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Abstract: Understanding alterations in structural disorders in tissue/cells/building blocks, such
as DNA/chromatin in the human brain, at the nano to submicron level provides us with efficient
biomarkers for Alzheimer’s detection. Here, we report a dual photonics technique to detect nano-
to submicron-scale alterations in brain tissues/cells and DNA/chromatin due to the early to late
progression of Alzheimer’s disease in humans. Using a recently developed mesoscopic light transport
technique, fine-focused nano-sensitive partial wave spectroscopy (PWS), we measure the degree of
structural disorder in tissues. Furthermore, the chemical-specific inverse participation ratio technique
(IPR) was used to measure the DNA/chromatin structural alterations. The results of the PWS and
IPR experiments showed a significant increase in the degree of structural disorder at the nano to
submicron scale at different stages of AD relative to their controls for both the tissue/cell and DNA
cellular levels. The increase in the structural disorder in cells/tissues and DNA/chromatin in the
nuclei can be attributed to higher mass density fluctuations in the tissue and DNA/chromatin damage
in the nuclei caused by the rearrangements of macromolecules due to the deposition of the amyloid
beta protein and damage in DNA/chromatin with the progress of AD.

Keywords: light scattering; Alzheimer’s disease; disorder strength; partial wave spectroscopy;
confocal imaging; inverse participation ratio technique; mesoscopic physics

1. Introduction

According to several recent studies, cells and tissues are elastic scatterers of light [1–6].
This scattered light, which probes the cells/tissues, provides valuable information about the
structural composition and arrangement of macromolecules in the cells due to the different
scattering properties, such as the refractive index [7–9]. Several studies have shown light
probing properties of cell/tissue disorders, even quantifying such disorders [2,10–19].
Based on the literature [20], we understand how light probing of samples in different stages
of cancer provides valuable information for early detection and mitigation measures to
understand the fundamental physical properties of the progression of diseases. Similarly,
brain disorders such as Alzheimer’s disease (AD) impact tissues and cells’ structural
characteristics at all length scales, ranging from microns to sub-microns. From the literature,
we can ascertain that with the help of the mesoscopic physics analysis technique, cell
abnormalities in disease conditions can provide appropriate structural biomarkers for
disease detection [21,22].

The technique used in this paper, as described elsewhere [23,24], is known as partial
wave spectroscopy (PWS). It uses backscattered signals from weakly disordered media
to measure and statistically quantify the intensities of these signals due to changes in the
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nanoscale refractive index fluctuations (dn) of cells/tissues [14,25–27]. The spatial density
fluctuations (dρ) that occur due to the rearrangement of macromolecules in subcellular
structures like DNA/chromatin allow us to use a single parameter to characterize the
strength of disorder, Ld-PWS [20,28,29]. Several results underline this technique’s impor-
tance, which has been used to explore many structural disorder cases studied for disease
detection and detailed in previous studies described elsewhere [23,24,30–33]. The methods
discuss the mathematical and theoretical description of the PWS technique. In addition to
this technique, our study requires knowledge of the chemical spatial density alterations
in specific DNA/chromatin; this is obtained using the inverse participation ratio (IPR)
technique using confocal imaging. This molecular-specific localization technique helped us
to quantify the abnormalities in cellular structures in the brain caused by conditions such
as stress and alcoholism [34–39].

Alzheimer’s disease (AD), considered to be one of the deadliest diseases, is a neurode-
generative disease that affects a patient’s cognitive abilities and causes memory loss [40–45].
The symptoms worsen as the disease progresses with time. AD has been ranked among
the top seven deadliest illnesses in the United States by the Centers for Disease Control
and Prevention, surpassing breast and prostate cancers [46]. Primarily, older people who
are above age 65 are diagnosed with AD, but younger people can also be affected. It has
been shown that structural changes in the brain at the cellular level start decades before the
symptoms appear because of intracellular structural alterations at the nano to submicron
scale before any clinical diagnosis can be made at the macro scale. Early abnormal accumu-
lation of proteins that form amyloid plaques and neurofibrillary tangles (NFT) is thought
to affect cognitive abilities and result in the development of other symptoms [47]. Since
structural changes occur before any symptoms appear, detecting those abnormalities at a
nanoscale level is necessary for early diagnosis [48].

Understanding and detecting any disorder from the early stages is paramount, even
before it becomes apparent. Disorder (cancers/tumors) formation begins at the subcellular
level, resulting in cell size changes and rearrangement of the basic building blocks of organ-
isms [49–51]. However, these changes are undetectable due to limitations in conventional
microscopy resolution (<200 nm). Histological studies have shown that the microscopic
tissues become more damaged with the progression of terminal diseases like AD at the
last stages. Studies on the structural changes in brain cells/tissues are limited. Hence, it is
essential to study these progressions at their early stages using an appropriate structural
probing technique that is capable of identifying changes at the submicron scale.

Using the dual photonic technique, this work analyzes three stages of AD in human
brain cells/tissues. We probe these tissues using light/photonic scattering probes to obtain
insight into the spatial and chemical density fluctuations from the backscattered signal and
to detect and define AD stages using the structural disorder strength as our quantification
parameter. As mentioned, there are little to no observable physical symptoms in these lethal
diseases from the early onset, but at progressively later stages of the disease, structural
symptoms become visible using microscopy, MRI, and CT scans. We are interested in
statistically quantifying the subcellular changes in the cells/tissues of AD brain samples
and comparing them to control/healthy brain samples in a specific region in the brain. We
draw parallels and distinguish between physical features like dn changes and dρ changes by
quantifying the elastically scattered light intensity, and based on this, we can characterize
the various stages of the disease. Using the PWS technique, we can use the structural
disorder strength (Ld-PWS) as a potential biomarker [23]. To enhance our study, the IPR
approach is utilized to further analyze the spatial structural disorder in the spatial DNA
molecular mass density spatial fluctuations (dρms) of nuclear DNA components using
confocal imaging (Ld-IPR) [35]. We additionally correlate these findings with DNA dam-
age/structural rearrangements and Aβ pathology observed in AD patients. The following
section discusses the PWS analysis of tissue samples, the IPR analysis of DNA from cell
nuclei, supporting histopathology of DNA damage, and the results and applications.
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2. Results
2.1. PWS Analysis of Thin Brain Tissues

We used a fine-focused PWS technique to analyze human brain tissues to measure
(Ld-PWS) and compare different stages of AD. We compared these to understand how the
cellular structure changes at the nano to submicron scales as the disease progresses. Our
results revealed a significant increase in structural alterations at the cellular level with the
progression of AD. To obtain (Ld-PWS), we need to determine the variance in dn and its lc
(as shown in Equations (5) and (6)). As discussed in the experimental section, we acquired
the dn2 × lc from each pixel of the spectral images captured using CCD to compute the
Ld-PWS for each pixel. This is shown in a 2D color map with colors ranging from blue to
red, indicating changes in Ld-PWS. Figure 1a–d show brightfield images of the human brain
samples, with control (C), low AD (LAD), intermediate AD (IAD), and severe AD (SAD)
collected using CCD. Figure 1a’–d’ represent their corresponding Ld-PWS images. It can be
seen clearly in the figure of the Ld-PWS map that in severe AD cases, there are substantial
numbers of yellow and red spots in the color map, reflecting more fluctuations in the
refractive index and thus an increase in the mass density fluctuations/rearrangements at
the cellular/tissue level.
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Figure 1. Ld-PWS of AD human brain tissue representative samples. (a–d) Representative brightfield
images of healthy tissue and different stages of AD: control (C), low AD (LAD), intermediate AD
(IAD), and severe AD (SAD). (a’–d’) Corresponding Ld images.

We performed a statistical analysis of the ensemble average and standard deviation
(std) of the Ld-PWS values, as shown. Figure 2a,b represent the avg and std of the Ld-PWS
values of the control and different stages of AD as bar graphs. The error bars in the
graphs show the standard error of the mean of the values. The charts show a statistically
significant increase in the avg and std (Ld-PWS) values for the different stages of AD in
comparison to their control. Specifically, the average <Ld-PWS> increased by 6% in LAD,
23% in IAD, and 61% in SAD relative to the control. Similarly, there was an increase in the
std (Ld-PWS) by 4.2% in LAD, 29% in IAD, and 72% in SAD relative to the control C. These
significant increases in structural disorder strength can be attributed to molecular spatial
structural changes in the human brain (like DNA methylation and proteomic alterations)
as AD progresses.

AD has been found to affect the hippocampus and cells at the nanoscale to submicron
scale, leading to brain dysfunction. The PWS technique has made it possible to quantify
structural alterations in human brain tissues related to AD at the nanoscale level for early
signs of AD development and progression. This helps us develop better treatment options,
as we better understand structural changes that occur in AD from early to late stages.



Int. J. Mol. Sci. 2024, 25, 12211 4 of 14
Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 4 of 15 
 

 

 

Figure 2. PWS analysis of human brain tissue. (a,b) Bar graphs of the average and std of 𝐿ௗ of the 
control C and samples of different stages of AD: LAD, IAD, and SAD. The results show an average 
increase of 6% in LAD, 23% in AD, and 61% in SAD relative to the control C, while there is an 
increase in the std (Ld-PWS) of 4.2% in LAD, 29% in IAD, and 72% in SAD relative to the control. 
(Student’s t-test, * p-values < 0.05 for each case relative to the control, N = 10). 

AD has been found to affect the hippocampus and cells at the nanoscale to submicron 
scale, leading to brain dysfunction. The PWS technique has made it possible to quantify 
structural alterations in human brain tissues related to AD at the nanoscale level for early 
signs of AD development and progression. This helps us develop better treatment options, 
as we better understand structural changes that occur in AD from early to late stages. 

2.2. Confocal IPR Analysis of DNA/Chromatin 
Using the IPR approach discussed in the experimental section, we analyzed the ef-

fects of AD on DNA/chromatin spatial mass density fluctuations dρms of nuclei in brain 
cells embedded in tissues by computing and comparing IPR values with AD progression. 
We assessed at least five confocal micrographs of each nucleus for each cell. They were 
evaluated independently at a length scale of L = 165 nm. Ld-IPR was computed in terms of 
IPR for each cell nucleus across the length scale L. The average (avg) and standard devia-
tion (std) of the IPR values were calculated by averaging the IPR values of all the tissues 
at the same scale in every category. These avg (〈𝐼𝑃𝑅〉) and std (〈𝐼𝑃𝑅〉) values of the nuclei 
were compared between the AD and control samples. 

We present the confocal images of the DNA/chromatin nuclei, which were DAPI 
stained for control C and AD, in Figure 3a,b, along with their respective IPR images shown 
in Figure 3a’,b’, captured at a scale of L × L (165 nm*65 nm). The IPR images can be dis-
tinguished easily from their respective confocal images. Structural DNA abnormalities in 
the cell nuclei are shown clearly, with more red and yellow spots in the IPR images re-
flecting more molecular mass density fluctuations. On the contrary, the blue color repre-
sents minor mass density fluctuations for each pixel. 

*
*

* *

* 

*

Figure 2. PWS analysis of human brain tissue. (a,b) Bar graphs of the average and std of Ld of the
control C and samples of different stages of AD: LAD, IAD, and SAD. The results show an average
increase of 6% in LAD, 23% in AD, and 61% in SAD relative to the control C, while there is an increase
in the std (Ld-PWS) of 4.2% in LAD, 29% in IAD, and 72% in SAD relative to the control. (Student’s
t-test, * p-values < 0.05 for each case relative to the control, N = 10).

2.2. Confocal IPR Analysis of DNA/Chromatin

Using the IPR approach discussed in the experimental section, we analyzed the effects
of AD on DNA/chromatin spatial mass density fluctuations dρms of nuclei in brain cells
embedded in tissues by computing and comparing IPR values with AD progression. We
assessed at least five confocal micrographs of each nucleus for each cell. They were
evaluated independently at a length scale of L = 165 nm. Ld-IPR was computed in terms of
IPR for each cell nucleus across the length scale L. The average (avg) and standard deviation
(std) of the IPR values were calculated by averaging the IPR values of all the tissues at the
same scale in every category. These avg (⟨IPR⟩) and std (⟨IPR⟩) values of the nuclei were
compared between the AD and control samples.

We present the confocal images of the DNA/chromatin nuclei, which were DAPI
stained for control C and AD, in Figure 3a,b, along with their respective IPR images shown
in Figure 3a’,b’, captured at a scale of L × L (165 nm * 65 nm). The IPR images can be
distinguished easily from their respective confocal images. Structural DNA abnormalities in
the cell nuclei are shown clearly, with more red and yellow spots in the IPR images reflecting
more molecular mass density fluctuations. On the contrary, the blue color represents minor
mass density fluctuations for each pixel.
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Figure 3. DNA molecular-specific structural disorder visualized using confocal-IPR imaging of Ld-IPR.
(a) DAPI-stained confocal image of the control human brain tissue; (b) AD human brain tissues that
are DAPI stained, targeting DNA/chromatin; (a’,b’) corresponding Ld-IPR images of the control C
DAPI-stained brain tissues and AD DAPI-stained brain tissues, respectively.
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Bar graphs were employed to analyze the ensemble of IPR values at a sample length
of 165 nm, as shown in Figure 4. The bar graphs depict the avg (⟨IPR⟩) and std (⟨IPR⟩)
for the DNA mass density variance utilizing the confocal-IPR technique on brain tissues
from Alzheimer’s patients. When analyzed statistically in Figure 4, it was found that there
was an increase in the Ld-IPR of the AD brain tissues relative to the control. There was
an average increase of 43% and 50%, respectively, as well as an increase in the standard
deviation of the IPR values for the AD in the DNA molecules compared to the control, as
shown in Figure 4a,b.
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Figure 4. <IPR> values of DAPI-stained control (C) and AD brain tissue samples. (a) Average ⟨IPR⟩
value of DAPI-stained C and AD brain tissue samples (b) Std ⟨IPR⟩ value of DAPI-stained C and AD
brain tissue samples. The average and std of ⟨IPR⟩ ≡ Ld−IPR AD DAPI-stained brain tissue values
are higher than the controls (C). The average value of Ld-IPR increased by 50% relative to the control,
and its std (Ld-IPR) increased by 43% relative to the control C. According to the above bar plots, the
AD samples exhibited more disorder in the spatial structural of the DNA in the nuclei of brain cells,
leading to more structural damage and abnormalities. (Student’s t-test, * p-value < 0.05 relative to
control C, N = 10).

This increase in IPR value is related to structural abnormalities, indicating an increase
in the DNA spatial molecular mass density fluctuations, dρms, or higher molecular fluctua-
tions in the DNA of brain cells. This increase in dρms can be caused by the rearrangement of
macromolecules triggered by the deposition of Aβ protein and DNA damage in the brain
at the nanoscale.

2.3. Increased Amyloid Beta Deposition in the Brains of AD Patients

The accumulation of Aβ protein characterizes AD. To delve deeper into Aβ depo-
sition among AD and non-AD subjects, we employed immunofluorescence staining in
hippocampus sections of AD and non-AD brains utilizing Aβ-specific antibodies. There
was significant deposition of Aβ protein in the hippocampus sections of the brains of AD
patients relative to non-AD patients, as shown in Figure 5.

2.4. Increased DNA Double-Strand Breaks (DDSBs) in the Brains of AD Patients

Next, we investigated if AD is linked to an increase in DDSBs. We performed the
ELISA method as discussed in the experimental section. There was a significant increase
(p-value < 0.05) in the levels of DDSBs in the hippocampi of the AD patients compared
to the healthy controls. These results align with prior studies demonstrating increased
DNA breaks in AD [28,49,50]. Hence, we found that DDSB accumulation is increased
significantly when there are neurodegeneration conditions, as presented in Figure 6.
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Figure 5. Increased amyloid beta (Aβ) deposition in the brains of AD patients. Representative
photomicrographs show the profound expression of Aβ deposition (red staining) in AD patients’
hippocampi compared to non-AD subjects. Compared to the human non-AD brain, the AD brain
showed more immunostained plaques (red), whereas negligible expression was found in the non-AD
brain sections. Microscopic analysis indicates that the fully developed plaques in the brain were
amorphous and granular. Scale bar = 100 µm.
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the healthy controls. These results align with prior studies demonstrating increased DNA 
breaks in AD [28,49,50]. Hence, we found that DDSB accumulation is increased signifi-
cantly when there are neurodegeneration conditions, as presented in Figure 6. 

 
Figure 6. Increased DNA double-strand breaks (DDSBs) in the hippocampi of AD patients. The
ELISA method was used to assess the protein levels of γ-H2A.X (Ser139) in the hippocampi of AD
and non-AD brains. The bar graphs show a net increase of 131% with the progress of AD. Data
were analyzed using a two-tailed t-test between groups. The values are expressed as means ± SEM.
* p < 0.05 (N = 10/group).

3. Discussion

Fragmented reports provided in previous studies provide evidence of microscopic
structural changes in several brain regions during the asymptomatic stages of AD based on
brain biopsies or large-volume imaging such as MRI, X-ray, and CT scans. However, the
limiting factors of studying nano-structural changes using similar techniques have been
described in previous works [20,23]. This paper includes detailed reports of subcellular
alterations in brain tissue in AD, ranging from LAD to SAD. Using the dual spectroscopy
techniques of PWS and IPR, we measured and quantified changes at the brain’s nano to
submicron scale at various stages in AD patients. We focused our study on the different
stages to represent the levels of AD progression in human brain tissue, so the measurements
are expected to be clinically helpful. Using PWS, the nano-structural alterations in ρ;—
that is, fluctuations in dρ—increase in the brain tissues of AD patients for an extended
period before the symptoms appear. To corroborate these results, we investigated the
spatial structural disorder properties of DNA/chromatin using a new photonic technique,
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IPR, which has proven helpful for probing chromatin/DNA’s spatial structural alteration
properties in studying the degree of disorder strength properties [52]. The PWS and IPR
results show a statistically significant increase in the avg and std of Ld−PWS and Ld−IPR
for AD in human brain tissues at different stages compared to the control. These results
indicate a higher degree of spatial molecular structural disorder in DNA, which may be
caused DNA damage—a previously undefined parameter in the context of AD—which
links structural changes at the nanoscale level to AD onset and progression.

We further performed immunofluorescence staining and ELISAs to examine Aβ depo-
sition and the damage to the DNA, respectively. The results showed that there is ample
deposition of Aβ and DNA breaks in the brains of AD patients. The results of these cyto-
logical experiments, namely DNA damage, also directly support the optical measure of the
DNA damage obtained in the PWS experiment. Accumulation of DNA damage has been
linked to several age-related neurodegenerative diseases, including AD [53,54]. In AD, the
accumulation of DDSBs is considered an early feature, suggesting that they may act as an
initiating lesion of neurotoxicity [55,56]. These observations indicate that the accumulation
of DDSBs may degrade chromatin integrity in neurons, ultimately activating deleterious
signaling pathways that precede neurodegeneration. Therefore, we can conclude that the
accumulation of DNA breaks and structural changes observed via PWS and IPR methods
is an essential early part of the pathway toward damage and degeneration in AD.

Lastly, several nanoscale changes in molecular and cellular structures occur in the
brains of people with AD because of the damage and death of neurons throughout the
brain, as well as the possible breakdown of connections between networks of neurons
caused by abnormal accumulations of tau and beta-amyloid proteins inside and between
neurons, leading to increasing structural abnormalities and early mass density fluctuations.

4. Materials and Methods
4.1. Preparation of Brain Tissue Samples

Michigan Brain Bank, Ann Arbor, MI, USA provided samples of brain tissues from
AD and cognitively healthy patients. This study received approval from the University of
Tennessee Health Science Center Institutional Review Board (IRB #20-07595-NHSR; Exempt
Application 874552), Memphis, TN, USA. All standard ethical procedures were followed
during this study, including personal protection and safety procedures while handling
human tissue samples. Samples collected from AD patients were categorized into different
stages by pathologists, which included Low Alzheimer’s Disease (LAD), Intermediate
Alzheimer’s Disease (IAD), and Severe Alzheimer’s Disease (SAD).

4.1.1. Sample Preparation for PWS

The human tissue samples were embedded in paraffin following a standard pro-
tocol, sectioned into 5 µm slices using a microtome, and mounted on glass slides for
PWS measurements.

4.1.2. Sample Preparation for IPR Study Using Confocal Microscopy

A nuclear dye, DAPI is used to probe the molecular structure of DNA in cell nuclei
because it helps to recognize DNA and chromatin structures. Initially, tissue plating was
performed on sterile glass slides. Later, the slides were rinsed for 5 min at room temperature
in phosphate-buffered saline (PBS) containing 2–4% paraformaldehyde. This cycle was
repeated three times before proceeding to the next step. In the next step, the slides were
stained using Prolong Diamond antifade mountant containing a DAPI stain to label the
DNA a blue color. The DAPI in the mountant helped to distinguish the nuclei from the rest
of the cell when imaged using fluorescence microscopy.

4.1.3. Sample Preparation for DNA Damage Analysis

To investigate damage in the DNA of AD patients, frozen post-mortem brain tissues
were collected from AD and non-AD patients from the hippocampus region of the brain.
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As described in [57], first, the tissues from both groups were treated with γH2A.X (Ser139)
Sandwich ELISA. Following the instructions for the PathScan® Phospho-Histone H2A.X
(Ser139) Sandwich ELISA kit (Cell Signaling Technology, Inc. Danvers, MA, USA) we were
able to measure and quantify the endogenous levels of γH2A.X (Ser139). The tissues were
dissolved in a buffer solution containing a HaltTM protease and phosphatase inhibitor
cocktail. These tissues were pipetted into the wells of a coated 96-well plate and incubated
at 4 ◦C overnight. The plates were washed extensively after incubation, and an antibody
phosphor-histone H2A.X (Ser139) was added to each well of the plate to detect the captured
phosphor-histone H2A.X protein. Another horseradish peroxidase (HRP)-conjugated
affinity purified anti-mouse antibody was added to each well to visualize the bound
detection antibody. After washing, a substrate solution was added to each well to develop
the color. The color formed was proportional to the amount of bound protein in each
well. Later, to terminate the reaction, a stop solution was added. A microtiter plate reader
(SpectraMax M2e, Molecular Devices LLC, San Jose, CA, USA) was used to check the
absorbance at a 450 nm wavelength.

4.1.4. Sample Preparation for Amyloid Beta (Aβ) Deposition

Sections from the hippocampus regions were collected and stained using immunoflu-
orescent antibodies, described in detail in [58,59]. Firstly, for the retrieval of antigens, the
sections were pretreated with 10 mM citric acid buffer (pH 6.0) followed by 3 PBS washes.
Later, the sections were incubated in 5% bovine serum albumin (BSA #A7906; Sigma
Aldrich, St. Louis, MO, USA) for 1 h. The sections were exposed to a primary antibody for
Aβ (BAM-10; Sigma Aldrich, St. Louis, MO, USA) overnight at 4 ◦C followed by 3 PBS
washes, then they were treated with Alexa Fluor 555 secondary antibody (in vitro) at room
temperature for 1 h. All of the sections were cleansed before mounting with Vectashield®

(Vector Laboratories Inc., Newark, CA, USA) mounting medium containing DAPI (H-1200,
Vector Labs, Newark, CA, USA). Images of the sections were taken at a 40× magnification
using a fluorescence microscope.

4.2. Partial Wave Spectroscopy
4.2.1. Optical Setup

A brief discussion of the setup is described in this report, and a detailed one can be
found in our previous works [23,60,61]. Due to the multiple scattering and reflections
from the sample and its surface, the backscattered signal R(x,y,λ) produced at different
wavelengths is focused on the system for imaging and analysis. The PWS setup measures
the Ld-PWS of the sample at the specific spatial position (x,y) spectra of the reflecting
wavelength (λ). The PWS setup, described in detail in [24,62,63], consists of a broadband
light from a xenon lamp (150 W) (Newport Corporation, Irvine, CA, USA). The light is
collimated using a 4f combination of lenses and irises for spatial filtering. The collimated
beam is directed onto the sample using a right-angled prism (BRP) and a 50:50 dichroic
mirror that focuses the beam via a 40× objective lens (NA = 0.65). The sample was kept
on a motorized stage (X–Y axis: 40 nm; Z axis: 100 nm; Zaber Technologies, Vancouver,
BC, Canada) for proper focusing. The backscattered light was focused into the CCD for
image recording in the visible spectrum (450–700 nm) through a liquid crystal tunable filter
(Kurios LCTF) (Thorlabs, Newton, NJ, USA) using a plano-convex lens (f = 10 cm). The
synchronized controller allowed the CCD and LCTF to capture the incoming signal in the
CCD with an increase in wavelength of 1 nm.

4.2.2. Calculation of Structural Disorder Strength (Ld-PWS)

The fluctuating component of the backscatter signal was extracted, and a low-pass
Butterworth filter was applied at a stable frequency to remove high-frequency signal
noise. The backscattered intensity I(x,y,λ) is a function of two spatial coordinates. X and
Y represent the pixel location in the sample plane, and λ is the wavelength. Moreover, to
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deal with the variations in intensity in the lamp spectrum, a low-order polynomial Ip(λ)
was fit to I(λ), resulting in the spectrum R(λ) = I(λ) − Ip(λ) [62].

The theory of mesoscopic light transport was applied to R(λ) in 1D disorder, which is
also applicable to electron and dielectric media [63]. It has also been applied to electron
and light transport in dielectric media [39]. Cells/tissues can also be considered weakly
disordered media. The incoming backscattered light from the sample can be divided into
many 1D channels, with statistical information from dn obtained through 1D mesoscopic
light transport theory [64,65]. Based on this theory, it has been shown that Ld-PWS can be
calculated using the RMS value of the reflection intensity <R>rms and the spectral auto-
correlation decay of the reflection intensity ratio CC(∆k) [30,63,66,67]. Ld-PWS can be found
for any fixed pixel (x,y) and n0 (assume 1.38) as follows:

Ld−PWS =

∣∣∣∣∣Bn2
0⟨R⟩rms

2k2
(∆k)2

−ln(⟨C(∆k)⟩)

∣∣∣∣∣ (1)

where B is a calibration constant, k is the wavenumber, and C(∆k) is the autocorrelation
function, defined as follows:

⟨C(∆k)⟩ = ⟨R(k)R(k + ∆k)⟩
⟨R(k)R(k)⟩ (2)

(∆k)2/ln(<C(∆k)>) is calculated by plotting −ln(<C(∆k)>) vs (∆k)2 and performing a
linear fit. Equation (1) gives us a map of Ld-PWS for each pixel. Furthermore, Ld−PWS =〈

∆n2
〉
× lc, where

〈
∆n2

〉
is the refractive index variance and lc is the correlation length

of intracellular refractive index fluctuations. The disorder strength is used to evaluate the
changes in intracellular density inside the sample [68]. The average and standard deviation
of Ld-PWS were computed to analyze the sample’s structural alterations.

4.3. Confocal IPR Technique
4.3.1. Confocal Imaging

A Zeiss710 confocal microscope (Carl Zeiss Microscopy, Jena, Germany) was used to
capture 4–8 micrographs above and below a cell nucleus’s central plane in Z-stack mode.
Selection of the micrographs depended on the most change in the stack based on acquisition
of the best coverage of the nuclear area. Later, each cell type was identified based on several
images to analyze their components such as DNA and chromatin. Software including
ImageJ v1.54c (National Institutes of Health, Bethesda, MD, USA) and MATLAB were
applied to combine and process the images. The tissues of the different groups were
captured and processed for calculations.

4.3.2. Inverse Participation Ratio and Analysis of Structural Disorder Strength Ld

The IPR approach is mainly used to study weakly disordered optical media and
measure structural disorder by statistically studying their light localization characteristics.
Moreover, light localization inside the system can be measured by finding the IPR value of
an optical system’s eigenfunction, which depends on the interference of light waves [69–71].

IPR is calculated from an eigenfunction defined as IPR =
∫

IE(r)I4dr, where E is an
eigenfunction of the Hamiltonian. It quantifies the degree of spatial localization and further
helps us to measure the system’s light localization strength, allowing us to determine the
degree of structural disorder (Ld-IPR) inside the optical lattice.

The refractive index (n(x, y)) inside the biological samples is proportional to intra-
cellular ingredients’ local mass density distributions. Intensity coming from each sample
voxel (x, y) can be quantified as I(x, y) = I0 + dI(x, y), where I0 is the average inten-
sity. This can be further connected to the refractive index as n(x, y) = n0 + dn(x, y) =
ρms0 + β × ρms(x, y), where n0 is the average refractive index of the sample at (x,y) and
dn(x,y) is the refractive index fluctuations [72–74]. This shows us that intensity variations



Int. J. Mol. Sci. 2024, 25, 12211 10 of 14

can be used to correlate the fluctuations in refractive index with the local mass density:
n(x, y) ∝ M(x, y) ∝ I(x, y). Using this property, we can construct a refractive index lattice—
a disordered optical lattice—by capturing confocal micrographs [35]. Optical potential can
be defined as follows:

εi(x, y) =
dn(x, y)

no
∝

dI(x, y)
I0

(3)

It is defined at the i-th lattice point within the voxel around (x,y).
The Hamiltonian matrix can be obtained by applying Anderson’s tight-binding model

(TBM), given as H = ∑ εi|i >< i|i + t ∑⟨ij⟩ (|i >< j|+|j >< i|), where |i> and |j> are
optical eigenvectors at i-th and j-th lattices, <ij> are the nearest neighbors, and εi is the
optical potential energy of the i-th lattice site belonging to the pixel position (x,y) [20,31,50].
The mean IPR can be calculated as follows:

⟨IPR⟩L×L =
1
N

N

∑
i=1

∫ L

0

∫ L

0
E4

i (x, y)dxdy (4)

The above formula is for an optical lattice size of L × L. Ei is the i-th eigenfunction
of the Hamiltonian, and the total eigenfunctions are N = (La)2, [La = L/a (lattice size),
a = dx = dy]. Biological cells are considered heterogenous light transparent systems, which
characterize their disorders based on two factors: dn and lc [75]. Combined with these two
parameters, it gives disorder strength, Ld−IPR = < ∆n > ×lc [76]. It has been reported that
the average and the standard deviation of the <IPR> value are correlated to the degree of
structural disorder, which can be written as follows:

Average⟨IPR⟩ ∝ Ld−IPR = < ∆n > ×lc (5)

std⟨IPR⟩ ∝ Ld−IPR = < ∆n > ×lc (6)

5. Conclusions

In this article, the results of the dual spectroscopic techniques of PWS and IPR show
nano- to submicron-scale structural alterations in tissues/cells and chromatin in progressive
Alzheimer’s disease from the early to late stages. Using PWS, we probed the structural
alterations in brain tissue samples, and using the IPR technique, we probed the spatial
structural alterations in DNA/chromatin structures in the brain cells of humans with
progressive Alzheimer’s disease. The PWS results showed that there was an increase in the
degree of structural disorder Ld-PWS (~dn2.lc) value of 6% in LAD, 23% in IAD, and 61% in
SAD relative to the control C, and their std values increased by 4.2% in LAD, 29% in IAD,
and 72% in SAD relative to the control C. Furthermore, the IPR results showed that there
was an increase in the degree of structural disorder Ld-IPR (~dn.lc) in the DNA/chromatin
average value, which increased by 50% in AD relative to the control C. Its std values also
increased by 43% in SAD relative to the control C. The significance of this study was the
use of light scattering experiments to probe nano- to submicron-scale structural alterations,
which was supported by DNA damage histopathology/cytology experiments.

Our experimental findings shed new light on AD and its local increases in the degree
of Ld-IPR/Ld-PWS via optical probing of the brain’s hippocampus region in AD patients.
Understanding the nanoscale structural alterations underlying abnormalities in brain
tissues due to AD progression may help in detailed clinical probing for early AD detection
and possible treatment. In this study, we only examined the structure changes in the
hippocampal region. Therefore, further studies are needed to explore the structural changes
in different brain regions and their correlations with AD-related neuropathology.
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