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Abstract: Oxidative stress is linked to the pathogenesis of Alzheimer’s disease (AD), a neurodegen-
erative disorder marked by memory impairment and cognitive decline. AD is characterized by the
accumulation of amyloid-beta (Aβ) plaques and the formation of neurofibrillary tangles (NFTs) of
hyperphosphorylated tau. AD is associated with an imbalance in redox states and excessive reactive
oxygen species (ROS). Recent studies report that NADPH oxidase (NOX) enzymes are significant
contributors to ROS generation in neurodegenerative diseases, including AD. NOX-derived ROS
aggravates oxidative stress and neuroinflammation during AD. In this review, we provide the poten-
tial role of all NOX isoforms in AD pathogenesis and their respective structural involvement in AD
progression, highlighting NOX enzymes as a strategic therapeutic target. A comprehensive under-
standing of NOX isoforms and their inhibitors could provide valuable insights into AD pathology
and aid in the development of targeted treatments for AD.
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1. Introduction

Alzheimer’s disease (AD) is known as one of the representative neurodegenerative
diseases [1]. As the predominant type of dementia, AD is characterized by memory im-
pairment, cognitive decline, and behavioral deficits [2]. Two distinctive neuropathological
features of AD are the extracellular accumulations known as the deposition of amyloid-beta
(Aβ) plaques and intracellular structures called neurofibrillary tangles (NFTs), composing
hyperphosphorylated tau protein [3]. For decades, extensive research efforts have focused
on the pathophysiology of AD, with many studies aimed at uncovering its underlying
mechanisms and risk factors. In recent years, numerous studies have indicated that oxida-
tive stress is a significant factor in both the onset and developments of AD [4]. Oxidative
stress, which increases with brain aging, arises from an imbalance in the redox state due to
an excessive production of reactive oxygen species (ROS) or dysfunction of the antioxidant
system [5,6]. This stress has occurred when free radicals exceed the antioxidant capacity
of the central nervous system (CNS), and this involves the disruption of calcium home-
ostasis [7]. In summary, the excessive production of ROS leads to oxidative stress, which
plays a critical role in damaging cellular components during AD pathogenesis. Despite
the emerging role of oxidative stress in the pathogenesis of AD, the mechanisms by which
redox balance is altered and free radicals are generated are still unclear.

Several potential enzymes contribute to the production of ROS, including nicotinamide
adenine dinucleotide phosphate (NADPH) oxidase, cyclooxygenase, xanthine oxidase, mi-
crosomal enzymes, lipoxygenases, and nitric oxide synthase (NOS) [7,8]. Among these
ROS-related factors, NADPH oxidase (NOX) exhibits remarkable and rapid responsive-
ness to increase ROS levels through the stimulation of various growth factors, including
cytokines like platelet-derived growth factor (PDGF) and nerve growth factor (NGF) [9].
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NOX enzymes are a family of important enzymes that produce ROS. In most mammals,
especially in humans, the NOX family of enzymes comprises seven isoforms named NOX1,
NOX2, NOX3, NOX4, NOX5, dual oxidases (DUOX) 1, and DUOX2 [10]. All NOX family
enzymes are transmembrane proteins that traverse the membrane six times and produce
O2•− from oxygen through NADPH oxidation, utilizing a heme-dependent mechanism [11].
In general conditions, the phagocytic NOX catalyzes the generation of superoxide (O2•−),
which aids to eliminate invading microbes during phagocytosis, to support host defense
and to contribute to redox signaling [12]. In activation conditions, O2•− generates H2O2
and other ROS that contribute to the destruction of pathogens [10]. However, the excessive
production of free radicals, including hydrogen peroxide and peroxynitrite, a reactive
oxidant produced from nitric oxide (NO) and superoxide, can exacerbate the progression of
the physiological and pathological conditions in AD [13]. Additionally, microglial NOX is
a primary source of ROS and a key contributor to the extensive oxidative damage observed
in both human AD brains and AD mouse models [6,14]. Given these various reasons, recent
studies have emphasized the potential significance of NOX isoforms in neurodegenerative
disorders, including AD and Parkinson’s disease (PD) [15].

Understanding the roles of AD-related NOX isoforms could provide valuable insights
into the relationships underlying the pathology of AD, particularly regarding oxidative stress
and neuroinflammation. In this review, we explore the characteristics of NOX isoforms,
their structural features relevant to AD, and their inhibitors. By examining current evidence,
we aim to unravel the potential relevance of respective NOX isoforms in AD pathogenesis,
potentially paving the way for the development of targeted therapeutic strategies.

2. Structure of NOX Isoforms

The seven members of the NOX/DUOX isoforms share a conserved structure, fea-
turing a catalytic core with six transmembrane α-helices that anchor two heme units via
histidine residues, complemented by cytosolic domains with binding sites for FAD and
NADPH, which collectively facilitate electron transfer and subsequent ROS generation [16].

NOX1, NOX2, and NOX3 interact with the small transmembrane protein p22phox,
also known as the human neutrophil cytochrome b light chain (CYBA) [17,18]. The acti-
vation of NOX1 and NOX3 requires interaction with cytosolic subunits NADPH oxidase
activator 1 (NOXA1) and NADPH oxidase organizer 1 (NOXO1), which are homologous
to p67phox and p47phox in NOX2, respectively [19,20]. Structurally, the constitutive acti-
vation of NOX1 due to NOXO1′s membrane localization and its dependence on NOXA1
for activation contributes to chronic oxidative stress and Aβ-induced neurotoxicity in AD
brains [21]. NOX2, the most studied isoform in AD, is implicated in microglial activation,
neuroinflammation, and oxidative damage in AD brains. The structural involvements
of the NOX2 isoform in AD pathology have also been elucidated through postmortem
analyses of brain tissues and will be further discussed in the following sections.

While NOX4 interacts with p22phox, it differs from other NOX enzymes as it functions
without requiring cytosolic subunits for activation [22]. This structural autonomy of NOX4,
combined with its ability to generate H2O2, allows for continuous low-level ROS production,
making it a unique contributor to chronic oxidative stress in AD pathology [23,24]. Due
to its structural distinctiveness, recent studies have increasingly focused on NOX4 in AD
pathogenesis, highlighting its roles in tau hyperphosphorylation and cognitive decline in
AD models.

NOX5 does not engage with p22phox, instead forming homo- or multimeric struc-
tures [25]. Also, NOX5, DUOX1, and DUOX2 exhibit additional structural features in-
cluding EF-calcium-binding domains and the peroxidase domains present in DUOX en-
zymes [26,27]. Unlike other NOX isoforms, NOX5, DUOX1, and DUOX2 do not require
assistance from other proteins for activation [28]. They are activated by the binding of Ca2+

ions to their cytosolic EF-calcium-binding domains [29]. Specifically, NOX5 possesses an
N-terminal extension with four Ca2+-binding EF hands, while DUOX1 and DUOX2 have
two N-terminal EF hands, an extra N-terminal transmembrane domain, and a peroxidase
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homology region at their N-terminus [27–29]. The Ca2+-binding structure of NOX5, which
is essential for its calcium-dependent activation, has been shown to impact blood–brain
barrier integrity and memory loss in aging mice, indicating a potential role in AD pro-
gression [30,31]. The unique structural feature of an N-terminal peroxidase-like domain in
DUOX1 and DUOX2 enables direct hydrogen peroxide generation, potentially contribut-
ing to the altered redox balance observed in brains of AD [32–34]. Also, DUOX1 and
DUOX2 require interaction with dual oxidase maturation factor (DUOXA) 1 and DUOXA2,
respectively, for proper maturation and function [35].

In summary, the distinct structural characteristics of each NADPH oxidase isoform
(Figure 1 and Table 1) underscore their unique coIntributions to oxidative stress, neuroin-
flammation, and neurodegeneration in AD. While NOX2 and NOX4 are currently the focus
of most AD-related NOX research, emerging evidence suggests that other isoforms may
also play a role in AD pathogenesis. Further investigation into the specific functions of each
NOX isoform in AD could provide the foundation for understanding how each isoform
plays specific roles in AD progression.
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Figure 1. Summary for the structures of NOX isoforms. NOX1 NADPH oxidase 1, NOX2 NADPH
oxidase 2, NOX4 NADPH oxidase 4, NOX5 NADPH oxidase 5, DUOX dual oxidases.

Table 1. Structural features, activation mechanisms, and primary cell types of NOX isoforms.

NOX Isoform Structural Features and
Activation Mechanism Cell Types

NOX1 Interacts with p22phox; requires
NOXA1 and NOXO1 for activation

Colon epithelialium, vascular
smooth muscle cells

NOX2
Interacts with p22phox; requires
p67phox, p47phox, and p40phox

for activation

Neutrophils, macrophages,
microglia

NOX3 Interacts with p22phox; requires
NOXA1 and NOXO1 for activation Inner ear, cochlea cells

NOX4 Interacts with p22phox; constitutively
active, no additional factors required Fibroblasts, endothelial cells
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Table 1. Cont.

NOX Isoform Structural Features and
Activation Mechanism Cell Types

NOX5
Forms homo- or multimeric structures;

EF-calcium-binding domains;
Ca2+-dependent activation

T-cells, vascular smooth
muscle cells

DUOX1
Exhibits EF-calcium-binding domains

and peroxidase domain;
Ca2+-dependent, requires DUOXA1

Thyroid, epithelial cells

DUOX2
Exhibits EF-calcium-binding domains

and peroxidase domain;
Ca2+-dependent, requires DUOXA2

Thyroid cells, airway
epithelium

3. The Roles of NOX Isoforms in AD

Previous studies have shown the elevation of NOX activity in the cortex of patients
with mild cognitive impairment (MCI), suggesting a potential significance of NOX in the
pathogenesis of AD [36]. Among the NOX isoforms, NOX2 and NOX4 are the predominant
isoforms implicated in AD pathology based on their elevated expression and activity in
brain regions [37]. However, in addition to NOX2 and NOX4, experimental evidence
regarding the roles of other isoforms such as NOX1, NOX3, NOX5, DUOX1, and DUOX2
will also be explored. While these isoforms have been less extensively studied in the context
of AD, emerging evidence suggests that they may have some degree of association with
the disease process. In this section, we will review the potential roles and contributions
of all NOX isoforms in AD pathology by evaluating current evidence and their potential
implications in the progression of AD. By examining the full spectrum of NOX isoforms, we
aim to provide a comprehensive understanding of how these enzymes might contribute to
oxidative stress, neuroinflammation, and neurodegeneration in AD (Figure 2 and Table 2).
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Table 2. Summary of NOX isoform roles in Alzheimer’s disease.

NOX Isoform Main Cellular Sources Key Roles in AD Associated Signaling Pathways

NOX1 Microglia
Involved in microglial

activation and
neuroinflammation

Regulation by Rac1 GTPase, linked
with oxidative stress and inflammatory

cytokine production

NOX2 Neurons, Microglia,
Astrocytes

Aβ-stimulated ROS
production, exacerbates

synaptic loss and
neuroinflammation

Activation by Aβ, involves p47phox
and p67phox translocation; pathways

linked to IL-1β, TNF-α, and
IL-6 upregulation

NOX3 CNS Neurons Contributes to oxidative stress
and neuroinflammation

NOXO1 and p67phox regulation; less
dependency on Rac GTPase

NOX4 Neurons, Astrocytes Linked to ferroptosis and
tau pathology

Constitutively active, hydrogen
peroxide generation; linked to

autophagic flux and lipid peroxidation

NOX5 Oligodendrocytes,
Glioblastoma Cells

Implicated in BBB disruption
and cognitive decline

Calcium-dependent activation,
involves COX2 and TXA2S signaling

for inflammation

DUOX1/2 Oligodendrocytes
Contributes to

neuroinflammation and
oxidative stress

Regulated by DUOXA1/2, associated
with age-dependent neurodegeneration

and lifespan regulation in models

3.1. The Roles of NOX1 in AD

NOX1 produces superoxide and shares significant structural and functional similarities
with NOX2 and NOX3, particularly in terms of their homologous regulatory subunits and
regulation by Rac GTPase [38–40]. Previous studies have shown that NOX1 is highly
expressed in gastrointestinal epithelial cells [39,40]. Recent studies have reported the
potential role of NOX1 in AD pathogenesis, particularly through microglial activation and
neuroinflammation [41]. In this study, unlike the phagocytic NOX2 system, NOXO1 and
NOXA1 are constitutively associated with NOX1 at the membrane, facilitating more rapid
and sustained ROS production in AD-affected tissues [41]. This structural arrangement,
combined with the activation of NOX1 by small GTPases like Rac1, suggests a mechanism
for chronic oxidative stress and heightened ROS generation in response to cellular stressors,
which may contribute to the progression of AD [41]. In studies using LPS-induced mouse
models, NOX1 in microglia contributes to synaptic damage through the production of
inflammatory mediators and oxidative stress, paralleling processes observed in AD [42].
Another study showed that mRNA levels of NOX1 are increased in the brain at the early
stages of AD patients [42]. This upregulation of NOX1 in AD has been identified as a major
contributor to increased oxidative injury, potentially leading to mitochondrial dysfunction
and subsequent energy failure in neurons [43]. In preliminary studies, rat cerebellar
granule neurons exposed to transient oxidative stress (induced by 48 h of exposure to
50 mM ethanol) showed elevated NOX1 expression, suggesting that oxidative injury can
drive NOX1 upregulation, further linking it to the early stages of AD pathogenesis [43].
These findings suggest the possibility that the roles of NOX1 can contribute to the increase
in oxidative stress and injury that reduces the function of Complexes IV and V in the
mitochondrial electron transport chain during AD [43].

3.2. The Roles of NOX2 in AD

NOX2 was initially identified in phagocytic cells and serves as the prototype for other
NOX enzymes [44,45]. NOX2 is the most prominent isoform found in neurons, microglia,
and astrocytes [45]. A study reported that elevated NOX2 activity is correlated with in-
creased levels of Aβ and excessive oxidative stress [46]. With structural involvement,
post-mortem analyses of AD brains reveal that NOX2 activation, indicated by the translo-
cation of its subunits such as p47phox and p67phox to the cell membrane, significantly
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contributes to oxidative damage and neuroinflammation [32,37,44]. This process is further
supported by findings that Aβ induces NOX2 activation in microglia, leading to the pro-
duction of ROS and pro-inflammatory cytokines, which exacerbate synaptic loss, neuronal
damage, and cognitive decline [24]. For instance, in AD models, NOX2-dependent ROS
generation in microglia has been associated with elevated levels of IL-1β, TNF-α, and
IL-6 [21]. These cytokines are consistently found to be upregulated in the brains of AD
patients and animal models [21]. Specifically, IL-1β levels have been shown to increase
in parallel with NOX2 activation in the frontal and temporal cortex during AD progres-
sion [21]. Notably, the inhibition of NOX2 can prevent Aβ-induced oxidative stress, glucose
hypo-metabolism, and network hyperactivity, underscoring the critical role of NOX2 in AD
pathology [47]. Further study has shown that NOX2 activity is negatively correlated with
cognitive status in humans, suggesting that increased NOX2 activity is associated with cog-
nitive decline [24]. In animal models, NOX2 has been implicated in vascular dysfunction
associated with AD pathology through the observation that the reduced cerebral blood
flow in Tg2576 transgenic mice overexpressing Aβ, which was not observed in Tg2576
mice lacking NOX2 [48]. Furthermore, the enhanced activity of NOX2 in AD, driven by Aβ-
induced microglial activation and subsequent ATP release, amplifies oxidative stress and
neuroinflammation, thereby contributing to AD progression [49]. Therefore, these findings
suggest that the roles of NOX2 contribute to brain oxidative stress and neuroinflammation
via microglial responses to Aβ stimulation during AD.

3.3. The Roles of NOX3 in AD

NOX3, a member of the superoxide-producing NOX family, was first recognized as
the third oxidase predominantly found in the fetal human kidney [40]. This oxidase has
been recently shown to be highly expressed in the neurons of the inner ear, where it plays
a crucial role in otoconia formation and balance perception [50]. However, recent studies
have reported that NOX3 is detected in various organs and cell types [5]. Also, mRNA
levels of NOX3 are elevated in the frontal cortex of AD brains compared to normal brains,
suggesting potential involvement in neurodegeneration [43]. While the expression of NOX3
in the CNS has been less studied compared to other NOX isoforms, its ability to generate
superoxide, and its regulatory mechanisms such as p22phox, NOX organizer 1 (NOXO1),
and p67phox, which are involved in oxidative stress pathways [50], this unique regulatory
mechanism allows NOX3 to generate superoxide even when gp91phox and NOX1 are
inactive [50]. Studies have shown that while p47phox and NOXO1 can enhance NOX3
activity, the small GTPase Rac, which is crucial for other NOX isoforms, appears to be
dispensable for NOX3 function [43,50]. The elevated levels of NOX3 mRNA in AD brains
may indicate its potential role in contributing to oxidative stress and neuroinflammation,
thereby influencing the progression of AD [50]. Although the presence of NOX3 in the
brain of AD was identified, the roles of NOX3 are not well established yet. Further studies
are needed to determine the roles of NOX3 during AD.

3.4. The Roles of NOX4 in AD

NOX4 has emerged as a significant NOX isoform in AD pathogenesis through its
contribution to oxidative stress and neurodegeneration. Unlike other NOX isoforms, NOX4
is constitutively active and primarily generates hydrogen peroxide, which is rapidly con-
verted from superoxide [51]. In AD brains and relevant animal models, NOX4 expression
is significantly elevated, particularly in neurons and astrocytes, correlated with increased
levels of Aβ and hyperphosphorylated tau, hallmark features of AD [52,53]. Recent stud-
ies have further implicated NOX4 in astrocytic ferroptosis, a regulated form of cell death
driven by iron-dependent lipid peroxidation [25]. This is evidenced by the elevated levels of
oxidative stress markers such as malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE)
in AD brains [54]. Additionally, the levels of NOX4, an upstream molecule of ferroptosis
in astrocytes, were increased in the 4-HNE-positive astrocytes in the cerebral cortex of
brains of AD patients [25]. The interaction between NOX4-mediated ferroptosis and AD
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progression suggests a significant pathway for neurodegeneration in AD and provides new
insights into potential therapeutic strategies [16]. In neurons, NOX4 knockdown reduced
the accumulation of pathological tau and improved the macroautophagic flux. Also, NOX4
knockdown decreased neurotoxicity and prevented cognitive decline, after the induction
of tauopathy [52]. These findings suggest that the roles of NOX4 can contribute to the
activation of reactive astrocytes, ferroptosis-induced astrocytes degeneration, and neuronal
tauopathy during AD.

3.5. The Roles of NOX5 in AD

NOX5 was reported in 2001 as the latest identified NOX isoform and most distinct
isoform in the NOX isoforms [55,56]. Unlike with NOX1, NOX2, NOX3, and NOX4
enzymes, NOX5 activity does not require the presence of accessory proteins and only
depends on the increase in intracellular calcium at their cytosolic EF-calcium-binding
domains [57,58]. While NOX5 is primarily expressed in tissues including the spleen
and testis, the expression of NOX5 in the brain has been observed in cell types such as
oligodendrocytes and glioblastoma (GBM), a type of cancer that starts in astrocytes [59,60].

Recent studies indicate that NOX5 may contribute to AD pathogenesis through neu-
roinflammation, oxidative stress, blood–brain barrier (BBB) disruption, and cognitive de-
cline [30,61]. Experiments with genetically modified knock-in (KI) mouse model expressing
the human NOX5 gene and in vitro tissue cultures demonstrated that both reoxygenation
and calcium overload elevated brain ROS levels in a manner dependent on NOX5 [61].
Even though the expression of NOX5 in humanized KI mice did not affect survival, it
led to impaired memory and cognitive deficits, while significantly increasing the levels of
inflammatory components COX2 and TXA2S [30]. Also, other studies have reported that
the abnormal accumulation of NOX5 protein levels leads to elevated ROS and cell death in
AD pathology [62]. In terms of the cause of the behavioral changes and memory loss, the
increased NOX5 activity has been linked to oxidative damage and BBB disruption, which
are associated with the pathological features of AD [30,63]. This evidence suggests the roles
of NOX5 that may contribute to memory loss through the alteration of the integrity of the
BBB during AD.

3.6. The Roles of DUOX1 and 2 in AD

Dual oxidases 1 and 2 (DUOX1 and 2) are unique members of the NOX family, distin-
guished by their additional structural features including a gp91phox domain, an extracel-
lular peroxidase domain, and EF-calcium-binding motifs [28,37,64]. These two subunits
have 83% similarity, which indicates a significant structural similarity between them [26].
These enzymes primarily generate hydrogen peroxide and interact with specific activator
proteins (dual oxidase maturation factor (DUOXA) 1 and 2), which are crucial for their
targeting and function [32,35]. Both DUOX1 and DUOX2 are commonly examined in
the thyroid and respiratory tract epithelium [65,66]. Recently, studies related to DUOX
enzymes have been extended to other body systems [32]. DUOX enzymes have been
identified in oligodendrocytes and GBM in humans, as well as in rodent brains [67,68].
Additionally, another study reported that DUOX enzymes are linked to ROS-dependent
immunity [32,69]. A recent study showed that DUOX contributes to oxidative stress in
neurons and influences the lifespan of Drosophila melanogaster [33]. Notably, the neuronal
knockdown of DUOX reduces oxidative damage and extends lifespan, demonstrating its
role as a significant source of ROS [33]. Furthermore, DUOX activity increases in aged
brains and in models of Alzheimer’s disease, suggesting a connection between chronic
inflammation and oxidative stress in neuronal aging [33]. Additionally, another study
showed that in transgenic flies expressing Aβ42 and tau, mRNA levels of DUOX were
significantly elevated compared to control flies [70]. Also, increased DUOX expression
correlated with age-dependent neurodegeneration in Drosophila AD models, as indicated
by high levels of vacuolization observed in brain sections [70]. These findings suggest that
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the roles of DUOX may contribute to neuronal degeneration during AD; however, further
human studies on DUOX 1 and 2 are needed.

4. NOX Inhibitors in AD

Numerous studies have reported on the significant involvement of various NOX iso-
forms in AD pathogenesis. Therefore, understanding the inhibitors of these NOX isoforms
could significantly contribute to new therapeutic approaches for AD. However, the complex-
ity of NOX functions and the broad impacts of some inhibitors present both opportunities
and challenges for their clinical applications. These inhibitors can be broadly categorized
into non-specific and isoform-specific inhibitors, each with their own advantages and
limitations. Among the various NOX inhibitors in AD, the earliest discovered and most
well-known are diphenyleneiodonium (DPI) and apocynin [71]. DPI suppresses superoxide
production by inhibiting flavoproteins, thereby affecting various enzymes beyond NOX,
including nitric oxide synthase and xanthine oxidase [72]. While DPI has shown potential
in reducing neuroinflammation and oxidative stress in AD models, its broad inhibitory
effects on multiple flavin-dependent enzymes limit its clinical potential as a specific NOX
inhibitor [73–75]. This lack of specificity poses a risk for off-target effects, as the inhibition
of other flavoproteins could lead to unexpected side effects in a clinical setting. Therefore,
although DPI has been valuable in experimental AD models, its broad activity makes it
less suitable for human therapies targeting NOX in AD. Also, apocynin has demonstrated
neuroprotective effects in various neurodegenerative diseases by reducing oxidative stress
and inflammation through the interference of intracellular translocation in p47phox and
p67phox subunits [76]. Unlike DPI, apocynin’s action appears more targeted within the
NOX pathway, which may reduce broader systemic effects. Recent studies indicate that
apocynin demonstrates efficacy in attenuating the progression of AD by Aβ accumulation,
oxidative stress, and neuroinflammation, potentially through the modulation of BACE1
activity and transcription factors such as Nrf2 and NF-kB [77–79]. However, the exact
mechanism of action of apocynin in AD is still not fully understood, and its efficacy may
vary depending on the specific pathological context. Further research is needed to elucidate
its long-term effects and optimal dosing strategies in AD patients. In addition to DPI
and apocynin, other NOX inhibitors such as GKT137831, VAS2870, and Nox2ds-tat have
attracted attention for their potential effects on AD pathology. GKT137831, described as
a preferential direct inhibitor of NOX1 and NOX4, has shown excellent tolerability and
reduced chronic inflammation markers in clinical trials [80]. This selective inhibition of
NOX1 and NOX4 may offer a more targeted approach in managing AD pathology by
reducing neuroinflammation while maintaining better tolerability. However, further trials
are necessary to establish its efficacy and safety in long-term AD treatment. NOX2ds-tat, an
18-amino acid peptide and the first biological NOX inhibitor, has demonstrated significant
efficacy in AD models [81]. When administered to aged Tg2576 mice or in studies using
NOX2 knockout mice crossed with Tg2576 mice, NOX2ds-tat markedly reduced oxidative
stress, enhanced neurovascular function, and alleviated behavioral impairments associated
with the AD progression [50]. These findings suggest that NOX2ds-tat not only has the
potential to reduce AD-related oxidative stress but also improves neurovascular health, a
critical factor in AD pathology. VAS2870, identified by Vasopharm GmbH as a pan-NOX
inhibitor, inhibits all NOX isoforms except NOX3 in cellular assays and particularly shows
a 40% to 70% inhibition of NOX2 and NOX4, meaning it is suitable for evaluation in AD
models [82,83]. The broad-spectrum inhibition profile of VAS2870 could be advantageous
in addressing the multifaceted nature of AD pathology. However, this non-specificity
also raises concerns about potential off-target effects and the need for careful dosing to
balance efficacy and safety. In summary, while DPI, apocynin, GKT137831, NOX2ds-tat,
and VAS2870 provide different mechanisms and approaches to inhibiting NOX in AD
models, each inhibitor faces distinct challenges related to specificity, efficacy, and safety.
Future research should focus on developing selective inhibitors that can specifically target
relevant NOX isoforms in AD pathology while minimizing off-target effects.
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5. Conclusions

We reviewed the roles of NOX isoforms related to AD progression and described their
respective contributions in the pathogenesis of AD. NOX enzymes, especially NOX2, con-
tribute significantly to AD by increasing superoxide production in microglia and astrocytes,
which drives neuronal death and perpetuates oxidative stress and neurodegeneration [84].
Similarly, NOX4 has been identified as a critical enzyme in AD pathology, particularly
in the oxidative stress of astrocytes and its ferroptosis [25]. The expression of NOX1 and
NOX3 is increased in AD brains [43]. Also, DUOX is elevated in aged brains and Drosophila
models of AD [69,70]. Given that extensive research has not yet been conducted on NOX1,
NOX3, DUOX1, and DUOX2, further investigation is warranted to elucidate the role of
these NOX isoforms. While all NOX isoforms potentially contribute to AD pathogenesis,
current evidence suggests that NOX2 and NOX4 contribute to AD pathogenesis and are
the most promising targets for therapeutic intervention. The predominant role of NOX2
in microglial activation and neuroinflammation, coupled with the involvement of NOX4
in astrocytic oxidative stress and ferroptosis and in neuronal tauopathy, make these two
isoforms particularly significant in AD progression [85,86]. Since the generation of ROS
by NOX isoforms may be critical in the pathogenesis of AD, the understanding of NOX
isoform-mediated underlying mechanisms during AD progression can help to develop a
new approach for the treatment of AD. Future studies should focus on developing specific
inhibitors for NOX2 and NOX4, while also exploring the potential contributions of other
NOX isoforms to provide a comprehensive therapeutic strategy for AD.
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