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Abstract: The complexities inherent in drug development are multi-faceted and often hamper accu-
racy, speed and efficiency, thereby limiting success. This review explores how recent developments
in machine learning (ML) are significantly impacting target-based drug discovery, particularly in
small-molecule approaches. The Simplified Molecular Input Line Entry System (SMILES), which
translates a chemical compound’s three-dimensional structure into a string of symbols, is now widely
used in drug design, mining, and repurposing. Utilizing ML and natural language processing
techniques, SMILES has revolutionized lead identification, high-throughput screening and virtual
screening. ML models enhance the accuracy of predicting binding affinity and selectivity, reducing
the need for extensive experimental screening. Additionally, deep learning, with its strengths in
analyzing spatial and sequential data through convolutional neural networks (CNNs) and recurrent
neural networks (RNNs), shows promise for virtual screening, target identification, and de novo drug
design. Fragment-based approaches also benefit from ML algorithms and techniques like generative
adversarial networks (GANs), which predict fragment properties and binding affinities, aiding in
hit selection and design optimization. Structure-based drug design, which relies on high-resolution
protein structures, leverages ML models for accurate predictions of binding interactions. While
challenges such as interpretability and data quality remain, ML’s transformative impact accelerates
target-based drug discovery, increasing efficiency and innovation. Its potential to deliver new and
improved treatments for various diseases is significant.

Keywords: drug discovery; graph neural networks; random forests; general adversarial networks;
target-based approaches; phenotypic approaches

1. Introduction

For centuries, the quest to discover life-saving medications has been a relentless
pursuit fraught with challenges and uncertainties. The intricate journey from identifying a
disease target to delivering a safe and effective drug remains a marathon, often hampered
by limited speed, efficiency, and success. However, recent advancements in artificial
intelligence (AI) have ignited a spark of hope, injecting a transformative force into the drug
discovery landscape.

The complexities that are inherent in drug development are multi-faceted. Targets,
often intricate proteins or enzymes, may harbor hidden mechanisms or allosteric sites,
making intervention difficult. The vast chemical space, with an astronomical number of
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potential molecules, poses a daunting challenge when it comes to identifying the right
drug candidate. Ensuring drug safety, efficacy, and affordability also requires navigating
regulatory hurdles. These unmet needs have fueled the search for innovative solutions,
and AI has emerged as a powerful tool to revolutionize the drug discovery process.

Numerous reviews have explored the potential of AI in drug discovery, focusing on
specific aspects like virtual screening, target identification, or deep learning applications.
While valuable, these reviews often lack a comprehensive overview encompassing the
diverse range of AI-driven approaches within target-based and phenotypic strategies.

This review aims to bridge this gap by offering a holistic perspective on the trans-
formative impact of AI in drug discovery. We delve into the intricacies of target-based
approaches, exploring advancements in small-molecule, fragment-based, and structure-
based methods. We then shed light on the potential of phenotypic approaches, leveraging
AI to analyze cell-based assays and genetic screens. Beyond these specific strategies, we
examine the broader contributions of AI in drug repurposing, computational predictions,
and personalized medicine.

2. Methods

Machine learning (ML) is an emerging field derived from AI, an idea that began
with Alan Turing in the 1940s and has accompanied the computer revolution over the
last four decades. The discovery of carbon nanomaterials, including carbon nanotubes
and graphene, in 2004 provided impetus for early AI algorithms for the game of checkers,
facial image recognition, and self-driving cars [1]. In short, ML encompasses the study
and training of various types of algorithms that use input from datasets to predict an
output independently [2]. Through several trials, a user improves the set of algorithms,
known as a model, to make more accurate predictions [3]. The intricate complexities of
disease targets and the vast chemical landscape have long burdened the relentless pursuit
of effective medications. Traditional target-based approaches, while revolutionizing drug
discovery, have also faced limitations. High-throughput screening (HTS) offered rapid lead
identification, but false positives and neglect of drug-like properties hampered progress.
Fragment-based and structure-based approaches and virtual screening (VS) provided
finesse, but challenges remained. Fortunately, the dawn of AI involving ML and deep
learning approaches has ignited a transformative era, empowering each approach with
unprecedented capabilities.

In the context of ML, the field can be broadly categorized into supervised and unsuper-
vised learning. Supervised learning involves training algorithms on labeled data to predict
new, unseen data, while unsupervised learning identifies patterns and structures within
unlabeled data. Common examples of supervised learning tasks include classification
and regression, while clustering and dimensionality reduction are typical unsupervised
learning tasks, as shown in Figure 1.
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2.1. Small Molecule-Based Approach (SMA)

The traditional workhorse of target-based drug discovery was HTS. This approach
initially involved physical testing of vast libraries of small molecules against specific bi-
ological targets, like proteins or enzymes, to identify potential lead candidates. These
physical assays were later automated by machine pipetting and computer tracking, which
increased speed and validation while reducing labor and material costs. While HTS revolu-
tionized drug discovery by accelerating lead identification, it faced significant limitations.
Many screened compounds often resulted into higher false-positive rates, requiring further
validation and optimization. Additionally, HTS predominantly focused on ligand bind-
ing without considering crucial aspects like drug-like properties, pharmacokinetics, and
toxicity, potentially leading to failures later in development [6].

These limitations were addressed with the development of computational-based VS
methods, which precede experimental verification. VS is performed on thousands or
even millions of compounds to create a top-ranking small-molecule interaction derived
from physics-based computational calculations that measure predicted binding free energy.
Analysis can be performed as either a structure-based drug design, which employs the
biomolecular structure, or as a ligand-based design, which does not require a structure. VS
also faces several challenges, such as the need for user knowledge about the binding target
structure to avoid high computational costs, increase binding accuracy, and avoid erroneous
assumptions. The computational cost in terms of both time and machine investment can
be high, and calculations based on poorly established coordinates for binding pockets or
overly large binding pockets can increase the computational time exponentially.

ML solves several problems associated with traditional VS and can augment structure-
and ligand-based drug design with remarkable accuracy. ML incorporates training data
into an analytical method and utilizes a separate set of validation data that assess a given
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model’s prediction accuracy and precision, determining the best possible ML model for a
specific demand. Figure 2 elaborates on the small molecule-based approaches divided into
supervised and unsupervised learning and various models, methods, input, and output
using ML.

Recent advancements in ML have ignited a transformative era in target-based drug
discovery [7]. ML models, empowered with vast datasets of chemical and biological infor-
mation developed originally for VS, can predict small molecules’ potential binding affinity
and selectivity with remarkable accuracy without any initial physical assay, dramatically
reducing the number of compounds that require experimental validation. Furthermore,
generative models can design novel small molecules with desirable properties, expanding
the search space for promising lead candidates [8].
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2.1.1. SMA-Supervised Learning

Supervised learning algorithms leverage established knowledge (also called test data)
to make predictions. In supervised methods, we can use a controlled approach with large
datasets to develop confidence in known relationships or work on meta-relationships to
identify leads from big datasets. Some prominent examples used in the small-molecule
approach are listed below.

2.1.2. SMA-Support Vector Machines (SVMs)

This model finds the optimal hyperplane, a decision boundary used to maximize
the margin between different data points, which helps filter the noise of the data and
increase prediction accuracy. Interdependent training sets—including random, closely
related, highly active, and boundary molecules—can be used to improve small molecule-
binding predictions. The project stage at which ML models are applied dictates the choice
of training set. Some of the examples of SVM models and their applications are shown in
Table 1. One study investigated the difference between active and passive training methods
and showed that the iterative selection of the model improved hit prediction accuracy by
29% for the thrombin dataset. This study also observed the advantages of exploitation
using only the highest positive scores over exploration near a decision boundary for fewer
data points, and the near equal efficiency of both when there are more data points [10].
Meanwhile, some studies used SVMs for predicting and scoring optimal docking poses.
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These studies showed predictions of consistent RMSD values (>0.9) and low prediction
error (0.25), indicating high predictivity with minimal overfitting [11]. Studies working
with novel protein targets without known 3D structures trained the vector machine models
on 2D fingerprints of the chemical structure of a protein sequence. They utilized the linear
combination method to yield a significant improvement in the prediction of compound
activity compared to homology modeling-based predictions, as evidenced by the recovery
rates of the projections. SVMs built using the linear combination method showed a 50%
improvement in recovery rates for all target molecules [12].

Table 1. A select list of SVM models and applications.

Application SVM Advantage References

Predicting activity based on 2D
chemical structures.

Penalty cost functions help with
data point prioritization based on
certainty, reduces reruns.

[10]

Predicting binding affinities based
on 3D chemical structures.

Kernel SVMS transform
non-linearly bound data can be
used to produce linear
relationships.

[11]

Predicting compatibility of
ligands based on protein
sequences.

Pattern recognition with limited
information. [12]

Predicting activity based on 3D
chemical structures.

High-dimensional data
classification. [13]

Predicting drug-to-drug
interactions based on structural
similarities.

Drug pair identification and
classification. [14]

2.1.3. Random Forests (RFs)

In this model, random subsets of data are organized as nodes, and these subsets
are used to “grow” the tree. A prediction is made by aggregating all these trees. These
models have proven to be very efficient with docking pose predictions [15]. The Matthews
Correlation Coefficient (MCC) has been used to evaluate prediction model performance
by considering true and false positives and negatives [16]. Higher MCC values, indicating
better predictions, were achieved, with models reaching MCC values of 0.8 within 2000 to
3000 iterations and 0.6 within 3000 iterations. RF implementations combine the output of
decision trees to handle classification and regression problems, predicting IC50 values of
drug interactions and demonstrating statistical significance in two-tailed t-tests [17]. RDKit
generates 2D depictions in PDBe CCDUtils, aiding RF regression to predict drug sensitivity
with high accuracy [18]. These examples show the relevance and advantage of RF methods,
which, even with minimal parameter tuning, demonstrate faster learning and balanced
selection strategies when dealing with high-scale multivariate data.

2.1.4. Convolutional Neural Networks (CNNs)

These models were designed to use image data. They use some layers to extract
features from images and some layers to reduce dimensionality. Then, all layers are
combined to make the final predictions. These models work best in applications with
minimal feature engineering and image data. They have been used in studies to analyze
graphs built upon preliminary sequential data or fingerprints [19]. In pharmacokinetics, the
Area Under the Curve (AUC) refers to the definite integral of the concentration of a drug in
blood serum as a function of time, serving as an essential predictor of drug bioavailability.
One study explored CNN architectures for classifying ligands of cannabinoid receptors,
achieving impressive results with AUC values ranging from 0.693 to 0.944 across different
datasets, with the LeNet-5 architecture consistently outperforming others, as demonstrated
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by AUC scores peaking at 0.942 for AtomPair fingerprints on the CB1 test set [20]. Another
study predicts electrostatic potential (ESP) surfaces for proteins and ligands using graph-
convolutional deep neural network (DNN) models. ESP maps account for the overall
strength of adjacent charges to a given point within a molecule and can predict molecular
interactions with target residues within binding pockets. Trained against density functional
theory (DFT) ESP surfaces, the ligand deep neural network fingerprint (DNN-fp) model
outperforms AM1-BCC, providing fast, high-quality predictions that correlate strongly
with experimental molecular properties, enabling interactive drug design [21]. Currently,
the biggest challenges associated with supervised learning methods are the requirement of
larger datasets and the possibility of bias in parameter selection in various approaches.

2.1.5. SMA-Unsupervised Learning

Unsupervised learning algorithms can draw patterns within data without predeter-
mined labels. This makes them particularly valuable for exploring novel chemical spaces
and identifying promising lead candidates for targets without known actives. However,
unsupervised learning can also contribute significantly to targets with known binders. In
contrast to supervised methods, these frameworks require a smaller database and are more
suitable for establishing new relationships and hidden patterns between parameters.

Clustering Algorithms

Clustering is suitable for identifying patterns by grouping similar data naturally with-
out drastically affecting the data size [22]. This method is particularly useful when dealing
with incomplete input data, such as parts of input sequences or sections of structural
fingerprint ensembles, where parts of the dataset are unavailable [23]. There are three
prominent frameworks for clustering models: K-means, bisecting k-means, and Ward’s al-
gorithm. K-means has been applied in deep clustering methods for proteins with no known
active agents. By identifying leads for target proteins based on similarity and structure–
activity relationships, k-means has shown impressive accuracy in predicting potential
targets [24]. For example, in some applications, clusters have successfully predicted the
binding affinity of protein–ligand interactions, making it a valuable tool in drug discovery.
Bisecting k-means improves upon traditional k-means by recursively splitting lower-level
clusters into subclusters [25]. This approach is particularly effective for irregular datasets,
outperforming randomized k-means initialization by detecting significant motif patterns.
For instance, bisecting k-means has been used to identify rare but important structural
motifs in protein–ligand binding sites, improving the precision of lead identification over
standard k-means methods. Ward’s method, which is commonly employed for quantitative
variables when binary variables do not exist, minimizes variance within clusters. It excels
in applications with consistent compound families, eventually form a single cluster. Ward’s
method has been utilized to implement the Székely–Rizzo clustering approach to determine
compound structures based on 2D fingerprints [26]. This has been instrumental in grouping
compounds with similar chemical properties, and aiding the design of novel compounds
in drug discovery.

Autoencoders

These models use an encoder to compresses the input data and a decoder to re-
constructs new data from the compressed data. They have a high prediction accuracy,
particularly when dealing with large datasets [27]. For example, TensorFlow-based autoen-
coders have improved predictions and overall accuracy in the context of the breast cancer
gene GL50, spurring the development of comprehensive datasets for other ML models
used in drug discovery [28].

Another study utilizes SMILES structures from the CHEMBL database to prepare a
low-dimensional latent space representation and generate topographic maps. These maps
could be used to prepare a compound library with insights into accessibility based on
potential synthesis process complexity and latent descriptors. Data-driven latent vectors
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provided a much better representation of the compounds due to flexibility with input data,
bringing nuance to the library [29].

One study displayed a direct advantage of unsupervised methods during pre-training,
as demonstrated by very high prediction accuracy when a restricted Boltzmann machine-
based implementation of a deep belief network built on key fingerprints from the molecular
access system (MACCS) [30].

However, the source of those hidden relationships from the above-mentioned un-
supervised models can be difficult to deduce, as they are built upon themselves with
low-dimensionality input data. This can lead some fundamental supervised methods to
outperform the unsupervised methods downstream.

2.2. Fragment-Based Approach (FA)

The fragment-based approach differs from the small-molecule approach by utilizing
partial segments of pre-established structures. This is more useful for understanding
structure–activity relationship studies [22]. The smaller fragments simplify the optimization
of lead compounds, exponentially expediting the drug discovery process by eliminating
the need to calculate all chemical interactions using various methods, as described in
Figure 3 [23].
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AI plays a similar role to the previous approach in advancing fragment-based drug
discovery, contributing to various tasks crucial for optimizing lead compounds. The ML
algorithms utilized in this context are significantly different, with projects using AI in a
fragment-based approach have a broader-range of parameter selection—Such as binding
affinity, energy, or entropy.

2.2.1. FA-Supervised Learning
Convolutional Neural Networks

These algorithms have been used to analyze the relationship between fragment data
and binding pocket interactions by predicting fragment structure based on the SMILES
format sequence or by including characteristics like chemical properties [25]. One study
factored in the free energy of the fragments to predict docking poses [26]. This technique
has been used to form a shrinkage logistic regression model to predict the fragment
interaction [31]. Some frameworks of neural networks have been modeled based on
the Monte Carlo dropout method, trained mostly on the binding affinity and binding
energy of different compounds to estimate uncertainty and improve predictability. One
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study employed molecular dynamics (MD) simulations to predict the free energies of
15,000 small molecules transferred between water and cyclohexane using a 3D-CNN. The
results demonstrate the prediction of 2.5–5 KJ/Mol, aligning with experimental models [32].

2.2.2. FA-Support Vector Machines (SVMs)

As stated in Shahab et al.’s study which predicted binding pockets and fragment
properties, SVMs can classify and analyze large datasets of fragments to identify those with
specific characteristics relevant to drug development. For instance, they have been used
to predict the binding modes of kinase inhibitors based on X-ray structures as templates
and have proved to be a reliable method for building large libraries [33]. It is important to
note that SVMs were suggested to be more suitable for downstream validation or precision
predictions of structures over preliminary fingerprint-based predictions until selectivity
parameters like IC50 were utilized during training, yielding 92% prediction accuracy [34].

2.2.3. Reinforcement Learning

Reinforcement learning is more suitable for iterative scoring in training stages of the
model; the greater the number of iterations, the better the model’s scoring performance and
results [35]. One recent study utilized molecular graph transformers based on compounds
from CHMEBL and LIGAND databases [36]. The researchers iteratively reinforced the
model with scoring based on interactive parameters of small fragments, such as drugs’
similarities to and affinity towards their study target protein A2AAR, to generate structures
using the SMILES format, with an exploitation-focused approach [37]. These models could
generate fragments that were highly compatible with A2AAR [38]. Another study explored
structural characteristics like fragment length, branching, and bond flexibility. This study
focused on the scoring strategy based completely on the raw potential of fragments. The
scoring for this model focused more on exploration. The generated fragment libraries have
a range just as vast as the input libraries [39]. Thus, this approach would be more advanta-
geous for compound synthesis than the case-/disease-specific transformer application.

2.2.4. FA-Unsupervised Learning
Clustering

Studies show high prediction accuracy for the construction of molecular fingerprints
based on two Word2vec models (with skip-gram (SG) and continuous bag of words (CBOW)
implementation), developing t-distributed stochastic neighbor embedding (t-SNE) plots
and QSAR modeling [40]. Specifically, kinase inhibitors and anti-HIV compounds showed
sensitivity of 77% and specificity of 87% for distributed fingerprints, with sensitivity of 67%
and specificity of 91% for fragment fingerprints [41]. The clustering approach shines in
these studies, achieving high-accuracy predictions despite the lack of labeled data [39]. It
shows a demonstrable advantage over conventional QSAR modeling approaches using su-
pervised models like CNNs. It might also be better than other unsupervised approaches like
autoencoders due to their efficiency in capturing complex relationships without encoding
or decoding, which might be more relevant to the small-molecule approach [40].

2.3. Structure-Based Approach (SA)

The structure-based approach leverages high-resolution protein structures, allowing
scientists to design ligands with exquisite specificity. Recent advancements in ML are
further empowering this technique, particularly with regard to challenging targets for
which crystal structures are elusive; some of the relevant techniques are mentioned in
Figure 4 [42]. Predictions based on previous templates from various databases using
homology modeling [43], threading [44], or ab initio [45] prediction of folding confirmations
have proved to be intuitive applications for ML in a structure-based approach.
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2.3.1. SA-Supervised Learning
Generative Adversarial Networks (GANs)

The ProteinGAN model, trained on a diverse dataset of 16,706 unique sequences
of bacterial malate dehydrogenase enzymes, yielded significant predictive outcomes. It
achieved a median sequence identity of 61.3% for natural sequences and identified 119 novel
structural motifs [47]. Another study used GAN with spectral normalization to achieve
tight backbone distribution of the sequences and stability [48]. GANs significantly increased
the accuracy of protein folding predictions, helping researchers identify binding pocket
more accurately and select suitable ligands for compounds that bind with kinase and
dopamine receptors [49].

2.3.2. SA-Support Vector Machines

The SWISS-MODEL uses multiple sequence alignments, interface geometry, and
residue entropy distribution to identify templates that maximize high-quality estimates
based on inter-chain contact scores [50]. The model uses Monte Carlo sampling with Pro-
Mod3 [51], which employs a library of parameters for energy minimization. Each developed
model is scored based on its evolutionary significance [52]. SVMs can find optimal decision
boundaries in high-dimensional feature spaces (here, interface conservation and geometric
properties), effectively separating suitable templates from unsuitable ones.

2.3.3. Structure Networks

Sequence alignment Networks have been used to establish evolutionary relationships,
and an encoding module is trained based on previous structures to predict contacts in
amino acids and, as a result, their folding pattern [53]. These networks are particularly
useful here, as they can identify long-range dependencies [54], so they can identify amino
acid interactions by using the attention mechanism [55] with local alignments when electron
densities and ion spheres are factored into the implementation of these models’ parallel
processing. The attention modules showed a Pearson coefficient of 0.78 with precision
scores for all targets, demonstrating their relevance to larger and more complex databases
without the high data requirements of GANs or feature engineering required by SVMs.
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2.3.4. SA-Unsupervised Learning
Protein Language Models (PLMs)

Some projects, like Omegafold, which applies PLMs based mostly on unaligned and
unlabeled sequences [56], use residue pairs to create embeddings [57]. These embeddings
are refined by geometric consistency, mostly to improve distance predictions [58]. One
study used the harmonic mean of true positives and recall to observe the class distributions
(F1 score) of predictions of molecular function, biological process, and cellular component-
specific relation with the sequence using two protein language models: K-sep and SeqVec.
Both models performed well in terms of molecular function prediction, with F1 scores
of 916 and 914, respectively [59]. This approach is significantly different from that of
Alphafold2, where predictions depend less on comparative parameters like evolutionary
significance or deviation and more on spontaneous metadata derived directly from the
sequence, outperforming Alphafold2 when model training data do not extend beyond the
sequence [60].

Clustering

In a novel decoy selection-based clustering model, computer-developed decoys are
used to organize decoys and original structures to identify noise. This is implemented
using a k-means framework in which decoy region identification receives greater focus
than the folding confirmation selection, which makes this type of model very flexible as it
can be used as a refinement method for structures predicted by other models [61].

2.4. Examples of ML Affecting Bioinformatics Drug Discovery

ML has significantly advanced the field of bioinformatics, a major facet of bio-nanotechnology
involving the interaction of nanomaterials with biological systems comprising DNA, RNA, proteins,
and metabolism, by enabling the analysis of complex biological data in previously impossible
ways. Some key areas where machine learning has had a substantial impact include the fields of
genomics, proteomics, transcriptomics, systems biology, and drug discovery. Some examples of
ML’s contributions to bioinformatics are shown in Table 2.

Table 2. Examples of ML’s role in drug discovery by increasing the speed and efficacy of bioinformatics.

Field Program/ML-Technique Benefits Application

Genomics

Anomaly detection using
unsupervised learning speeds up
the identification of
disease-associated genes but also
improves the accuracy of
predictions.

Quickly identifies genetic
mutations and variations
across large datasets.

Personalized medicine and
targeted therapies [62]

CellProfiler [63] Conducts the automatic
analysis of biological images

It helps detect subtle changes
and patterns in cells

Transcriptomics

Sc RNAseq [64]: Clustering and
dimensionality reduction (e.g.,
t-SNE, UMAP) allow researchers
to quickly identify and visualize
distinct cell populations within
complex datasets

Accelerates the discovery of
new cell types and states,
enhancing the understanding
of cellular diversity and
function

Useful in disease diagnosis
and therapy

Spatial transcriptomics [65]
involves deep learning models to
analyze data, identify spatially
variable genes, and reconstruct
spatial gene expression patterns

Improves the resolution and
accuracy of spatial maps

Provides insights into tissue
organization and mechanisms
and develops therapies
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Table 2. Cont.

Field Program/ML-Technique Benefits Application

Proteomics

Percolator: Semi-supervised rescoring
of peptide-spectrum matches
(PSMs) [66]

Significantly boosts the
accuracy and sensitivity of
spectrum annotation

Streamlines the identification
of peptides from MS data,
making the process faster and
more reliable

Deep learning models predict
experimental peptide measurements
from amino acid sequences alone [66]

Improves the quality and
reliability of analytical
workflows

Identifies disease-related
biomarkers from proteomics
data

Metabolomics

Metabolic Network
Reconstruction [67] involves ML

This approach allows for the
rapid and accurate mapping
of metabolic pathways

It helps in understanding of
cellular metabolism and
identifying potential targets
for metabolic engineering.

Systems Metabolic Engineering [68]
involves ML

Predicts the behavior of
complex biological systems
under different conditions

Helps design more efficient
metabolic pathways and
optimize production
processes in biotechnology

Drug Discovery

Target
Identification/Prioritization [69]
The Open Targets Platform uses
ML to integrate public domain data,
enabling faster and more accurate
identification of drug targets

This reduces the time required
for target discovery from
years to days

Accelerates therapeutics
development

Protein Structure Prediction [70]: AI
model—AlphaFold has
revolutionized
the prediction of protein structures

This reduces the time required
from months and years to
seconds

Provides crucial insights into
how drugs can interact with
their targets

ML algorithms can analyze vast amounts of genomic data to identify patterns and
mutations associated with diseases. This helps further our understanding of genetic
predispositions and assists with the development personalized medicine [71]. Additionally,
ML techniques help us to analyze RNA sequencing data to understand gene expression
patterns, which is vital for studying how genes are regulated and how they respond to
different conditions [72]. By integrating data from various biological sources, ML aids in
complex modeling scenarios.

Traditional methods of protein network analysis can be time-consuming and compu-
tationally intensive. ML algorithms can process large datasets more quickly, helping us
understand the behavior of biological systems under different conditions [73]. By analyzing
protein structures and functions, ML aids in the prediction of protein interactions and
functions, which is crucial for drug discovery and understanding cellular processes [74].
This efficiency makes it feasible to analyze complex networks on a larger scale [75]. Fur-
ther, ML can model the dynamic behavior of protein networks under different conditions,
such as changes in the environment or disease states, helping us understand how protein
interactions change over time [76]. These advancements have accelerated research and
enhanced our understanding of cellular processes, leading to potential breakthroughs in
drug discovery and personalized medicine.

ML algorithms have been used to reconstruct metabolic networks by integrating
various types of omics data (e.g., genomics, transcriptomics, and proteomics). ML has
significantly improved the efficiency of protein network analyses in several ways. First,
ML models can predict interactions between proteins by analyzing large datasets of known
interactions, aiding in the construction of more accurate and comprehensive protein inter-
action networks [77]. Second, by analyzing patterns in protein sequences and structures,
ML can predict the functions of unknown proteins, aiding in the annotation of protein net-
works [78]. Additionally, ML algorithms can integrate various types of biological data (e.g.,
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genomic, transcriptomic, and proteomic data) to reconstruct protein interaction networks,
providing a more holistic view of cellular processes [79]. Thus, ML models can predict how
different compounds will interact with biological targets, speeding up the drug discovery
process and reducing costs [80]. These advancements have not only accelerated research
but have also opened new avenues for personalized medicine, making treatments more
effective and tailored to individual patients.

Despite the progress made in bioinformatics, applying ML to biology comes with
several challenges. First and foremost, biological systems are incredibly complex and
dynamic [81] making it difficult to create accurate models that can predict biological
behavior. Successful ML application requires high-quality, annotated datasets that are
essential for training ML models. However, biological data often contain noise, missing
values, and inconsistencies, which can hinder a model’s performance. Additionally, the
effective application of ML in biology requires expertise in both fields. Bridging the gap
between computational scientists and biologists can be challenging due to differences in
terminology, methodologies, and objectives [82]. Furthermore, biological datasets can
be enormous, requiring significant computational resources for processing and analysis.
Ensuring that ML models can handle these large datasets is a major challenge [83]. Another
challenge is that many ML models, especially deep learning models, are often seen as “black
boxes”. Understanding how these models make predictions is crucial for gaining biological
insights and ensuring trust in the results. Finally, handling sensitive biological and medical
data raises ethical and privacy issues. Ensuring data security and patient confidentiality is
paramount [84]. Despite these challenges, the potential benefits of applying ML to biology
are immense, driving ongoing research and innovation in this exciting field.

3. Conclusions

The integration of ML into target-based drug discovery represents a monumental leap
in the pharmaceutical industry. By enhancing traditional methods such as HTS and VS,
ML models have significantly improved the prediction accuracy of binding affinities and
selectivity, thereby reducing the need for extensive experimental screening. The application
of deep learning techniques, such as CNNs and RNNs, shows great promise in virtual
screening, target identification, and de novo drug design. Additionally, fragment-based
and structure-based approaches have benefited from ML algorithms that predict fragment
properties and binding affinities with remarkable precision.

The advent of GANs and other advanced techniques has further empowered re-
searchers to explore and expand the chemical space, enabling the discovery of novel
molecules with desired properties. Despite challenges such as interpretability and data
quality, the transformative impact of ML is undeniable, accelerating the drug discovery
process and fostering innovation.

Given the widespread use of computational algorithms in predicting experimental
protein structures and the increasing reliance on virtual screening for lead selection, it is
conceivable that the efficiency of computational methods will eventually rival or surpass
traditional experimental methods in terms of resolution and accuracy. This could potentially
address the limitations inherent in each of these approaches.

In summary, the application of ML in target-based drug discovery is paving the way
for more efficient and effective identification of therapeutic candidates and significantly
improves upon methods traditionally established by HTS and VS. As ML models continue
to evolve, they have the potential to revolutionize the development of new and improved
treatments for various diseases, enhancing patient outcomes and advancing medicine.
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