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The formation of a daughter organism as a result of the fusion of an egg and a
sperm cell, followed by the implantation of the embryo, the formation of the placenta,
and the further growth of the embryo and then fetus until delivery, poses particular
challenges for the immune system [1,2]. The inextricable link between reproduction and
immunity is related to the mother’s body becoming immunotolerant, which allows the
semiallogeneic fetus to grow properly in the uterus. It has been shown that this is not a
state of generalized immunosuppression but rather a selective adaptation of maternal im-
mune recognition and tolerance in relation to paternal class I human leukocyte antigen C
(HLA-C) molecules and nonclassical human leukocyte antigen A Ib (HLA-Ib) molecules
on placental trophoblast cells of fetal origin [3–6]. With the decidua, the placenta forms
the maternal–fetal interface, enabling interactions between immune cells and decidual
stromal cells and trophoblast cells, a key mediator in this maternal–fetal immune in-
teraction [7]. In this way, it is possible to transport maternal antibodies selectively to
the fetus to fight infection while ensuring immunotolerance, preventing the fetus from
being attacked by the maternal immune system [8,9]. Evidence that immune status
profoundly influences reproductive health can be found in recent studies indicating that
up to 20% of unexplained infertility in women and men may be attributable to immune
dysfunction [10,11]. It is, therefore, not surprising that the issue of “immune infertility”
in relation to both women and men has been the starting point for a rapidly increasing
number of basic and clinical studies in recent years [12–17].

Under a more precise title, this Special Issue is a continuation of three Special Issues
from the “Reproductive Immunology and Pregnancy” series [18–20], which confirmed the
dynamic and comprehensive development of reproductive immunology and immunology
during pregnancy, including placental immunopathology. Five original articles and three
extensive review papers were published (their numbers are marked in bold when cited in
this Editorial).

Immune responses are closely regulated by a vast array of costimulatory and coin-
hibitory pathways called “immune checkpoints” [21]. Incorporated into the immune
system, these pathways modulate the duration and intensity of immune responses and
maintain self-tolerance by preventing certain stages of acquired immunocompetence dur-
ing T-cell-mediated immunity [22]. The expression of immune checkpoints and their
related miRNAs in immune cells is necessary to maintain immune system homeostasis
within the maternal–fetal interface [23–26]. Recently, it has been shown that immune
checkpoints exist not only as cell membrane-bound systems of receptors and ligands but
also in soluble forms (soluble immune checkpoints) [27]. These molecules, whose complex
interactions with antigen-presenting cells (APCs), T lymphocytes, and trophoblast cells
are the subject of intensive research, include sGalectin-9, TIM-3, sLAG-3, sCD80, sCD86,
sVISTA, sNectin-2, and sCD155. Preliminary research has shown that all the mentioned
soluble immune checkpoints could serve as biological markers of a healthy, physiological
pregnancy [28]. Moreover, unlike during normal pregnancy, in the serum of pregnant
women with recurrent spontaneous abortion, statistically significant increases in sLAG-3,
sCD80, and sCD86, as well as reduced concentrations of sGalectin-9, sTIM-3, and sCD155,
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were detected. Therefore, further research is recommended to determine whether soluble
immune checkpoints and their ligands may be used as biomarkers in the diagnosis of
recurrent pregnancy loss [28].

Also known as silent miscarriage, missed abortion is a special type of spontaneous
abortion in which the dead embryo or fetus is retained in the uterus for a period of time
(days or weeks), during which the usual symptoms of miscarriage may not occur. Missed
abortion is a very common complication that occurs in approximately 15% of all clinically
recognized pregnancies [29–31]. Despite the identification of many potential etiological fac-
tors associated with missed abortion (e.g., genetic, hormonal, uterine anatomical, metabolic,
infectious, environmental, and immunological factors), in the vast majority of cases, it
is not possible to determine the specific cause of pregnancy loss [32,33]. Although the
importance of immunologic dysregulation as a cause of “autoimmune miscarriage” has
been demonstrated in the etiology of missed abortion, the exact molecular mechanisms are
still poorly understood [7,34].

Human leukocyte antigen G (HLA-G) is a nonclassical HLA class I molecule com-
posed of four membrane-bound (HLA-G1, -G2, -G3, and -G4) and three soluble (HLA-
G5, -G6, and -G7) isoforms [35]. This histocompatibility antigen, which is also an im-
mune checkpoint/soluble immune checkpoint molecule, has distinct immunomodulatory,
anti-inflammatory, and tolerogenic properties that are crucial to the protection of the
fetus against destruction by the mother’s immune system, ensuring maternal–fetal toler-
ance [36–38]. In another effort to understand the role of the membrane and soluble HLA-G
molecules in the context of the immune pathomechanism of missed abortion, maternal–fetal
interface tissue and serum samples, respectively, were examined [39]. Healthy pregnant
women experiencing missed abortion were compared with healthy women in early preg-
nancy who were directed toward elective pregnancy termination. However, no significant
differences were noted between the groups in terms of the spatial expression of HLA-G at
the maternal–fetal interface or the soluble HLA-G concentration in their serum. Moreover,
in women with missed abortion and women with normal early pregnancy, comparable
numbers of T and gamma-delta (γδT) lymphocytes were found in the peripheral blood
and decidua. Interestingly, missed abortion was not associated with altered extravillous
trophoblast invasion into the uterine blood vessels or the increased cytotoxicity of γδT
cells. In conclusion, the authors stated that the assessment of HLA-G production within
the maternal–fetal interface and the HLA-G concentration in the serum cannot be used
as markers for normal pregnancy or missed abortion. Further research is warranted be-
cause these results have not been confirmed by the latest research by other independent
researchers [40].

Both miscarriage, including missed abortion, and stillbirth refer to a pregnancy with
a pathological course, resulting in its premature end. However, a miscarriage is usually
defined as the loss of a fetus before the 20th week of pregnancy, whereas stillbirth is
frequently defined as fetal death after 20 weeks (according to other definitions: >24
to >28 weeks), with a minimum birthweight of 350 g (approximately 20 weeks) [41].
Globally, in 2019, an estimated 2 million babies (90% uncertainty interval [UI] 1.9–2.2)
were stillborn at 28 weeks or more of gestation, whereas the global stillbirth rate was
13.9 stillbirth (90% UI 13.5–15.4) per 1000 total births [42]. Although the main causes
and risk factors for stillbirth are known (e.g., intrapartum complications, hypertension,
diabetes, infection, congenital and genetic abnormalities, placental dysfunction, and
pregnancy continuing beyond 40 weeks), in up to 50% of stillbirth cases, the cause
remains unexplained [43–45]. As syncytiotrophoblasts, which are formed by the fu-
sion of mononuclear cytotrophoblasts, are responsible for nutrient and gas exchange
in the human placenta, studies on the expression of syncytiotrophoblasts markers in
placentas from women who experienced idiopathic stillbirth represent another attempt
to understand the pathomechanism of fetal death [46–48]. The rationale for such studies
is that throughout pregnancy, continuous changes in gene expression pathways occur
in the placenta, facilitating the regulation of fetal growth, maintaining immunological
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tolerance, and modulating metabolic processes according to the needs of the fetus [49,50].
Therefore, the analysis of the dynamics of changes in the placental transcriptome creates
promising prospects for understanding the functional state of this particular organ in a
given period of pregnancy [51]. For example, in placentas from women who experienced
an idiopathic stillbirth, several genes that are syncytiotrophoblast markers were found
to be downregulated. Significant downregulation of genes from the pregnancy-specific
glycoprotein and chorionic somatomammotropin hormone (CSH) families as well as the
placental alkaline phosphatase, kisspeptin (KISS1), and corticotropin-releasing hormone
(CRH) families was detected [48]. These results may indicate that the importance of
syncytial layer defects in the etiopathogenesis of idiopathic SB has been underestimated
thus far. Translating these results to clinical obstetrics practice is another key challenge,
as it requires extremely accurate methods of monitoring placental function and the
ability to regulate the expression of specific genes [52–54].

Gestational diabetes mellitus (GDM) is the most common metabolic disorder during
pregnancy, and its prevalence is constantly increasing with rising obesity rates [55]. GDM
exacerbates oxidative stress and weakens the antioxidant state. Like other types of diabetes,
it initiates a proinflammatory background that promotes diabetic complications due to
increased insulin resistance [56]. One such complication, the pathomechanism of which
is not sufficiently understood, is macrosomia, which means that the fetus is “large for
gestational age”. It is believed that the main cause of macrosomia in individuals with
diabetes is intermittent maternal and, in turn, fetal hyperglycemia, causing the increased
release of insulin combined with other anabolic hormones (e.g., insulin-like growth factors
and growth hormone) in the fetus [57,58]. Abnormalities in maternal lipid transport within
the maternal-fetal interface, which affects the levels of free fatty acids that are available
to the fetus, may be important factors contributing to macrosomia, the essence of which
involves increased fetal fat deposition [59,60]. This is because inflammation and lipid
metabolism are two deeply interconnected and reciprocally regulated major physiological
processes [61–63].

The properties of the placental barrier indicate that triglycerides (TGs) contained in
maternal blood lipoproteins (chylomicrons, VLDL, and LDL), unless they are endocytosed
as intact lipoprotein particles, must be hydrolyzed to free fatty acids (FFAs) [64,65]. After
the action of enzymes located in the microvillous membrane of the syncytium, mainly
lipoprotein lipase (LPL) and endothelial lipase, cleaved FFAs are bound in trophoblast cells
by cytosolic and membrane facilitative transporters, such as fatty acid translocase (CD36),
fatty acid transport proteins, and fatty acid binding proteins, and then released into the
placental capillaries and fetal circulation. Therefore, it was hypothesized that changes in
the activity of enzymes and FFA transporters in the diabetic placenta may contribute to
excessive fetal fat accretion and, therefore, macrosomia [64,66,67]. The general pattern of
FFA transport within the maternal–fetal interface and the main factors that may lead to its
disorders are presented in Figure 1.

In a study on the expression of proteins that are responsible for placental lipid trans-
port, placental tissue samples from patients with full-term pregnancies complicated by
GDM with well-controlled glycemia, pre-existing well-controlled type 1 diabetes (PGDM),
and no diabetes (controls) were comparatively assessed [68]. Morphometric studies investi-
gating differences in the density of vascularization between samples revealed a significant
increase in the expression of fatty acid translocase (CD36) and fatty acid binding proteins 1,
4 and 5 as well as a decrease in the expression of endothelial lipase and fatty acid trans-
port protein 4 in patients with PGDM-complicated pregnancies compared with patients
with GDMG1 (GDM treated with diet only) and those without diabetes. Therefore, well-
controlled PGDM does not preclude the occurrence of disturbances in the expression of
lipid transporters. Nonetheless, only LPL and fatty acid transport protein 4 were found to
be significant predictors of fetal birth weight [68].
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fatty acid binding protein; FATP, fatty acid transport protein; FBW, fetal birth weight; FFA, free fatty acids; p-
FABPpm, placental plasma membrane FABP; IGF-1, insulin-like growth factor 1; LDL, low-density lipoprotein; 
LPL, lipoprotein lipase; TG, triglycerides; TNFα, tumor necrosis factor alpha; VLDL, very-low-density lipopro-
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Figure 1. Schematic diagram of the maternal–fetal free fatty acid transfer in pregnancies complicated
by diabetes mellitus. Adopted from [68]. BMI, body mass index; CD36; fatty acid translocase; EL,
endothelial lipase; FABP, fatty acid binding protein; FATP, fatty acid transport protein; FBW, fetal
birth weight; FFA, free fatty acids; p-FABPpm, placental plasma membrane FABP; IGF-1, insulin-like
growth factor 1; LDL, low-density lipoprotein; LPL, lipoprotein lipase; TG, triglycerides; TNFα,
tumor necrosis factor alpha; VLDL, very-low-density lipoprotein; up arrows indicate increase.

Although metabolic disorders in mothers during pregnancy that are complicated by
diabetes are clearly responsible for fetal macrosomia, altered macronutrient metabolism
does not completely explain its pathomechanism. There is no definitive evidence from clin-
ical practice that modifying the lifestyle (mainly changing the macronutrient composition
of the diet) of a pregnant woman to achieve optimal control of glycemia and body weight,
the first-line treatment for GDM, will ensure a reduction in the incidence of either GDM or
macrosomia [69–71]. Most likely induced by impaired glucose tolerance and low-grade
inflammation, the search for other factors is necessary.
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Adenomyosis is characterized by the abnormal finding of endometrial epithelial
cells and stromal fibroblasts in the myometrium instead of the uterine lining [72]. It dif-
fers from endometriosis, in which endometrial-type tissue grows outside the uterus [73].
The presence of islands of endometrial tissue within the myometrium elicits the hy-
perplasia and hypertrophy of surrounding smooth muscle cells [72,74]. Adenomyosis
is a common disorder of the uterus that is associated with an enlarged uterus, heavy
menstrual bleeding (HMB), pelvic pain, and infertility [75]. Owing to the insufficient
understanding of the pathomechanism of adenomyosis, many theories have been pro-
posed concerning the causes of the development of this disease [72]. The detection
of epigenetic alterations in adenomyosis directs research efforts, among other foci, to-
ward exposure to environmental pollutants, including endocrine-disrupting chemicals
(EDCs), the effects of which may result in hyperestrogenism and progesterone resis-
tance. This hormonal imbalance predisposes patients to cell proliferation, cell migration,
epithelial-to-mesenchymal transition (EMT), and the invasion of endometrial cellular
components into the myometrial compartment [76,77]. Animal models have made major
contributions to the understanding of the roles of estrogen-mimetic EDCs in promoting
the development of adenomyosis. A study in mice demonstrated that chronic expo-
sure to nonsteroidal anti-inflammatory drugs (NSAIDs: ibuprofen and diclofenac) and
17β-ethinylestradiol (EE2) mixtures at environmental doses intergenerationally affects
uterine physiology and homeostasis, particularly in the endometrium [78]. Histological
analysis revealed aberrant proliferation and apoptosis, vacuolization of epithelial cells,
and an increased incidence of abnormal glands in the luminal and glandular epithelium
in each studied litter (F1 and F2). This model can also be used to study the pathophys-
iology of human adenomyosis to a certain extent. The results of this study constitute
another contribution to recommendations to the relevant authorities regarding intensive
actions aimed at reducing the content of EDCs (in this case, EE2 and NSAIDs) in drinking
water [79,80].

Hypertension is the most common medical disorder during pregnancy, compli-
cating 5% to 10% of all pregnancies [81]. Hypertensive disorders of pregnancy, such as
gestational hypertension (GH) and preeclampsia (PE), are among the leading causes
of maternal and fetal morbidity and mortality worldwide and pose a potential risk
to the health of mothers and infants [82]. The increasing incidence of hypertensive
disorders of pregnancy in developed countries in recent years is also disturbing [83].
Whereas the pathophysiology of GDP is multifactorial, immunological disorders
that violate the necessary level of tolerance in the mother–fetal system, manifested
by inflammation and changes in the activity profiles of immune cells, have become
crucial in light of recent research [84]. Deficiencies in activities related to suppres-
sor cells may be of key importance. Although many different subpopulations of
effector cells can suppress each other, particular attention is given to regulatory T
cells (Tregs), which express the transcription factor forkhead box P3 (FOXP3) and
are extremely important for maintaining immune homeostasis and preventing graft
(fetus) versus host (mother) disease [85]. Tregs constitute a unique subpopulation
of T-helper cells that secrete inhibitory cytokines, including interleukin 10 (IL-10),
transforming growth factor-beta (TGF-β), and interleukin 35 (IL-35) [86]. Through IL-
10 and membrane-bound TGF-β dependent pathways, Tregs can inhibit CD8+ T-cell
function and significantly reduce the ability of dendritic cells (DCs) to present anti-
gens [87,88]. Recently, published detailed reviews have shown that the development
of targeted therapies that facilitate the effective use of the suppressor properties of
Tregs may effectively restore pregnancy immune homeostasis, thereby counteracting
hypertensive disorders of pregnancy [89,90].
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Regardless of its involvement in the function of Tregs and participation in the modu-
lation of the adaptive immune system immune tolerance, comprehensive research on the
role of TGF-β in normal and complicated pregnancies continues. This multifunctional
cytokine shows strong and variable expression in the cytoplasm of villous syncytiotro-
phoblast (STB) and extravillous trophoblast cells during gestation [91,92]. Wen et al. [93]
summarized the current state of knowledge on the contributions of TGF-β to implanta-
tion and placentation and embryonic development, including the nervous, respiratory,
and cardiovascular systems. The results of some studies have highlighted the importance
of TGF-β dysfunction in recurrent miscarriage, PE, and GDM [94–99]. Furthermore,
a decreased serum TGF-β concentration increases the risk of preterm birth [100], and
increased TGF-β3 levels have been found in association with gestational trophoblastic
disease [101,102].

Epigenetics is defined as potentially heritable changes in gene expression that, unlike
mutations, are not attributable to alterations in the DNA sequence [103]. Epigenetics
contributes to the regulation of the development and physiology of the placenta [104].
Disturbed placental epigenetics caused by a wide variety of external environmental factors
that act at different times and intensities may play an important role in cases involving fetal
growth restriction and newborns who are small for gestational age (SGA) and may also
be involved in the pathogenesis of both PE and gestational trophoblastic disease [105,106].
Among epigenetic mechanisms, such as DNA methylation or the presence of noncoding
RNAs, the degree of histone acetylation is a critical epigenetic modification that increases
access (expression) to a given gene or causes its silencing through changes in chromatin
architecture [107,108].

Sirtuins are a group of highly conserved enzyme proteins belonging to the nicoti-
namide adenine dinucleotide (NAD+) family of histone deacetylases that are critically
involved in the functioning of the body at the cellular level, contributing to numerous
biochemical processes [109]. In addition to regulating the degree of histone acetylation,
sirtuins are involved in the regulation of the cell cycle and energy metabolism as well as
the processes of cell differentiation, growth, and apoptosis [110]. Importantly, sirtuins
participate in the cellular response to various types of environmental stressors, mechan-
ical injury, pathogens, toxic compounds in the environment, and naturally occurring
agents that damage cells, such as ultraviolet light and nutrient or oxygen deprivation,
among others. The intensity of action of most of the abovementioned stressors in the
human placenta is particularly high [111]. For this reason, a detailed understanding of
the significance of changes in sirtuin expression in the human placenta may provide valu-
able information regarding placental physiology and the pathomechanisms of placental
dysfunction [112].

Among the seven sirtuins known in humans, much of the latest placental research
has focused on sirtuin-1 (silent information regulator 2 homolog 1 or SIRT1), which is
particularly associated with the inflammatory response, autophagy and the cell response
to oxidative stress [113–115]. SIRT1 is linked to placental development by controlling
trophoblast cell invasion and remodeling spiral arteries. SIRT1 is expressed by the STB
throughout normal gestation. Placental SIRT1 expression is decreased in the placenta
accreta spectrum, which is defined as the attachment of the placenta to the uterine wall, to
varying degrees [116]. Moreover, SIRT1 regulates senescence in syncytialized trophoblasts
and is significantly downregulated in cases of premature placental aging in PE as well as
fetal growth restriction [117,118]. Therefore, restoring normal SIRT1 expression may be an
ambitious therapeutic challenge in cases of selected pregnancy pathologies. For example,
multiple SIRT1-related signaling pathways with potential beneficial effects on vascular
endothelial cells in PE are presented with a detailed description in Figure 2.
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Figure 2. Beneficial effects of SIRT1 on vascular endothelial cells in preeclampsia (PE): limiting
oxidative stress, inflammatory response, and cellular ageing. Adopted from [115]. The arrows in
the boxes: up arrows indicate increase, down arrows indicate decrease. SIRT1 activity depends
on the oxidized form of nicotinamide adenine dinucleotide (NAD+), which is generated from its
precursor—nicotinamide mononucleotide (NMN)—by the enzyme nicotinamide-(mono)nucleotide
adenylyltransferase (NMNAT) [119,120]. Although the main site of SIRT1 synthesis is the nucleus,
its activity is also observed in the cytoplasm and mitochondria [119,121]. The level of NAD+ is
determined by NAD+ synthesis from the salvage pathway or NAD+/reduced form (NADH) ra-
tio. Mitochondrial redox metabolism within the electron transport chain (ETC) is crucial for SIRT1
level, because NAD+/NADH and AMP/ATP metabolism result from the tricarboxylic acid (TCA)
cycle and β-oxidation or oxidative phosphorylation, respectively [122]. NAD+ is required in the
SIRT1-mediated deacetylase reaction. This reaction also generates nicotinamide (NAM), which then
enters the salvage pathway. Nicotinamide mononucleotide adenyltransferase (Nampt), catalyzing
the conversion from NAM to NMN, is the rate-limiting enzyme in this pathway. NMN is thereby
converted to NAD+ by NMNAT. The increases in NAD+/NADH ratio and AMP/ATP ratio observed
during caloric restriction are well-known inducers of SIRT1. SIRT1 attenuates oxidative stress and
inflammation to regulate vascular endothelial functions through several important signal media-
tors, such as AMP-activated protein kinase (AMPK), nicotinamide adenine dinucleotide phosphate
(NADPH) oxidases (Nox), endothelial nitric oxide synthase (eNOS), and forkhead transcription
factors of the O class (FOXOs) [113,123]. SIRT1 can stimulate AMPK via the modulation of upstream
AMPK kinase such as liver kinase B1(LKB1), suppressing the production of reactive oxygen species
(ROS) and inflammatory response in human umbilical vein endothelial cells (HUVECs), whereas
AMPK influences SIRT1 deacetylation activity by increasing cellular NAD+ levels or directly phospho-
rylating (P) SIRT1. Increased AMP/ATP ratio induces endothelial AMPK, which in turn suppresses
Nox expression and Nox-induced ROS production [124]. AMPK-dependent phosphorylation and
SIRT1-dependent deacetylation of eNOS leads to an increase in local nitric oxide (NO) concentration.
Moreover, SIRT1 deacetylates FoxO proteins and thus stimulates FoxO-dependent antioxidative
enzymes, such as catalase (CAT), manganese superoxide dismutase (MnSOD), and thioredoxin (TRX),
eliminating ROS from endothelial cells and thus preventing endothelial dysfunction [123,125,126].
SIRT1 protects endothelial cells from senescence by regulating signaling pathways dependent on
tumor protein p53 (p53), eNOS, transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2),
and FOXO3. Expression of these proteins can, in turn, be regulated at the level of translation by sev-
eral micro-RNA molecules, such as mi-R217, mi-R34a, mi-R155, and mi-R22 [127–133]. Optimization
of NO concentration and genome stability extend the average lifespan of endothelial cells.
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