]. Several calcium channels within the plasma membrane are also crucial for CNS
cell function, including voltage-gated calcium channels (VGCC) [271], ionotropic glutamate
receptors [272,273], calcium release-activated calcium (CRAC) channels [274], purinergic
P2X receptors [275], and transient receptor potential (TRP) ion channels [276]. Under-
standing and targeting Ca2+ channels and their regulatory pathways could provide new
insights and therapeutic opportunities for managing GBA function in IBD, underscoring
the importance of maintaining cationic balance in both gut and mental health.

4.1. TRP Ion Channels’ Role in the Inflammation and ENS Dysregulation in IBD

TRP ion channels are a large group of cation channels through which cells respond
to various external stimuli. These channels are sensitive to temperature, tactile, and pain
stimuli, are involved in mechanical and taste sensitivity, visual perception, and play an
important role in the immune response and nociception. TRP ion channels are widely
expressed in the central and peripheral nervous systems, as well as in non-neuronal cells
such as those of the skin, bladder, pancreas, and spleen [277–281]. The currently known
TRP ion channels form a large and heterogeneous superfamily, numbering more than
28 types and subdivided into subfamilies. In mammals, there are six subfamilies: TRPC
(canonical), TRPV (vanilloid), TRPM (melastatin), TRPA (ankyrin), TRPP (polycystin),
and TRPML (mucolipin) [280,282,283]. Accumulating evidence from clinical and animal
studies supports the significant contribution of TRP ion channels to the pathophysiology
of IBD. In this regard, they represent an attractive target for developing new therapeutic
approaches [266,268,284–286]. TRPV1, TRPV2, TRPV4, TRPA1, TRPM2, and TRPM8 have
been shown to be involved in the mechanisms of chronic inflammation and pain observed
in IBD [287–291]. In the gastrointestinal tract, TRP ion channels are expressed in primary
afferent sensory neurons and enteric neurons that jointly innervate the gastrointestinal
tract [266,292,293]. TRP channels are also present in gastrointestinal non-neuronal cells,
including enterocytes and enteroendocrine cells, such as enterochromaffin cells [294,295].

The activation of TRPV1, TRPA1, TRPV4, and TRPM8 have been shown to me-
diate the release of immunomodulatory neuropeptides by afferent neurons, including
calcitonin-gene-related peptide (CGRP) and substance P (SP), which induce inflammatory
responses [267,296,297]. The alterations of expression levels of these ion channels have
been detected in IBD patients, as well as in mouse colitis models [267,268,289,298,299].
TRPV1 and TRPA1 ion channels are the most studied in the context of their involvement in
intestinal inflammation. Both in IBD patients and rodent models, a significant change in the
levels (both mRNA and protein) of TRPV1 and TRPA1 has been shown, which may indicate
an important role of these ion channels in the inflammatory response regulation [300].
TRPV1 is hypothesized to be responsible for neuropathic inflammatory pain [300,301], as
its activation promotes an increase in intracellular Ca2+ concentration and subsequent
release of neuropeptides SP and CGRP from afferent sensory neurons, along with key
proinflammatory cytokines [302]. TRPA1 is known to be involved in inflammatory reac-
tions and the development of mechanical and chemical hypersensitivity in the colon [303].
The activation of TRPA1 may have a protective effect in IBD by reducing the expression of
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some proinflammatory neuropeptides, cytokines, and chemokines [300]. TRPV4 mRNA
expression is increased in IBD patients [304], and selective blockade of TRPV4 in a mouse
model of ulcerative colitis reduced intestinal inflammation and relieved pain [305]. A
review summarizing data of experimental and clinical studies concluded that the TRPV4
ion channel could be considered as a therapeutic target for IBD [306].

The members of the TRPM subfamily have also been shown to be involved in IBD.
Heat-sensing TRPM2 is involved in inflammatory pain and promotes visceral hypersen-
sitivity by stimulating a range of immune functions [307]. In the gastrointestinal tract,
TRPM2 is expressed mainly in mucosal macrophages and mast cells [308]. In a rat model
of ulcerative colitis, the increased expression of TRPM2 was detected in the colon, and
TRPM2 inactivation reduced inflammation in a mouse model of DSS-induced colitis [288].
TRPM8 ion channel activation by the agonist icilin in a mouse colitis model demonstrated
strong anti-inflammatory and analgesic effect [290]. These effects may also occur due to
icilin suppressing activity on another ion channel, TRPV1, which is a nociceptor that can be
co-expressed with TRPM8 [309].

4.2. TRP Ion Channels and Gut Microbiota

Due to their immunomodulatory function through neuropeptides and immune cells,
TRP channels are associated with immunity and gastrointestinal inflammation. IBD is
closely associated with changes in intestinal microbial composition and metabolism, sug-
gesting that the interaction of the gut microbiota with the CNS may occur through receptors
such as TRP ion channels [294,310,311]. ENS sensory neurons innervating the intestine
abundantly express TRP channels [266]. An increasing number of studies aim to identify the
relationship between TRP ion channels and the intestinal microbiota [311,312]. For instance,
Perez-Burgos et al. found that Lactobacillus reuteri dose-dependently reduced capsaicin-
induced activation of jejunal afferent nerves in mice [313], suggesting that TRP channels
may interact with gut microbiota and related metabolites, thereby influencing intestinal
homeostasis. Interestingly, TRPV1 denervation by high doses of resiniferatoxin caused a
decrease in bacterial metabolites and affected bacterial abundance in the gut [312]. In a
study examining the possible interaction of TRPA1 and TRPV1 ion channels (involved in
pain perception) with the gut microbiota, Nagpal et al. showed that Trpa1−/− and Trpv1−/−

knockout mice were as different in microbiota composition from each other and from
wild-type mice [311]. Further research into the mechanisms of the relationship between
TRP ion channels and the intestinal microbiota and microbial metabolites may provide new
insight into the role of these channels in physiological processes in the intestine, the GBA,
and the pathophysiology of pain that occurs in IBD.

TRP cation channels play a significant role in the pathogenesis of IBD, through cation
transport regulation and interactions with the intestinal microbiota. Given this, as well
as the established involvement of these ion channels in neurodegenerative and neuroin-
flammatory diseases, it is plausible that TRP ion channels constitute a crucial link in the
regulation of the GBA. Understanding the specific mechanisms by which TRP ion channels
influence both gut and brain function could provide valuable insights into the intercon-
nected nature of gastrointestinal and neurological health. This underscores the potential of
targeting TRP ion channels in developing therapeutic strategies for IBD and related GBA
dysregulation.

5. Cytoskeleton Dysregulation

The actin cytoskeleton plays an essential role in enterocytes maintaining the integrity of
the intestinal barrier and performs vital functions in neurons [314–319]. Actin is one of the
highly conserved and abundant elements of the cytoskeleton that can form highly ordered
and highly dynamic linear bundles, two-dimensional networks, and three-dimensional gels
depending on cellular functions and signals [320,321]. Cytoskeletal F-actin is dynamically
assembled from monomeric G-actin in an ATP-dependent manner, mediated by actin
nucleators and crosslinkers such as formins, fascin, and ARP2/3 [322,323]. The dynamics
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and stability of the actin cytoskeleton are closely related to mitochondrial health and cellular
cationic transport process (Figure 5a). The dynamics of actin fibers is ATP-dependent, so
mitochondrial processes have a substantial impact on cytoskeletal functions (Figure 3c).
Cellular responses to environmental factors, in turn, largely occur through mitochondria-
cytoskeleton interactions, involving mitochondrial dynamics, positioning, and function
regulated by the cytoskeletal network [324,325]. F-actin also participates in the regulation
of mitochondrial ROS production, dynamics, and positioning, with myosins implicated in
mitochondrial fission events [324,326]. Cytoskeletal microtubules’ growth suppresses the
fission of bound mitochondria and provides transport and anchorage tracks, while PI-(4,5)-
diphosphate INF2-mediated nucleation of actin filaments promotes mitochondrial fission
and dynamics [327,328]. The actin cytoskeleton mediates a variety of cellular functions,
especially important for both enterocytes and neuronal cells: the maintenance of cell shape
and intercellular contacts, mitochondrial health and dynamics, and vesicle formation.
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globular actin (G-actin). (b) Actin cytoskeleton involved in intestinal barrier integrity maintenance
via intercellular junctions’ stabilization. In neuronal cells, actin cytoskeleton is essential for proper
vesicle formation, transmembrane receptors’ positioning and action, axonal growth, mitochondrial
movement within axons, and mitophagy.

5.1. Actin Cytoskeleton Role in Neuronal Cells and GBA Function

For proper neuronal function, the actin cytoskeleton is essential for axonal growth,
mitochondrial movement within axons, and the process of mitophagy [253,329]. It is also
crucial for the formation of synaptic vesicles and the reuptake of neurotransmitters [330,331].
As a result of inflammation, dysregulation of cation transport, and ATP production by
mitochondria in IBD, the actin cytoskeleton may be disrupted not only in enterocytes but
also in the cells of the ENS, also potentially affecting the functions of the vagus nerve
(Figure 5b). Although these aspects have not been studied, they may offer promising
directions for understanding ENS and vagus nerve dysfunctions within the GBA in the
context of IBD. Deregulated cytoskeleton dynamics, in turn, may exacerbate mitochondrial
movement and mitophagy impairments in neural cells [332]. These processes are critically
important for neuronal health and proper nerve impulse transmission. Exploring therapeu-
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tic approaches to restore actin cytoskeleton function in IBD may yield systemic positive
effects. Besides restoring the integrity of the intestinal barrier by reestablishing intercellular
contacts, it could also improve the functions of the ENS and vagus nerve within the GBA.
Given the current lack of data in this area, but recognizing the existing premises, it makes
sense to focus research on the role of neuronal actin cytoskeleton dysregulation in IBD.
Understanding these mechanisms may provide new insights and potential therapeutic
targets to alleviate GBA-related dysfunctions in IBD.

Another possible pathway of actin cytoskeleton involvement in GBA is circulating
microbial metabolites, such as short-chain fatty acids, which include butyrate and pro-
pionate [333]. Gut microbiota is known to regulate gut epithelial barrier integrity in an
actin-dependent manner with butyrate [334]. These compounds have also been shown to
influence the integrity of the blood–brain barrier [335,336]. The brain endothelium, a major
interface between circulating metabolic signals and the brain, is a critical component of the
blood–brain barrier and also depends on the actin cytoskeleton state. In an in vitro model of
the tight junctions, butyrate and propionate were shown to affect the actin cytoskeleton and
the structure of tight junction proteins [337]. Both these short-chain fatty acids were shown
to induce distinct changes in the orientation of F-actin bundles. Additionally, they increased
the number of tight junction proteins and protected against LPS-induced degradation of
tight junctions, thereby improving intercellular contacts integrity and also modulating
mitochondrial network dynamics [337]. These findings provide a foundation for further
research into the role of actin cytoskeleton function implications for the GBA in IBD.

5.2. Actin Cytoskeleton Dysregulation Involvement in Gut Epithelium Barrier Dysfunction in IBD

The idea of the actin cytoskeleton’s important role in the gut epithelium barrier in-
tegrity is widely supported by findings that the destabilization of the actin network with
cytoskeleton-disrupting toxins, inflammatory signaling molecules, or bacterial pathogens
leads to the loss of AJC, along with an actin filament breakdown [317]. The intestinal
barrier function is provided by intercellular junctions (adherent and tight junctions) of
enterocytes accompanied with the mucous layer [338–341]. As a consequence of intestinal
inflammation in IBD, an intestinal barrier disruption occurs [342–344]. Or conversely,
intestinal barrier dysfunction may trigger immune activation [345–347]. Studies in IBD
patients have revealed changes in the expression of genes of AJC proteins [348,349]. Mass
spectrometry proteomic studies on human samples and animal models have also identified
measurable changes in actin expression in the inflamed gut [350,351]. Several actin-binding
proteins, such as cofilin, Arp3, and cortactin, colocalize with reorganized contractile rings
in models of “leaky gut” induced by calcium depletion [352]. The motor protein myosin
II, localized in these reorganized ring structures, is essential for AJC disassembly, as evi-
denced by the inhibition of its function with blebbistatin blocking that process, suggesting
the involvement of actin-binding proteins in AJC regulation [353]. Recent studies have
shown that the depletion of the actin-related protein (ARP2/3) inhibitor, ARPIN, alters the
architecture of tight and adherent junctions while increasing actin content and epithelial
barrier permeability [354]. This is supported by in vivo data in a mice model showing
that ARPIN level decreases in response to DSS, and the suppression of ARPIN levels is
also observed in highly inflamed areas of IBD patient samples [354]. Synaptopodin, found
in actin stress fibers and tight junctions in epithelial cells, has been shown to exacerbate
colitis in synaptopodin-deficient mice in response to dextran sodium sulfate [334]. There is
substantial evidence of the association between calcium transport via TRP ion channels
and the actin cytoskeleton, demonstrating the functional involvement of calcium trans-
port [355,356]. Cationic transport through TRP ion channels has been shown to modulate
cytoskeletal rearrangements [355,356].

In neural inflammation, calcium transport is also known to be impaired [357]. TNF-α is
known to induce an F-actin rearrangement and additionally promotes the phosphorylation
of the myosin light chain, leading to the disruption of tight junctions [358–361]. However,
in chronic IBD, pro-inflammatory cytokine levels can be unelevated, and their effects can
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be balanced by anti-inflammatory cytokines, raising questions about the mechanisms of
intestinal permeability changes during chronic inflammation. Studies on Crohn’s disease
patients and their immediate family members have revealed genetically determined in-
creased intestinal permeability in relatively healthy individuals, which cannot be solely
explained by cytokine-induced permeability changes [362,363]. Increased intestinal perme-
ability is also characteristic of various animal models of IBD. Animals with a null mutation
in the Nod2 gene exhibit increased intestinal permeability, mucin-2 secretion deficiency,
and a predisposition to intestinal inflammation [364]. The Il10-deficient mouse strain, a
popular model of IBD, also shows increased intestinal permeability, with mutations in the
Il10 gene associated with a predisposition to IBD in humans [365]. While the immune
pathways inducing intestinal barrier loss have been extensively studied, the contribution
of cytoskeletal dynamics and metabolism remains underexplored. Interestingly, mice with
a predisposition to IBD due to mutations in the Muc2 gene exhibit increased intestinal
permeability, behavioral changes, metabolic dysregulation, and impaired mitochondrial
function [366]. This suggests that immune activation mechanisms might not be the primary
cause of intestinal barrier impairments in IBD.

The disruption of the intestinal barrier inevitably leads to an immune response due to
the penetration of pathogenic factors, complicating the study of the actin cytoskeleton’s role
in IBD pathogenesis. However, restoring the balance of the actin cytoskeleton to recover the
epithelial barrier function presents a promising direction for IBD therapy. Understanding
and targeting the actin cytoskeleton dysregulation in IBD could provide novel insights and
therapeutic opportunities for managing IBD and also restoring GBA functions. Regarding
cytoskeletal modulation, new strategies may emerge to alleviate the chronic inflammation
and neural dysfunctions associated with IBD.

6. Discussion: Clinical Applications and Translational Perspective

Considering recent data in patients with various forms and at different stages of IBD
experiencing significant metabolic dysregulation [80,167,170,173,367,368], the extensive
studies of pathophysiological mechanisms and regulatory pathway involved in the interre-
lations of these processes with GBA function become a highly relevant area. In this review,
we systematically summarized the research data which shed light on the range of systemic
effects of metabolic dysregulation in IBD on molecular and cellular processes critical for
GBA functioning. The most significant effects of IBD in relation to metabolic dysregulation
are the substantial lipidome deregulation [86,87] along with oxidative processes’ dysreg-
ulation and mitochondrial malfunction [82–85]. Dysregulation of the lipidome entails
multiple dramatic consequences, which consist not only in systemic processes’ distortions,
but also in basic cellular functions’ lesions. Lipid metabolism is extremely important in
biosignaling, since major classes of lipids, such as PUFAs and phospholipids, are precursors
to a spectrum of messengers that mediate metabolic regulation and also the development
and control of inflammation, as well as the regulation of nervous activity and signaling pro-
cesses [368]. Along with this, the disproportions of phospholipids levels and phospholipid
processing impairments lead to various crucial structural and signaling consequences [369].
Thus, changes in the composition and proportions of phospholipids play a significant role
in the function of membrane cell structures and the integrity of the epithelial barrier (both
intestinal and blood–brain barriers). Moreover, phospholipids perform important functions
in intracellular transport and other intracellular membranous structures, in particular in the
organelles’ health, and to a significant extent, in mitochondrial health [369,370]. Data are
just emerging identifying specific lipid indicators as clinical predictors for IBD [79,87,146].
However, this area has not yet been studied enough to offer specific targeted therapeutic
approaches for metabolic dysregulation correction in IBD patients, in particular, lipidome
dysregulation. However, it becomes clear that this direction contains great translational
prospects, especially in relation to the GBA balance restoration in IBD.

The GBA, especially in the clinical context of IBD, is currently often considered to
include the liver function, which is inevitably affected by pathological processes associated
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with both chronic inflammation and metabolic dysregulation [371]. In particular, BAs are
coming to the fore in the therapeutic perspective. Patients with different types and stages
of IBD have different bile acid profiles [171–174]. As more clinical data accumulate, the
composition of BAs in serum and feces may have a diagnostic or prognostic value [372]. The
microbiota have long been and are currently undoubtedly considered the most important
component of the GBA, and a great amount of research shows the clinical and prognostic
significance and a great therapeutic potential of the microbiota in IBD. The imbalance
in the gut microbiome found in patients with neurodegenerative diseases saw a rise in
the exploration of the clinical application of microbiome-based therapies involving the
GBA, including prebiotics, probiotics, and fecal microbiota transplant (FMT). This direction
was supported by studies showing the human gut microbiome as a major determinant
of the plasma metabolome, potentially playing a more dominant clinical role than the
patients’ genome [373–375]. Although significant overall positive effects have been shown
from taking probiotics, as well as synbiotics and signaling substances produced by the
microbiota, in particular on the mood and cognition in IBD and IBS patients, there is still
a substantial lack of fundamental understanding of the underlying molecular pathways
and cellular mechanisms to develop reliable therapeutic strategies [199,376–378]. As BAs
perform a bactericidal function and are important components of the intestine’s innate
immunity participating in the control of its bacterial composition, they are promising in
relation to the regulation of the GBA. It has been shown that primary taurocholic acid
is required for the development of Clostridioides difficile [379], whereas secondary LCA
and UDCA inhibit the growth of C. difficile [380]. Intestinal inflammation caused by this
pathogen is often observed in patients with IBD [381]. Thus, in FMT in children with
IBD as a treatment of recurrent C. difficile infection, only a temporary restoration of the
diversity of bacterial microflora was observed and by 6 months it corresponded to the
donor level, whereas in children with and without IBD, during the same time, there was a
decrease in primary and an increase in secondary BAs, but only in children with IBD did
the level reach the donor level [381]. Similar changes in secondary bile acid levels, as well
as increases in short-chain fatty acid butyrate, acetate, and propionate levels, were observed
after FMT in adult patients [382]. It is likely that the ratio changes of BAs in feces are one
of the mechanisms of the therapeutic effect of FMT. Secondary bile acids are currently
used in complex therapy of the nervous system pathologies, for example, TUDCA has a
neuroprotective, anti-apoptotic effect, and also acts as a mitochondrial stabilizer in various
brain disorders, including when taken orally [383]. In addition, secondary bile acids, for
example, UDCA, have anti-inflammatory, cytoprotective, and anti-apoptotic effects and are
applied in therapies for a wide range of neurodegenerative diseases, including amyotrophic
lateral sclerosis, Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease [383].
A number of studies in both animal models and patient data suggest that UDCA also may
have a therapeutic role in IBD in regard to GBA influencing intestinal microbiota [384].
Thus, oral administration of UDCA or its taurine- or glycine-conjugated species to mice
with experimental colitis reduced its severity, normalized the increased ratio of Firmicutes to
Bacteroidetes associated with colitis, but did not restore bacterial diversity [385]. Currently,
there is a lack of therapeutic observations of the effect of BAs on the condition of patients
with IBD and nervous system disorders. At the moment, there is only one study that
provides clinical results confirming the involvement of gut dysbiosis and BAs metabolic
alteration in psychological disorders in Crohn’s disease [171].

The next important interconnected links in the chain of GBA balance are the cation
transport, actin cytoskeleton, and mitochondrial health (Figure 5). Regarding these basic
cellular processes, there are currently few data that could prove their direct interconnection
in IBD [386]. However, substantial impairments of all these anchors have been shown in
animal models of IBD [85,89,90,387], as well as in several clinical studies [388,389]. To date,
one of the well-studied candidates linking these processes within the GBA concept seems to
be TRP ion channels families. TRP ion channels are widely expressed in the gastrointestinal
tract and peripheral and central nervous systems, performing a number of important



Int. J. Mol. Sci. 2024, 25, 12125 20 of 36

functions there [268,294] (Figure 4). It is known that expression or activity changes, as well
as mutations in TRP genes, are often associated with a wide range of intestinal epithelial
disorders, including IBD, IBS, fibrosis, visceral hyperalgesia, and colorectal cancer [390].
Therefore, TRP channels are considered potential targets for new analgesics effective within
the research and development of new approaches targeting TRP to reduce inflammation
and relieve pain in IBD. It has now been shown that TRP channels play a significant role in
the pathogenesis of IBD through the regulation of cation transport and interaction with
the intestinal microbiota [391]. Currently, the most studied in this regard are TRPV1 and
TRPA1, which are known as nociceptors [392,393]. TRPV1 has been shown to be responsible
for neuropathic inflammatory pain [300,301] and hyperalgesia [394]. In this context, the
interesting clinical study of biopsies from IBS showed that the number of nerve fibers
expressing TRPV1 in the colon was markedly increased in relation to a healthy control
group, and this increase was correlated with pain severity [395]. TRPA1 is also known to
be involved in inflammatory responses and the development of mechanical and chemical
hypersensitivity in the colon [303]. It has been shown that the activation of TRPA1 may
have a protective effect in IBD by reducing the expression of certain pro-inflammatory
neuropeptides, cytokines, and chemokines [300]. Meseguer et al. reported that bacterial
lipopolysaccharides could activate TRPA1 channels, causing acute intestinal inflammation
and visceral pain [396]. On the other hand, it has been shown that TRP ion channels play
a critical role in the dynamics of the actin cytoskeleton [356]. Both the integrity of the
intestinal barrier and mitochondrial health in the intestinal cells and neural cells depend on
the actin cytoskeleton dynamics [85,317,397]. Mitochondrial functions also depend strictly
on both the proper cytoskeleton functioning and calcium transport within the cell. In this
review, we summarized data on the involvement and interrelations between these processes
in the context of the GBA function misbalance in IBD. The search for new approaches to
restore the function of each of these GBA links in IBD may offer ways to achieve long-term
and self-sustaining positive therapeutic effects.

7. Conclusions

Numerous studies in both patients and animal models highlight the extensive in-
volvement and importance of the GBA in IBD. Despite the significant interest in the GBA
and the extensive research on its role and function in IBD, many aspects of this complex
relationship remain unclear. Beyond the primary components of the GBA—vagus nerve
function, ENS function, and microbiota—IBD leads to impairments in metabolic regulation,
mitochondrial function, cationic transport, and cytoskeleton dynamics in intestinal cells.
These mechanisms are also crucial for the proper functioning of neuronal cells. Acute and
chronic inflammation, dysbiosis, and impaired digestion and absorption in IBD result in
significant metabolic dysregulation. This dysregulation majorly affects the lipidome and
cellular energy cycles, which are essential for the nervous system functions. Additionally,
due to multiple changes in regulatory metabolic signals, cation transport and mitochon-
drial functions are disrupted in IBD. Consequently, actin cytoskeleton dysregulation might
occur in both enterocytes and nervous system cells. Proper calcium transport is critical
for neuronal and mitochondrial functions and is vital for maintaining the integrity of the
epithelial barrier. Therefore, all the described processes are interconnected through direct
and reverse regulatory pathways, potentially leading to the self-reinforcement of pathology.
Deciphering these complex interrelations and their effects on the GBA is crucial. This
knowledge may reveal new directions in the search for therapeutic targets and means to
improve the quality of life for IBD patients. Despite the large number of studies, there is
still a limited clinical arsenal for IBD treatment; mostly, a temporary alleviation of IBD
symptoms is possible. Only a small percentage of patients stably respond to therapy,
and only a small percentage achieves a complete cure, along with frequent relapses and
self-reinforcement, in which GBA imbalance is shown to play a significant role. A further
in-depth study of the systemic effects associated with GBA misbalance in IBD, summarized
in this review, as well as the discovery of new therapeutic approaches to the restoration of
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impaired metabolic, cellular, and organelle functions within the GBA in IBD patients could
suggest great translational prospects.
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