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Abstract: Zanthoxylum species have long been utilized in traditional medicine; among their various
properties, they provide an analgesic effect. Central to this medicinal application are alkamides, a class
of alkaloids characterized by their unsaturated fatty acid chains. These compounds are particularly
noted for their distinctive alleviation of tingling and numbing effects, which are beneficial in dental
pain management and local anesthesia. This review synthesizes the existing phytochemical research
on alkamides derived from 11 Z. species, focusing on their chemical properties, pharmacodynamics
and clinical implications. The analysis includes an examination of the structure-activity relationships
check for (SARs), pharmacokinetics and mechanisms by which these compounds modulate sensations such as
updates pungency and numbness, contributing to their analgesic and local anesthetic efficacy. This systemic
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Alkamides in Zanthoxylum Species:

review identifies significant research gaps, including the need for comprehensive evaluations of
alkamide efficacy, detailed explorations of their pharmacological mechanisms and expanded clinical
applications. These areas represent key opportunities for future investigations to enhance the
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species are traditionally used in managing various health conditions [4,5]. Secondary
metabolites from Z. species extract have exhibited several pharmacological activities such
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Z. oxyphyllum Edgew. [22] and Z. heitzii (Aubrév. and Pellegr.) P.G. Waterman [23]. Those
studies, mentioning pain attenuation in traditional uses, indicate that Z. species can be
associated with potential sources for the drug development of local anesthetics.

The phytochemical profile of Z. species is diverse, encompassing terpenes, flavonoids,
coumarins, phenolic acids and alkaloids [4,5]. Among the alkaloids, alkamides repre-
sent a special class of bioactive constituents, characterized by straight-chain, unsaturated
fatty acids linked via an amide bond to various amines, forming distinctive natural prod-
ucts [24,25]. Previous studies have revealed that alkamides are mostly found in the Z.
species with, consequently, the traditional use of such Z. species herbs due to being rich in
alkamides [26-28]. Alkamides exhibit a broad spectrum of biological activities, including
antifungal, antibacterial, immunomodulatory, antidiabetic, anti-inflammatory, analgesic
and neuroprotective effects [29-35]. The unique tingling and numbing sensations in Z.
species are attributed to the plants containing a collection of alkamides [25]. Furthermore,
alkamide extracts or whole plants rich in alkamides are used in the treatment of toothaches
or as anesthetics [36,37]. Previous reviews have shown that a series of alkamides in the
genus Z. exhibit numbing and tingling sensations in sensory neurons [38], while a series
of reviews reported that the alkamides from Z species or other plants caused numbing
sensations and analgesic effects [24,28,39].

This review aims at providing a systematic and updated analysis of alkamides from
11 Z. species, focusing on their phytochemistry, pharmacological actions, pharmacoki-
netics and clinical applications with particular emphasis focused on the potential of
these compounds as local anesthetics in the process of examining their sensory and anal-
gesic effects. By synthesizing current knowledge and identifying research gaps, this re-
view seeks to guide future investigations into the development of alkamides as potential
local anesthetics.

2. Phytochemistry
2.1. Chemical Properties and Metabolism in the Plants

Alkamides are widely distributed in plants and are structurally related to N-acyl-L-
homoserine lactones (AHLs) found in Gram-negative bacteria, as well as to N-acylethanolamines
(NAEs) found in plants and mammals [40]. Accordingly, these compounds contain a fatty acid
tail, which comprises saturated or unsaturated carbon chains with lengths ranging from Cg to
Cjg combined with an amide group and a variable headgroup. The olefinic double bonds of
alkamides display E or Z forms depending on whether the higher priority groups (methylene)
on both carbons of the double bond are on opposite sides or the same side, respectively. The
characteristics of E/Z isomers, including the level of saturation, number of carbon atoms and
stereochemistry, serve as chemical taxonomic criteria for different plant families [40].

The chemical structure of the alkamide family is unstable and sensitive to oxygen, light
and heat due to the presence of unsaturated fatty acids containing olefinic bonds [41]; for
example, the content of sanshool alkamides in an aqueous solution at pH 7.0 was reduced
by 50% at room temperature over four weeks. These compounds are also susceptible
to degrade at high temperatures, and an 80% ethanolic solution containing 200 ppm of
alkamide exposed to ultraviolet (UV) light completely disappeared within four hours [42].
The double-bonded part of the alkamides might undergo changes under ultraviolet B
(UVB) irradiation, leading to the interconversion of chemical structures [42]. A previous
study tried to evaluate the degradation of alkamides in plant extracts under different
storage conditions. Alkamides in DMSO solution degrade more slowly than in dry films,
and, if alkamides are combined with phenolic acids acting as antioxidants in dry films,
the degradation appears slower than that of alkamides with phenolic acids in DMSO
solution [43]. Based on the above studies, this indicates that pure alkamides should be
kept in solvents (except for acidic solutions). Low temperature and protection from light
irradiation are essential for the storage of pure alkamides.

The alkamides produced in plants are usually responsive to environmental stress
and promote plant growth. In plants, alkamides are secondary metabolites that exhibit a
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chemical defense against microbial and herbivorous predators [44]. The related metabolic
pathways, dependent on phytohormones, lead to the expression of defense-related genes
and the production of antimicrobial secondary metabolites [45]. Studies on alkamide gener-
ation and accumulation in Z. species have demonstrated that ZbFAD2 and ZbFAD3 are
vital alkamide biosynthesis enzymes in Z. bungeanum via the promotion and regulation of
the production of alkamides [46]. In plant development, alkamides produce unique stimu-
latory effects to control differentiation processes during plant growth through interaction
with the cytokines in the signaling pathway [47]. Alkamides can also regulate NO pro-
duction to promote lateral and adventitious root formation at various stages of Arabidopsis
explant development [48].

2.2. Alkamides Extraction, Isolation and Structure Elucidation

Extraction is the initial stage in the process of isolating compounds from plant mate-
rials, and various methods of plant extraction can be tailored to target specific phytocon-
stituents and structures. The temperature and physicochemical conditions of extraction
methods, which include maceration, infusion, decoction, Soxhlet extraction, counter-current
extraction, sonication, supercritical fluid extraction, hydrodistillation, microwave-assisted
extraction and ultrasound-assisted extraction, are chosen based on the constituents and
properties of the plants involved [49,50].

Various solvent systems such as hexane, chloroform, ethyl acetate, ethanol and
methanol are commonly employed for extracting alkamides from plant materials. Among
these, chloroform is the most suitable solvent system, and, although both methanol and
ethanol have also been used [40], studies have shown that water, methanol and ethanol
extracts of Z. bungeanum tend to contain higher concentrations of alkamides compared to
extracts obtained using other solvent systems. These three solvent extracts in particular are
noted for their significant content of major alkamides such as ZP-amide C and ZP-amide
D, suggesting that water, methanol and ethanol are effective solvents for extracting these
specific alkamides from Z. bungeanum [51], with two previous studies demonstrating that
ZP-amide C and ZP-amide D were isolated from the methanol extract of Z. piperitum [52],
while 70% ethanol extract was used as solvent to extract and separate the alkamides from
Z. bungeanum pericarps [53].

Chemical detection and identification of the structural characterization of compounds
is a significant challenge in natural product research. Various solid-phase chromatography
techniques play a crucial role in separating and analyzing these compounds. Coating mate-
rials used in chromatography assays such as thin-layer chromatography (TLC), column
chromatography (CC), flash chromatography (FC), size-exclusion chromatography (SEC),
medium-pressure liquid chromatography (MPLC) and high-performance liquid chromatog-
raphy (HPLC) have all been successfully employed for separating natural products with
similar structures [54].

Isolating and purifying alkamides from plants poses challenges primarily due to their
structural similarity and tendency to exist as racemic mixtures. The structural similarity
among alkamides makes it difficult to separate them using conventional purification meth-
ods; additionally, their racemic nature further complicates the isolation process because
enantiomers (mirror-image forms) have identical physical and chemical properties, making
it challenging to distinguish and separate them [24,55]. To overcome these challenges,
chromatography-coated materials suited to a special structure are necessary, such as chiral
chromatography, which can separate enantiomers based on their stereochemistry. For
Z. bungeanum, two alkamide enantiomers were successfully isolated by preparative HPLC
with a chiral column from a racemic mixture [56]. In order to confirm the structure of pure
compounds obtained through the separation process, spectroscopic analysis, including
Fourier-transform infrared spectroscopy (FTIR), Ultraviolet—visible spectroscopy (UV-Vis),
nuclear magnetic resonance spectroscopy (NMR) and mass spectrometry (MS) are used
for structural elucidation. The circular dichroism (CD) spectrum combined with calcu-
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lated electronic circular dichroism (ECD) and optical rotation are applied for absolute
configurations of alkamides.

To date, about 65 alkamides have been isolated and identified from eleven Z. species.
This review presents the phytochemical studies of alkamides obtained from 1957 to 2022.
Their structures are shown in Figures 1-4.

2.2.1. Alkamides from Zanthoxylum piperitum DC

The «-sanshool (1) isolated from a light petroleum extract of the ground bark of Z. piper-
itum through column chromatography on neutral alumina was the first alkamide obtained
from Z. species [57], while Hydroxy-a-sanshool (2), f-sanshool (3) and (2E,4E,8E,10E,12E)-
N-Isobutyl-2,4,8,10,12-tetradecapentaenamide (named 6-sanshool) (4) were isolated from a
CHCI; extract of the bark of Z. piperitum through normal-phase HPLC [58,59]. Hydroxy-
e-sanshool (5) was isolated from the seed of Z. piperitum by Cyg reversed-phase HPLC
using 30% aqueous MeOH [60], where 2 and 5 revealed a hydroxyl group at isobutyl C2
position [58,60]. Six alkamides, ZP-amide A (6), B (7), C (8), D (9), E (10) and F (11) with
unsaturated fatty acid amides with hydroxyl and carbonyl substitutions were purified
from the pericarp of Z. piperitum fruits, and, among these, 8 and 9 were racemic mixtures
owing to optical inactivity. The relative configuration of 8 and 9 at C-10 and C-11 remains
to be analyzed, while 11 is the stereoisomer of 10 with the relative configuration at the two
asymmetric carbons, C-6 and C-11, 10 and 11 also being racemic mixtures owing to optical
inactivity. The relative configuration and optical inactivity results of 8-11 were determined
by 1D and 2D NMR and optical rotation [52]. Hydroxy-C-sanshool (12) was isolated from
supercritical fluid extract in MeOH through MPLC and reversed-phase HPLC, where the
two cis-configuration of double bonds in 12 was confirmed by expected cis-shielding effect
of carbon atoms C-7 and C-14; finally, the trans-configuration of the double bond in 12 was
detected by coupling constant of the two double duplets detected for H-10 and H-11 [61].

2.2.2. Alkamides from Zanthoxylum bungeanum

The CHCl; extract of Z. bungeanum was chromatographed on a silica gel column and fur-
ther isolated with reversed-phase HPLC to derive hydroxy-{3-sanshool (13), (2E AE,8E,10E,12E)-
2’-Hydroxy-N-isobutyl-2,4,8,10,12-tetradecatetraenamide (named hydroxy-y-isosanshool) (14)
and (2E 4E,8Z,11Z)-N-(2-Hydroxy-2-methylpropyl)-2,4,8,11-tetradeeatetraenamide (named
bungeanool) (15). These three alkamides contained a hydroxyl substitution at isobutyl C2 po-
sition [62]. A double-bond moiety linking to NH through a methylene group named dehydro-
v-sanshool (16) was isolated from an EtOH extract of dried pericarps of Z. bungeanum, while
tetrahydrobungeanool (17), dihydrobungeanool (18) and isobungeanool (19) were also isolated
from an EtOH extract of dried pericarps of Z. bungeanum [63]. (2E,7E,9E)-N-(2-hydroxy-2-
methylpropyl)-6,11-dioxo-2,7,9-dodecatrienamide (20) containing two ketones located on an
unsaturated carbon chain was isolated from a MeOH extract of pericarps of Z. bungeanum. In
particular, (2E,6E,8E)-N-(2-Hydroxy-2-methylpropyl)-10-oxo-2,6,8-decatrienamide (21) con-
taining a terminal aldehyde group on the unsaturated side chain was also isolated from the
same extract [64].

Recent studies indicate that some alkamides have been successfully isolated from an
EtOH/water plant extract. The pericarps of Z. bungeanum underwent treatment via 70%
EtOH that was purified with a Sephadex LH-20 and preparative reversed-phase HPLC
system to produce gqinbunamide A-C (22-24), where 22 and 23 contained an ethoxy muoi-
ety attached on C-6 and C-11, respectively, while 24 contained carbonyl and hydroxyl
groups on C-6 and C-11, respectively. Olefinic, carbonyl, hydroxyl and ethoxy groups
in positions 22-24 were determined by 2D NMR; however, the stereochemistry of the
ethoxy and hydroxyl moiety of 22-24 was still evidenced as a relative configuration [53].
A series of isobutylhydroxyamides 25-32 containing unsaturated carbon chains with car-
bonyl and hydroxyl groups were isolated from a 95% ethanol extract of the pericarp of Z.
bungeanum [56].
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In this study, 6 and 7, as obtained in a previous study [52], were separated by chiral
columns to obtain enantiomers 6a/6b and enantiomers 7a/7b, respectively. The absolute
configuration of enantiomeric 6a and 7a were determined as 6R and 11R, respectively;
therefore, 6b and 7b were determined to be 6S and 118, as they are the enantiomers of 6a
and 7a. Compound 30 was a stereoisomer of 29 with different relative configurations at
C-6 and C-7; 29 and 30 were also confirmed as erythro and threo forms, respectively. The
relative configuration of 32 was the erythro form due to the coupling constant between
H-6 and H-7 being the same as 29 [56]. Zanthoamide A (33), B (34), C (35) and D (36) and
bugeanumamide A (37) were isolated from a 95% EtOH extract of powdered pericarps of
Z. bungeanum. In addition, 33-35 also exhibited an unsaturated carbon chain substituted by
carbonyl and hydroxyl groups. These four alkamides were racemic mixtures on account of
the optical inactivity of these compounds. Compound 37 contained a rare C-6 fatty acid
with an acetal group confirmed by 2D NMR correlation of OCH3 with H-6 and six protons
of the two methoxyl groups as a strong singlet in 'H NMR [65].
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Figure 1. Chemical structures of alkamides in Z. piperitum.
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Figure 2. Chemical structures of alkamides in Z. bungeanum.
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Figure 4. Chemical structures of alkamides 50-61 in Z. nitidum (Roxb.) DC., 62-66 in Z. nitidum var.
tomentosum, 67 and 68 in Z. heitzii, 69 and 70 in Z. zanthoxyloides and 71 in Z. chalybeum.

2.2.3. Alkamides from Zanthoxylum lemairie (De Wild.)

Two aromatic alkamides, 38 and 39, were isolated from a CHCI; extract of pericarps of
Z. lemairie, revealing that the aromatic moiety was linked to the methoxy groups. Compared
with the spectroscopic data of 38 and 39, the NMR absorption of N-CHj on 39 confirmed
that 39 is the N-methyl derivative of 38 [66].

2.2.4. Alkamides from Zanthoxylum Integrifoliolum (Merr.) Merr

Lanyuamides I-III (40-42) were isolated from a MeOH extract of fruits of Z. Integrifoli-
olum. The carbonylation on C-8 and C-12 of 40 and 41, respectively, were determined by the
difference of the 'H NMR spectrum of methylene groups neighboring the keto group [67].

2.2.5. Alkamides from Zanthoxylum ailanthoides (Sieb. et Zucc.)

v-sanshool (43) and hydroxy-y-sanshool (44) were isolated from a MeOH extract of Z.
ailanthoides. In the 13C NMR spectrum of 44, the carbon signal attached to hydroxyl moiety
was shifted downfield in comparison with that of 43 and singlet in the off-resonance *C
NMR spectrum [68]. (2E,4E)-N-isobutyl-6-oxohepta-2,4-dienamide (45) was isolated from a
MeOH extract of the stem bark of Z. ailanthoides through being chromatographed on silica
gel and preparative TLC. The terminal acetyl group of the fatty acid of 45 was elucidated
by 1D and 2D NMR correlation of C-4 to C-7 [69].

2.2.6. Alkamides from Zanthoxylum armatum DC

Dried pericarps of Z. armatum were extracted in MeOH to educe four alkamides,
timuramides A-D (46-49), which were purified with diol batch elution, LH-20 Sephadex
chromatography and C;g-HPLC. In order to confirm absolute configuration of the endoper-
oxide ring of 46, it was converted into a secondary diol (46a) by hydrogenolysis of the
peroxide with Lindlar’s catalyst [70]. The 1D NMR of 47 was like 46, except that it contained
a C-6/C-7 trans-olefinic bond in contrast to the cis-configured bond in 46. The 1D NMR of
48 was similar to 46 and 47, except that it lacked an endoperoxide moiety and a terminal
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carboxylic acid at C-10 of 48. The 1D NMR of 49 was similar to 48, except that it lacked
both C-6/C-7 and C-8/C-9 pairs of olefinic carbons [71].

2.2.7. Alkamides from Zanthoxylum nitidum (Roxb.) DC

Four unsaturated alkylamides, Zanthoxylum amides A-D (50-53), were purified from
a 60% EtOH extract of the roots of Z. nitidum, using silica gel column CC by gradient
elution and semi-preparative HPLC. The absolute configuration of hydroxylation and
carbonylation carbons on the unsaturated structure of 50-53 could not be established
due to the small amount of residue [72]. Zanthoxylum amides J-P (54-60) were isolated
from the whole plant of Z. nitidum, extracted with 95% EtOH. The purification process
included silica gel column CC and a Sephadex LH-20 column followed by reversed-phase
HPLC. Compounds 54-60 exhibited hydroxyl, ethoxyl and carbonyl substitutions at an
unsaturated carbon chain. The final configurations of racemic mixtures including 54
and 57-60 were determined by ECD [73]. (2E,6E,8E)-N-(2-methylpropyl)-10-ox0-2,6,8-
decatrienamide (61) was isolated from the stems of Z. nitidum extracted with CH,Cl,. The
unsaturated alkylamide of 61 possessing an aldehyde group was determined by 1D and 2D
NMR spectrum, including the 2D NMR correlations between olefinic protons and aldehyde
carbonyl carbon [74].

2.2.8. Alkamides from Zanthoxylum nitidum var. Tomentosum

From the dried whole herb of Z. nitidum, Zanthoxylum amides E-1 (62—-66) were purified
by chromatography over silica gel, a Sephadex LH-20 column (MeOH) and semipreparative
HPLC. The absolute configurations of the hydroxyl and methoxyl carbons of chiral racemic
isobutylamides 62-65 were determined by ECD and 1D and 2D NMR, while the positions
of enol moieties on the unsaturated structure of 62-66 were also confirmed by NMR
spectrum [75].

2.2.9. Alkamides from Zanthoxylum heitzii

Pellitorine (67) and 6-hydroxypellitorine (68) were isolated from the bark of Z. heitzii ex-
tracted with hexane in a Soxhlet. The purification process was through the CH,Cl, /EtOAc
system by silica gel column CC [76]. Compound 67 contained a secondary amide with an
o, B-unsaturated conjugated system [77], while 68 was the derivative of C-6 hydroxylation
of the unsaturated structure [78].

2.2.10. Alkamides from Zanthoxylum zanthoxyloides

Zanthoamides G (69) and I (70) were isolated from the fruits of Z. zanthoxyloides by
reversed-phase preparative HPLC. Compounds 69 and 70 showed the hydroxylation of
C-13, and 69 was a racemic mixture containing dihydroxyl moieties on C-12 and C-13, with
a ketone carbonyl moiety being present on C-8 of 70 [79].

2.2.11. Alkamides from Zanthoxylum chalybeum

4-(isoprenyloxy)-3-methoxy-3,4-deoxymethylenedioxyfagaramide (71) was isolated
from the ground stem bark of Z. chalybeum and extracted with sufficient volumes of 50%
MeOH in CH,Cl,, containing an aromatic moiety attached to isoprenyloxy and methoxy
groups [80].

3. Pharmacology: Local Anesthetic and Analgesic Effect

A local anesthetic provides its analgesic effect by inhibiting pain transmit pathways
via a blockade of type A delta or C nerve impulses on sensory nerves [81]. The main
anesthetic activities in the nervous system act on voltage-gated sodium channels (Nav),
which are blocked and modulated to prevent conduction, thereby inhibiting sensory nerves’
communication [82]. To evaluate the main constituents of herbs possessing the ability to
blockade sensory nerve transmission, the local anesthetic characteristics should be carefully
identified. Sometimes, local analgesic properties may be mistaken to show local anesthetic
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effect but present a dysfunctional sensory nerve through the inhibition of transient receptor
potential (TRP) channels [83]. The extracts from Z. species have been demonstrated to
modulate sensory functions, such as suppressing pain [8,9]. Therefore, the Z. species’
pharmacological properties may have the potential to identify its main constituents closely
associated with local anesthetic effects.

In this section, alkamides extracted from Z. species possessed pharmacological prop-
erties ranging from pungent and tingling sensations to analgesic and to local anesthetic
effects (Table 1). In relation to alkamides’ regulation of main bioactivities and drug develop-
ment perspectives, the structure—-activity relationship of alkamides for their pharmacologic
properties is also explored in further detail.

Table 1. Alkamides from Zanthoxylum species with dysfunctional sensory properties, analgesic or
local anesthetic effect.

Alkamides Sensory Properties, Analgesic and Local Anesthetic Effect References
a-sanshool (1) The pungent qualities: burning, tingling and numbing.
P « i Burning and tingling were predominantly perceived and lasting [84]
”/\( longer than numbness.
Numbness: during treatment of toothache.
Inducing: insensitive to innocuous thermal or tactile stimuli; [85]
insensitive to touch or cooling.
Analgesia: during treatment of toothache. [84]
Tingling and numbing.
Promoting Ca?* influx in cells transfected with TRPV1 and evoked
Hyd -0 hool (HAS) (2
ydroxy-eesans OOO (HAS) ) robust inward currents in cells transfected with TRPV1 in dorsal root [86]
MN% . ganglia neurons and trigeminal ganglion neurons.
Exciting sensory neurons by inhibiting two-pore-domain K+ 87]
channels (KCNK3, KCNK9 and KCNK18).
Inhibiting the activity of multiple voltage-gated sodium channel
subtypes, among which Nav1.7 is the most strongly affected. [88]
Inhibiting Ad mechanonociceptors that mediate both sharp acute and
inflammatory pain.
HAS + nanostructured lipid carriers had excellent anesthetic effect at
low dose in formalin test compared with free HAS only and lidocaine: [89]
worked rapidly and sustained longer effect time.
-sanshool (3)
o e . .
/\/\N\Mu/\( The pungent qualities: numbing and bitter. [84]
N
Hydroxy-f-sanshool (13)
0 The pungent qualities: numbing, astringent and bitter. [61]
AN \ N%H Medjiating numbing and anesthetic effect.
y-sanshool (43) The pungent qualities: burning, numbing, fresh, bitter. [84]
PPN i N/\r Burning and fresh.
H Potent agonist of TRPV1 activity that explains its pungent and [84]
tingling sensation and its use as a natural anesthetic for toothache.
Hydroxy-y-isosanshool (14)
o . . .
\\\WLN/\K Inducing numbing and anesthetic effect. [61]
H OH
Hydroxy-¢-sanshool (5)
Tingling sensations when applied to the human tongue. [85]

o
PPN §
=
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3.1. Pungent and Tingling Properties

Alkamides exhibiting pungent and tingling properties have been reported in species
of Z. of the Rutaceae family. Compounds 2 and 5 produce similar tingling sensations when
applied to the human tongue. Compound 2 has been observed to induce numbness during
toothache treatment. In tests for spontaneous activity of the sensory system, compound 2
caused insensitivity to innocuous thermal or tactile stimuli as well as insensitivity to touch
or cooling [85]. In a sensory functional evaluation of the alkamides 14, 13 and 43 from
Z. bungeanum, compound 1 exhibited burning and tingling qualities and lasted the longest
period in terms of stimulus duration among all sanshool compounds. Compound 3 was
perceived as numbing and bitter, compound 4 as burning, numbing and fresh, compound
43 as burning and fresh, compound 2 as tingling and numbing, and compound 13 as
numbing, astringent and bitter [84]. In the study reported by Bader et al., the sensory
assay for evaluating pungent and/or tingling sensations showed that sanshool derivatives
containing a Z-configuration double bond such as 2, 5, 15, 19 and 44, exhibited a tingling
and paresthetic sensation; however, derivatives with an all-E configuration, specifically 13
and 14, induced numbing and anesthetic effects [53]. Compound 67, which is also an all-E
configured alkamide, produces a numbing sensation on the tongue at a concentration of
10 ppm [90].

3.2. Analgesic Effect

The sensation is modulated by some key factors reported in previous studies. Transient
receptor potential (TRP) channels are responsible for the sensations, which are thought to
mediate pain and respond to natural compounds [91]. Compound 2 promoted Ca*? influx
in cells transfected with TRPV1 or TRPA1 and evoked robust inward currents in dorsal root
ganglia neurons and trigeminal ganglion neurons transfected with TRPV1 or TRPA1 [86].
Compound 43 was a potent agonist of TRPV1 activity, which explains its pungent and
tingling sensation, as well as its use as a natural anesthetic for toothache [84]. In electrophys-
iological experiments using Xenopus oocytes expressing compound 2, sensory neurons were
excited through the inhibition of pH- and anesthetic-sensitive two-pore potassium channels
(KCNK3, KCNK9 and KCNK18). Activation of TRPA1 and TRPV1 channels is mediated
by sanshool alkamide 2, which blocks outward K* current by activating KCNK channels.
These channels are also targeted by volatile anesthetics, supporting the traditional use of
Z. species extracts in folk medicine for treating toothache [87]. In behavioral assays, fiber
recordings, calcium imaging and whole-cell electrophysiology of cultured sensory neurons,
compound 2 inhibited the activity of multiple voltage-gated sodium channel subtypes,
with Nav1.7 being the most strongly affected. It also inhibited A6 mechanonociceptors,
which mediate both sharp acute pain and inflammatory pain [88].

3.3. Local Anesthetic Effect

In the formalin test used to evaluate anesthetic effects, nanostructured lipid carriers
loaded with compound 2 exhibited a significant anesthetic effect at a low dose compared to
free compound 2 and the positive control lidocaine. Alkamides like compound 2 demon-
strated potential for local analgesic effects. Regarding the duration of local anesthesia,
formulation with compound 2 resulted in rapid onset and a sustained longer effect [89].
Until now, there have been few studies investigating the local anesthetic effects of pure
alkamides, including in vivo and behavioral assays. Li et al. reported that water extracts
from different processed products (high and low dosage groups) of Z. bungeanum exhibited
a local anesthetic effect on the isolated sciatic nerve of rats [92]. In the Ma et al. report, water
extract of Z. bungeanum exhibited higher alkamide contents compared to other solvent
systems [51], indicating that some alkamides in the extract with local anesthetic effect are
still unknown. In particular, plant extracts that are rich in alkamides are used in treatment
as anesthetics in folk medicine [40]. It is necessary to determine the known or unknown
alkamides isolated from plants and to further identify their local anesthetic effects.
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This section explores the inference process from sensory properties such as numbing,
modulation by key proteins including the TRP and KCNK series, and modulation factors
for analgesic effects as determined from local anesthetic effects observed in assays. The
above results indicate that alkamides have potential in the development of local anesthesia.

3.4. Structure—Activity Relationship for Pharmacology

Alkamides contain acyl chains with E/Z configurations double bonds. According
to the sensory properties reported by Sugai et al., sanshool alkamides containing 2E and
6Z-double bonds in the acyl chain exhibited tingling sensations, similar to compounds 1
and 2. Alkamides with 2E- and 4E-double bonds in the acyl chain, such as compounds
4 and 43, were perceived as having a fresh sensation [84]. The stimulus duration assay
indicated sanshool alkamides containing a Z-double bond, like 1, 2 and 43, exhibited longer
stimulus than all-E isomers like 3, 4 and 13. Compound 1 also lasted the longest time
in the measurement for duration of the stimulus [84]. It appears that 2E and 6Z-double
bonds in the acyl chain are necessary for tingling intensity; furthermore, the Z-double bond
in the acyl chain seems to be a critical element for sensory properties. According to the
report by Bader et al. on the perception of pungency in hydroxy sanshool derivatives,
compounds 2, 5, 15, 19 and 44 containing the Z-configuration exhibited a tingling sensation.
In contrast, compounds 13 and 14 containing the all-E configuration exhibited a numbing
and anesthetic sensation [61]. However, Sugai et al. reported in 2005 that compounds 1, 2
and 43 containing a Z-double bond also exhibited a numbing sensation [85].

As previously mentioned, the E/Z configuration possesses pungent and tingling prop-
erties. Other properties, like carbon chain length, hydroxylation on an isopropyl group and
pattern of unsaturation, are also involved in sensory-active recognition. In the previous study,
Galopin and Furrer tried to synthesize various sanshool alkamides and then explore the
relationship between the structural composition of the numbing substances, with the numbing
generation of proposed structural requirements shown in Figure 5. The minimal requirement
for pungent intensity was R = H, n = 1, x = 1, and no conjugated Z-double bond existed in
the structure. The additional optional feature could generate an obvious numbing sensation,
i.e., two of the three conditions of the optional feature (R = OH, n = 2, x > 2) replacing the
minimal requirements are sufficient to generate obvious numbing [93]. However, when the
R group is replaced with -OH, as seen in compounds 2, 5, 15, 19 and 44, they exhibit tingling
and paresthetic sensations, rather than numbing. [53]. On the other hand, sensory evalua-
tions of a series of diols alkamides, including 8 and 9 from Z. piperitum and 54 and 65 from
Z. nitidum, are still unknown. According to the hypothesis of structure in the Galopin and
Furrer report (Figure 5), the structure of 65 may generate numbing sensation (R=H,n =1,
x > 2), while compounds 8, 9 and 54, which possess two optional features (8 and 9: R = OH,
n=1,x>2;54: R=H, n =2, x >2) might generate a more pronounced numbing sensation
compared to compound 65 [52,75,93]. Compound 28 with an enol, 45 with an endoperox-
ide ring and 48 with a carboxylic acid moiety could also induce a more obvious numbing
sensation (28: R=0OH,n=2,x>2;45and 48: R=0H, n =1, x > 2) [52,69,93]; however, the
relationship between an oxygenated unsaturated carbon chain and the numbing sensation
remains unclear. Accordingly, the pungent properties, including the numbing sensation of
alkamides with oxygenated unsaturated carbon chains, should be further evaluated.

Previous studies have demonstrated that the Z configurations for double bond on the
aryl chain of sanshool alkamides was an essential property for TRPV1 channel activation.
A series of synthetic alkamides containing the modification of the unsaturated alkyl moiety
from the Z-olefins structure was crucial in the activation of TRPA1 receptors [94], indicating
that the 5Z or 6Z position of the double bond of alkamides is necessary for activating
the TRPA1 channel (Figure 5), although the evaluation of TRPA1 and TRPV1 activities
has only focused on compound 2 and its synthetic derivatives. To accurately confirm the
active structure, more alkamide derivatives similar to compound 2 should be evaluated
for their activities on TRPA1 and TRPV1 channels. In the Koo et al. report, compound 2
with 6Z-double bond activated TRPA1 and TRPV1 by evoking Ca?* influx in cells, while,
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in the small sensory neurons, TRPV1 and TRPA1 were expressed primarily to mediate
pain [86]. According to the hypothesis that the 6Z-double bond configuration in compound
2 is necessary for the activation of the TRPV1 and TRPA1 channel, a series of analogs such
as compounds 5, 8, 9, 45, 48 and 65 also containing the 6Z-double bond might activate
TRPV1 and TRPAL1 to regulate pain.

Z-form on C-5 or C-6: effect activating of TRPA1 channel
Z-form on C-6 and R =OH: local anesthetic effect

(E

N—

R
— AN N
(2) nH

R =H, n=1 x=1, no conjugated Z-form: minimal requirement for sensation modulation
R =0H, n =2 x>2, no conjugated Z-form: optional feature for sensation modulation

Figure 5. Structural characteristics of alkamides that influence sensory properties of modulation,
analgesic effect and local anesthetic effect.

The pharmacological study of alkamides has only focused on compound 2 for its local
anesthetic effect, although the water extract of Z. bungeanum exhibited a significant local
anesthetic effect on the isolated sciatic nerve of rats [92], where the compounds 8 and 9 were
major alkamides found in the water extract of this variant. These two alkamides possess
a 6Z-double bond and a hydroxyl group on the isopropyl moiety [51]. According to the
Galopin and Furrer report, the structures of 8 and 9 could generate a more obvious numbing
sensation (Figure 5) [52,93]. This biological property is related to the local anesthetic effect.
The above results indicate that 8 and 9 might be the key constituents for the local anesthetic
effect, and these two alkamides have the potential to be evaluated for their local anesthetic
effect through detailed activity screening and extensive animal studies.

4. Pharmacokinetics

The pharmaceutical-grade traditional Japanese medicine, daikenchuto (TJ-100), was
investigated in healthy Japanese volunteers after a single oral administration. Compound 2
as an ingredient in T]-100 reached its maximum plasma concentration within 30 min after
administration, with a median half-life of 1.6 to 1.7 h. The maximum plasma concentration
of 2 ranged from 0.76 to 2.66 pM [95].

The chromatography method has also been applied for pharmacokinetic study effec-
tively. A sensitive UHPLC-MS/MS method was developed and validated for determination
of alkamides 2, 13 and 44 in rat plasma after subcutaneous and intravenous injections of
Z. bungeanum EtOH extract. The results of plasma concentration indicated that 2, 13 and
44 were rapidly absorbed after subcutaneous administration, and all achieved a Cpax
within 1 h, with the elimination half-life (t; ;) of these three alkamides being no more than
2.5 h. The subcutaneous absolute bioavailability of 2, 13 and 44 were 100.2, 76.2 and 90.3%,
respectively. These results indicate that 2 was wider and more rapidly distributed in the
plasma compared with 13 and 44 due to its all-trans polyene structure with a lower polarity
and a higher oil distribution coefficient [96].

The pharmacokinetic analysis of compound 38 in the brain showed that it could
be absorbed into the blood and rapidly cross specialized barriers like the blood-brain
barrier (BBB) after oral administration. It is metabolized in the liver and excreted via the
kidneys. Compound 38 was quickly distributed to brain tissue (within 5 min post oral
administration) and was finally excreted approximately 4 h post oral administration [97].
The lipid-soluble structure of alkamides enhances their permeability through the blood—
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brain barrier (BBB). Current studies have indicated that alkamides from Z. species exhibit
favorable absorption, elimination in the bloodstream and penetration into brain tissue,
although these studies have primarily focused on a limited number of alkamides such as 2
and 38, highlighting the need for more comprehensive pharmacokinetic analyses across
various types of alkamide.

Drug metabolism is also a crucial aspect of pharmacokinetics, influencing predictions
of drug efficacy, safety and toxicity. Sanshool-type alkamides, such as compound 2, are
the main active components in Z. bungeanum and have been the focus of drug metabolism
research. A recent study indicated that the metabolic stability of 2 in human and rat liver
microsomes, as well as human hepatocytes, was superior to that in monkeys, dogs and
mice. Compound 2 also demonstrated strong inhibitory effects on CYP2C9 and CYP2D6
in human liver microsomes [98]. In Z. species, alkamides exhibit metabolic stability and
strong non-specific binding to plasma proteins, although the detailed molecular mecha-
nisms, including protein-catalyzed metabolite production, remain unclear. Previous studies
have indicated that the synthetic isobutylamide (2E,4E,8Z2,10Z)-N-isobutyldodeca-2,4,8,10-
tetraenamide undergoes epoxidation at double bonds catalyzed by microsomal cytochrome
P450 enzymes. Metabolites of synthetic isobutylamide detected by LC-MS showed an ap-
parent molecular weight of 263 amu, suggesting simple epoxidation or hydroxylation [99].
Subsequent studies have revealed that different forms of P450 exhibit specific catalytic reac-
tions. Two isoforms, CYP1A1 and CYP1A2, produced identical epoxide and N-dealkylation
products, while, in contrast, CYP2D6 generated two distinct epoxides and a hydroxylated
metabolite [100]. The above studies infer a relationship with the metabolism of alkamides in
Z. species, allowing for predictions on how enzymes catalyze the formation of epoxidation
or hydroxylation metabolites. According to this inference, the Z form double bonds in the
structure are most likely epoxidated or hydroxylated by P450.

5. Clinical Application

The pharmacokinetic study of the alkamides of plants allows the prediction of clinical
usage. In human volunteers, the plasma concentration results of two alkamides in the
traditional Japanese medicine TJ-100, including the maximum plasma concentration after
administration and the elimination half-life, provide crucial information for their clinical
application. These results also indicate how to carefully control the administration range
to prevent excessive absorption and the potential danger of side effects [95]. In the Rong
er al. report, the pharmacokinetic study of the alkamides of Z. bungeanum EtOH extract,
including plasma concentration, elimination half-life and subcutaneous absolute bioavail-
ability, provides valuable information for improving the prediction of clinical outcomes.
The pharmacokinetic behaviors of 2, 13 and 44 in Z. bungeanum EtOH extract were used for
the clinical application of anesthetics. To prevent potential side effects and ensure better
clinical application, the dosage of compound 2 was carefully and accurately controlled due
to its high subcutaneous bioavailability [96].

The formalin test is utilized in preclinical pain research to elucidate the action mecha-
nisms and analgesic effects of novel compounds, particularly those related to their local
anesthetic effects [97]. Nociceptive behavior triggered in the formalin test consists of
two phases: in phase I, the nociceptors are activated by formalin acutely through non-
nociceptive A fibers; in phase II, the activity is driven partly by central sensitization
of spinal cord circuits [101]. In electrophysiological studies, Ad- and C-fiber nociceptors
exhibit activity during both phases of the formalin test [102], and, in this test, compound
2 combined with nanostructured lipid carriers revealed remarkable pain-relieving effects
at various phases of the formalin test compared to the control group and lidocaine. Com-
pound 2 probably could inhibit nociceptors (such as C-fiber, AB-fiber and Ad-fiber) in
the somatosensory neurons through blocking various Nav channel subtypes to reduce
pain behavior [89]; accordingly, compound 2 might serve as a potential local anesthetic in
clinical applications.
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6. Conclusions and Perspectives

Alkamides that are present and enriched in numerous Z. species of plants are rec-
ognized for their pain-suppressing properties and their potential in the development of
local anesthetic research. Various traditional medical practices involving these plants have
shown beneficial effects in pain modulation globally. Current phytochemical studies indi-
cate that alkamides exhibit specific stereochemical characteristics due to isomerization of
their configurations, often existing as racemic mixtures in plants despite their relatively
simple and similar structures; consequently, the detection, isolation and elucidation of a
series of alkamides using various chromatographic and spectroscopic methods are crucial
for confirming the constituents present in these plants.

The research on pungent, tingling and numbing sensations, as well as the analgesic
effects of alkamides, is crucial for understanding their local anesthetic properties. These
properties are intricately linked to their structural characteristics and are essential consid-
erations in drug design, although current studies on local anesthetic effects and related
bioactivities of alkamides are limited, particularly regarding specific compounds, and few
studies have deeply investigated the mechanisms underlying their local anesthetic effects
and related analgesic properties. Thus, key questions remain that need to be answered in
future research:

(@)  Until now, the efficacy of compound 2 has been demonstrated in relatively complete
studies, including its pungent and tingling properties, the mechanism of analgesic
effect and the local anesthetic effect; however, no other alkamide has been identified
with similarly detailed molecular mechanisms for these effects and properties, and
a series of alkamides similar to 2 should be further investigated accordingly. The
examination of alkamides for local anesthetic effect and related bioactive properties
should be wide-ranging and not merely focused on specific compounds.

(b) The studies on alkamides should not be limited to phytochemistry and primary
in vitro assays but should encompass a full series of investigations of their pharmaco-
logical effects.

(c) TheSARs of alkamides related to their pungent, tingling, analgesic and local anesthetic
effects have been hypothesized and remain largely theoretical, requiring detailed
investigations to confirm these relationships.

(d) The results of pharmacokinetic studies are pivotal for clinical applications, as they
furnish essential references for subsequent clinical research. Despite this signifi-
cance, only a limited number of alkamides or crude extracts enriched with alkamides
have been directly tested in clinical trials. It is therefore crucial to emphasize the
need for a broader exploration and evaluation methodology of various types of alka-
mides through clinical testing, which is essential to substantiate their safety and
efficacy profiles, thereby facilitating their correspondently safe and effective use in
clinical settings.

In future studies, it is imperative to deepen research on alkamides or plants containing
alkamides, focusing on the issues outlined above, to advance the development of local
anesthesia from natural sources. This review aims to consolidate the current studies on
phytochemistry and pharmacology related to local anesthetic effects and other activities,
pharmacokinetics and clinical applications of alkamides derived from Z. species. Such
an approach could accelerate the development of natural, plant-derived local anesthetics
from Z. species that could potentially offer safer and more effective alternatives to their
synthetic counterparts.
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