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Abstract: Postmenopausal osteoporosis is a major global health concern, particularly affecting aging
women, and necessitates innovative treatment options. Herbal medicine, with its multi-compound,
multi-target characteristics, offers a promising approach for complex diseases. In this study, we
applied multiscale network and random walk-based analyses to identify candidate herbs and their
active ingredients for postmenopausal osteoporosis, focusing on their underlying mechanisms. A
dataset of medicinal herbs, their active ingredients, and protein targets was compiled, and diffusion
profiles were calculated to assess the propagation effects. Through correlation analysis, we prioritized
herbs based on their relevance to osteoporosis, identifying the top candidates like Benincasae Semen,
Glehniae Radix, Corydalis Tuber, and Houttuyniae Herba. Gene Set Enrichment Analysis (GSEA)
revealed that the 49 core protein targets of these herbs were significantly associated with pathways
related to inflammation, osteoclast differentiation, and estrogen metabolism. Notably, compounds
such as falcarindiol from Glehniae Radix and tetrahydrocoptisine from Corydalis Tuber—previously
unstudied for osteoporosis—were predicted to interact with inflammation-related proteins, including
IL6, IL1B, and TNF, affecting key biological processes like apoptosis and cell proliferation. This
study advances the understanding of herbal therapies for osteoporosis and offers a framework for
discovering novel therapeutic agents.

Keywords: postmenopausal osteoporosis; herbs; active ingredients; multiscale network

1. Introduction

Postmenopausal osteoporosis has become a critical global health concern, particularly
within aging female populations, where incidence rates continue to rise. This condition,
characterized by reduced bone mass and compromised bone microarchitecture, leads
to diminished bone strength and an increased risk of fractures. Recent studies have
indicated a prevalence of osteoporosis of approximately 23% in women and 11.7% in men,
underscoring its disproportionate impact on postmenopausal women [1]. In these women,
the sharp decline in estrogen levels disrupts bone remodeling processes by influencing
various physiological mechanisms that sustain bone homeostasis. Estrogen deficiency
stimulates osteoclast differentiation and activity, accelerating bone resorption to levels that
exceed bone formation, thereby decreasing bone density, deteriorating bone structure, and
heightening fracture susceptibility [2]. Although the current postmenopausal osteoporosis
treatments, including antiresorptive agents like bisphosphonates and selective estrogen
receptor modulators (SERMs), and anabolic agents, such as parathyroid hormone (PTH) and
teriparatide, provide mechanisms to control bone loss and stimulate bone formation, they
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exhibit limitations. Efficacy can vary across patient profiles, and these therapies may fail to
adequately lower fracture risks in advanced osteoporosis cases. Additionally, long-term
bisphosphonate use is associated with potential adverse effects, such as gastrointestinal
issues, osteonecrosis of the jaw (ONJ), and atypical fractures, which can impede patient
adherence [3–5]. Furthermore, the underdiagnosis and undertreatment of osteoporosis in
postmenopausal women highlight a significant gap in disease management, necessitating
the development of safer and more effective therapeutic strategies to improve long-term
outcomes [6].

Herbal medicine offers therapeutic efficacy through its multi-compound composi-
tion at low concentrations, allowing for interactions with multiple targets across various
biological pathways. This multi-target approach is particularly promising for managing
postmenopausal osteoporosis, a complex disorder influenced by hormonal changes and
multiple physiological factors. Studies have shown that medicinal herbs and their active
compounds can improve bone mineral density and stimulate bone regeneration, highlight-
ing their potential as therapeutic options [7,8]. For instance, clinical trials administering
Cimicifugae Rhizoma to postmenopausal women demonstrated reduced bone resorption
and increased bone formation without significant side effects [9–11]. Additionally, herbs
with known anti-osteoporotic properties, such as Sambuci Lignum and Salviae Miltior-
rhizae, along with their extracts or active compounds, have effectively prevented bone
loss in ovariectomized osteoporosis animal models. These benefits appear to be mediated
through mechanisms that promote osteoblast differentiation, regulate osteoclastogenesis,
and inhibit collagen degradation [12–15]. A recent review article further highlighted that
diospongins, isolated from Dioscorea spongiosa, exhibit promising biological activities
supportive of bone health, including potential anti-osteoporotic effects [16]. Collectively,
these findings underscore the therapeutic potential of medicinal herbs for postmenopausal
osteoporosis, supporting their development as safe and novel treatment options.

Herbal medicine has long been widely used to manage a range of symptoms and
diseases. However, the lack of understanding regarding its molecular mechanisms in the
human body limits its development and broader application. Advances in systems biology
tools, however, have enabled deeper insights into the mode of action of herbal medicines,
particularly for herbs with multi-compound, multi-target properties [17]. Network phar-
macology has been instrumental in mapping the complex interactions within biological
networks, identifying rational drug targets, and providing a comprehensive overview of
disease treatment through interconnected biological pathways. For example, network phar-
macology has been used to elucidate the mechanisms of action of Mori Folium (dried leaves
of Morus alba L.) in diabetes and to identify potential herbal antidepressants, facilitating
the selection of an optimal herbal combination for further experimental validation [18,19].
Additionally, the recently proposed multiscale interactome framework, which integrates
biological functions and physical protein–protein interactions, provides a robust platform
for predicting a drug’s therapeutic potential on specific disease targets and mechanisms.
This approach also enables the exploration of new therapeutic applications for existing
drugs and supports the identification of active ingredients and the discovery of novel drug
candidates [20,21].

In this study, we applied a network-based approach to identify the candidate herbs
and their active ingredients with potential benefits for postmenopausal osteoporosis and
to elucidate their potential mechanisms of action (Figure 1). To achieve this, we compiled
medicinal herbs, their active ingredients, and associated protein targets. We then calculated
diffusion profiles using biased random walks for both herb-specific and disease-related
protein targets. By comparing diffusion profiles between the herbs and postmenopausal
osteoporosis, we prioritized herbs with high correlation scores, indicating their potential
efficacy against the condition, and identified core protein targets and biological functions
involved in the proposed treatment. We further investigated the top 10 ranked herbs,
assessing the available evidence to support their effectiveness and identify the novel
candidate herbs not yet reported for this condition. We further calculated the propagation
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effects of the individual ingredients of the candidate herbs, prioritizing those with high
correlation scores for postmenopausal osteoporosis, and explored the mechanisms of these
active ingredients within the multiscale network. Our approach demonstrates the potential
of multiscale network analysis for the discovery of novel therapeutic herbs and ingredients
and provides a foundation for future research into their therapeutic mechanisms against
postmenopausal osteoporosis.
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Figure 1. Schematics for identifying candidate herbs and active ingredients for postmenopausal
osteoporosis. This schematic illustrates the use of multiscale network analysis to identify herbs and
active ingredients with potential efficacy against postmenopausal osteoporosis. Herb–compound
and compound–target associations were mapped, and disease-related proteins were identified.
Diffusion profiles for herbs and disease proteins were calculated and compared, prioritizing herbs
with high correlation scores. Enrichment analysis revealed key biological pathways, while individual
ingredients of top herbs were further analyzed to highlight core protein targets. The bottom panel
shows network diagrams for selected herbs, indicating relevant protein targets and pathways.
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2. Results
2.1. Identification of Potential Candidate Herbs Against Postmenopausal Osteoporosis

To identify the herbs that are potentially effective against postmenopausal osteoporosis,
we first collected herb–ingredient data from the OASIS database. Protein targets associated
with these ingredients were then retrieved from validated sources, including DrugBank,
TTD, and STITCH. Using this herb target data, postmenopausal osteoporosis-related targets,
as well as proteins and biological functions within the multiscale network, we applied a
biased random walk algorithm to calculate diffusion profiles. Correlation scores, indicating
the similarity between the diffusion profiles of the herb and postmenopausal osteoporosis,
were subsequently calculated. Herbs with high correlation scores were identified as promis-
ing candidates for postmenopausal osteoporosis treatment. Additionally, a hypergeometric
test was conducted to assess the degree of protein overlap.

Herbs with a high correlation score and a significant association (p-value < 0.05) with
disease-related proteins were prioritized. Among these, the top 10 ranked herbs were
selected, specifically those with five or more active ingredients significantly associated
with disease-related proteins. An enrichment value of five or higher was also confirmed
between these herbs and protein targets related to postmenopausal osteoporosis, indicating
that the multiscale network-based prediction model successfully identified targets closely
linked to the disease. The results showed that Sophorae Flos had the highest correlation
score (0.0189), followed by Rhei Undulatai Rhizoma (0.0188), Leonuri Herba (0.0187), and
Benincasae Semen (0.0186), Schizonepetae Spica (0.0174) and Glehniae Radix (0.0173), each
exhibiting a high correlation coefficient (Table 1).

Table 1. Top 10 ranked herbs identified strong correlation with postmenopausal osteoporosis.

Herb Name (Latin) Correlation Score Overlap (p-Value #) Enrichment References (PMID)

Sophorae Flos 0.0189 5/50 (3.51 × 10−11) 118.36 29058425, 39104339
Rhei Undulatai

Rhizoma 0.0188 5/50 (3.51 × 10−11) 118.36 29693149

Leonuri Herba 0.0187 5/50 (3.51 × 10−11) 118.36 31524244, 33708763,
30224063, 31328430

Benincasae Semen * 0.0186 5/50 (3.51 × 10−11) 118.36 -
Schizonepetae Spica 0.0174 3/31 (1.29 × 10−6) 114.54 27550314

Glehniae Radix * 0.0173 3/30 (1.17 × 10−6) 118.36 -
Cnidi Fructus 0.0163 4/50 (2.24 × 10−8) 94.69 38507853, 31081953

Anemarrhenae
Rhizoma 0.0162 4/48 (1.89 × 10−8) 98.63 16723092, 30272269

Corydalis Tuber * 0.0160 3/34 (1.72 × 10−6) 104.44 -
Houttuyniae Herba * 0.0157 4/50 (2.24 × 10−8) 94.69 -

The # symbol next to the p-value indicates values obtained using the hypergeometric test, applied to evaluate the
significance of overlap between datasets. An * next to the herb name marks candidate herbs strongly associated
with postmenopausal osteoporosis that have not yet been investigated.

Among the top 10 ranked herbs, Sophorae Flos, Rhei Undulatai Rhizoma, Leonuri
Herba, Schizonepetae Spica, Cnidi Fructus, and Anemarrhenae Rhizoma have been pre-
viously reported to benefit postmenopausal osteoporosis [22–30], indicating that our pre-
dictions effectively align with findings from the earlier studies. For Sophorae Flos, both
its extract and the ingredient sophoridine have demonstrated the potential to treat osteo-
porosis by inhibiting osteoclast differentiation in estrogen-deficient animal models induced
by ovariectomy [22,23]. Leonuri Herba, commonly used for female-related conditions,
has been shown to support bone health by promoting osteoblast differentiation and in-
hibiting osteoclast formation [25,26]. Schizonepetae Spica exhibited protective effects in
inflammation-induced bone loss models by reducing osteoclast formation and activity
through the suppression of Akt and IkB phosphorylation [27]. Research on Cnidi Fruc-
tus primarily focused on its anti-osteoporotic properties, with particular emphasis on its
key ingredient, osthole, which is considered the most promising compound for further
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study [28,29]. In contrast, Benincasae Semen, Glehniae Radix, Corydalis Tuber, and Hout-
tuyniae Herba have limited or no prior evidence supporting their use for postmenopausal
osteoporosis treatment. In this study, however, these herbs showed high correlation scores,
and significant protein overlap with the postmenopausal osteoporosis diffusion profile.
These findings suggest that these herbs could serve as promising novel candidates for
therapeutic strategies for postmenopausal osteoporosis.

2.2. Herb–Ingredient–Target Network Construction of the Top 10 Herbs

Subsequently, we constructed and visualized an interaction network to map the
relationships among the top 10 ranked herbs, identified as having high correlation scores
with postmenopausal osteoporosis, and their respective protein targets using Cytoscape
3.10.2 (Figure 2). This network comprises 443 interactions (edges) between 10 herbs and
210 targets, effectively illustrating the multi-target nature of multi-component herbs and
their potential therapeutic effects through complex biological interactions. Of these targets,
only 49 proteins were targeted by 3 or more of the 10 herbs, underscoring their potential
role as core protein targets. Notably, IL6, IL1B, and NFKB1 were common targets across
all 10 herbs, while TNF, MAPK1, RELA, and NOS2 were each targeted by 9 herbs. These
findings suggest that these core protein targets have a pivotal role in the mechanisms of
action of these herbs and are likely critical in the treatment of postmenopausal osteoporosis.
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Figure 2. Herb–target interaction network of the top 10 candidate herbs with high correlation scores
for postmenopausal osteoporosis. Green hexagons represent herbs, and gray circles represent protein
targets. Edges indicate interactions between herbs and targets, with the size of hexagons and circles
reflecting interaction frequency (ranging from 1 to 50). Names of the 49 core protein targets, targeted
by three or more of the 10 herbs, are displayed.

2.3. Gene Set Enrichment Analysis (GSEA) of the Top 10 Herbs

To further investigate these core protein targets of herbs, we performed Gene Set
Enrichment Analysis (GSEA) using KEGG and Gene Ontology to identify the signal-
ing pathways and biological functions associated with the selected top 10 herbs. KEGG
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analysis highlighted significant associations with several critical pathways, including the
AGE–RAGE signaling pathway, apoptosis, and C-type lectin receptor signaling pathway.
Additional pathways related to inflammatory cytokine activation, such as the TNF and
IL-17 signaling pathways, as well as osteoclast differentiation, ranked among the top 15
pathways (Table 2). Gene Ontology analysis revealed strong associations with essential
biological functions, primarily those involved in the regulation of apoptosis and response
to reactive oxygen species. Notably, inflammation-related cellular responses to lipopolysac-
charides and lipids also demonstrated significant associations (Figure 3, top). Further
analysis of cellular component locations for these core protein targets showed a predomi-
nant localization in the mitochondria, nucleus, cytoplasmic vesicles, secretory granules,
and peroxisomes, which are organelles critical for cell survival, cellular signal transduction,
and bone cell homeostasis (Figure 3, middle). Notably, in the molecular function category of
Gene Ontology analysis, estrogen 16-alpha-hydroxylase activity demonstrated the highest
combined score, indicating a strong association. This suggests that the core protein targets
are significantly involved in estrogen metabolism, a primary factor in postmenopausal os-
teoporosis, and thus influence osteoporosis progression (Figure 3, bottom). These findings
imply that the central role of these core protein targets in regulating molecular signaling
pathways and biological functions provides a strong basis for their potential application in
therapeutic strategies for postmenopausal osteoporosis.

Table 2. KEGG Signaling Pathway Enrichment Analysis of Core Protein Targets.

Term Overlap Adjusted
p-Value

Combined
Score Genes

AGE-RAGE signaling
pathway in diabetic

complications
16/100 4.48 × 10−24 6573.87 JUN;TGFB1;PRKCB;MAPK14;TNF;RELA;NFKB1;IL6;MAPK8;CCND1;

IL1B;CASP3;BCL2;BAX;AKT1;MAPK1

Apoptosis 17/142 1.79 × 10−23 4700.81 JUN;PARP1;BAD;TNF;RELA;NFKB1;NFKBIA;
CASP9;MAPK8;CASP8;CASP3;LMNA;BCL2;BAX;AKT1;MAPK1;RAF1

C-type lectin receptor
signaling pathway 15/104 6.15 × 10−22 5119.68 IL10;JUN;MAPK14;PTGS2;TNF;RELA;NFKB1;NFKBIA;

IL6;MAPK8;CASP8;IL1B;AKT1;MAPK1;RAF1

TNF signaling pathway 15/112 1.64 × 10−21 4589.15 JUN;MAPK14;PTGS2;MMP9;TNF;RELA;NFKB1;
NFKBIA;IL6;MAPK8;CASP8;IL1B;CASP3;AKT1;MAPK1

IL-17 signaling pathway 14/94 8.35 × 10−21 4863.44 JUN;MAPK14;PTGS2;MMP9;TNF;RELA;NFKB1;
NFKBIA;IL6;MAPK8;CASP8;IL1B;CASP3;MAPK1

Pathways of
neurodegeneration 20/475 3.31 × 10−19 1325.74 NOS2;BAD;PRKCB;MAPK14;PTGS2;TNF;RELA;NFKB1;SOD1;CASP9;

IL6;MAPK8;CASP8;IL1B;CASP3;CAT;BCL2;BAX;MAPK1;RAF1
Toll-like receptor

signaling pathway 12/104 1.21 × 10−16 2707.61 NFKBIA;JUN;IL6;MAPK8;CASP8;IL1B;AKT1;
MAPK1;MAPK14;TNF;RELA;NFKB1

Neurotrophin signaling
pathway 12/119 5.66 × 10−16 2225.41 NFKBIA;JUN;MAPK8;BAD;BCL2;BAX;AKT1;

MAPK1;MAPK14;RAF1;RELA;NFKB1
Relaxin signaling

pathway 12/129 1.44 × 10−15 1979.36 NFKBIA;JUN;MAPK8;TGFB1;NOS2;AKT1;
MAPK1;MAPK14;RAF1;MMP9;RELA;NFKB1

FoxO signaling pathway 12/131 1.70 × 10−15 1935.66 IL10;IL6;CDKN1A;MAPK8;TGFB1;CCND1;
CAT;AKT1;MAPK1;MAPK14;RAF1;SIRT1

T cell receptor signaling
pathway 11/104 6.02 × 10−15 2130.15 IL10;NFKBIA;JUN;MAPK8;AKT1;MAPK1;

MAPK14;RAF1;TNF;RELA;NFKB1
Sphingolipid signaling

pathway 11/119 2.70 × 10−14 1751.70 MAPK8;PRKCB;BCL2;BAX;AKT1;
MAPK1;MAPK14;RAF1;TNF;RELA;NFKB1

Osteoclast
differentiation 11/127 5.34 × 10−14 1593.97 NFKBIA;JUN;MAPK8;TGFB1;IL1B;AKT1;

MAPK1;MAPK14;TNF;RELA;NFKB1
NOD-like receptor
signaling pathway 12/181 7.10 × 10−14 1209.95 NFKBIA;JUN;IL6;MAPK8;CASP8;IL1B;

BCL2;MAPK1;MAPK14;TNF;RELA;NFKB1
Prolactin signaling

pathway 9/70 3.81 × 10−13 2208.04 MAPK8;CCND1;AKT1;MAPK1;MAPK14;RAF1;ESR1;RELA;NFKB1
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(indicating the association significance), bubble size corresponds to the odds ratio, and bubble color
reflects the combined score, which indicates the statistical significance of each term. Visualization
highlights the most significantly enriched terms across each category.

2.4. Identification of Potential Active Ingredients and Multiscale Network Mechanism Analysis of
Candidate Herbs

We performed an additional analysis of the ingredients and multiscale network mech-
anisms of the candidate herbs, Benincasae Semen, Glehniae Radix, Corydalis Tuber, and
Houttuyniae Herba, identified as potential treatments for postmenopausal osteoporosis.
For each herb, our objective was to predict therapeutic mechanisms through which their
ingredients might influence postmenopausal osteoporosis. Using target data for each ingre-
dient, we applied multiscale network analysis to calculate correlation scores, evaluating
each ingredient’s potential impact on postmenopausal osteoporosis. Ingredients with high
correlation scores and significant protein overlap were prioritized as active ingredients.
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This analysis identified rutin (0.0217), beta-sitosterol (0.0161), and quercetin (0.0092)
as the active ingredients in Benincasae Semen, each exhibiting high correlation scores with
the postmenopausal osteoporosis diffusion profile. In Houttuyniae Herba, norisoboldine
(0.0473), hyperoside (0.0261), rutin (0.0217), and quercetin (0.0092) showed significant
correlations with postmenopausal osteoporosis-related targets. Glehniae Radix was charac-
terized by falcarindiol (0.0557), and Corydalis Tuber by tetrahydrocoptisine (0.0846), each
as the sole ingredient with both high correlation scores and statistically significant protein
overlap within the postmenopausal osteoporosis diffusion profile (Table 3).

Table 3. Representative ingredients of candidate herbs and its association with postmenopausal
osteoporosis.

Name Pubchem CID Correlation Score Overlap (p-Value #) References (PMID)

Benincasae Semen
Rutin 5280805 0.0217 5/45 (3.76 × 10−12) 31737218

β-Sitosterol 222284 0.0161 1/11 (6.62 × 10−3) 35648689
Quercetin 5280343 0.0092 5/424 (3.43 × 10−7) 38240215

Glehniae Radix
Falcarindiol * 5281148 0.0557 3/8 (5.91 × 10−9) -

Corydalis Tuber
Tetrahydrocoptisine * 6770 0.0846 3/5 (1.06 × 10−6) -

Houttuyniae Herba
Norisoboldine 14539911 0.0473 3/10 (1.26 × 10−8) 38813717

Hyperoside 5281643 0.0261 3/20 (1.20 × 10−7) 37157916
Rutin 5280805 0.0217 5/45 (3.76 × 10−12) 28485786

Quercetin 5280343 0.0092 5/424 (3.43 × 10−7) 34592982

The # denotes p-values calculated via the hypergeometric test to assess dataset overlap significance. * indicates
active ingredients with strong associations to postmenopausal osteoporosis that remain uninvestigated.

Most of the prioritized active ingredients, particularly those derived from Benincasae
Semen and Houttuyniae Herba, have documented therapeutic efficacy in postmenopausal
osteoporosis. In contrast, falcarindiol from Glehniae Radix and tetrahydrocoptisine from
Corydalis Tuber have no prior evidence of efficacy for this condition, suggesting that
these ingredients may represent novel active ingredients with potential benefits for post-
menopausal osteoporosis. These findings indicate that our multiscale network approach
successfully prioritized active ingredients with known or potential efficacy against post-
menopausal osteoporosis.

To explore the key mechanisms underlying the activity of these active ingredients, we
constructed a subnetwork comprising protein targets and biological functions significantly
influenced by postmenopausal osteoporosis and these active ingredients. The constructed
network for Benincasae Semen identified that rutin, beta-sitosterol, and quercetin directly
interacted with disease-related proteins, including TGFB1, TNF, IL1B, IL6 and CAT. Other
proteins were involved in disease-associated biological functions or were indirectly linked
to disease-related proteins. The key biological functions represented included the regulation
of gene expression, inflammatory response, NF-kappaB signaling, and apoptosis, all of
which are associated with postmenopausal osteoporosis (Figure 4A).

Similarly, the analysis visualized the direct interactions of norisoboldine, hyperoside,
rutin, and quercetin from Houttuyniae Herba with TGFB1, TNF, IL1B, IL6, and CAT. These
interactions, both direct and indirect, influenced biological functions such as the TGF-beta
receptor signaling pathway, cellular response to lipopolysaccharide, inflammatory response,
NF-kappaB signaling, gene expression regulation, and apoptotic process (Figure 4B).
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Figure 4. Predicted multiscale network mechanisms of active ingredients from candidate herbs.
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rectangles highlight distinct biological functions associated with the targets.

The multiscale network mechanisms of the novel active ingredients, previously lack-
ing evidence, were further investigated to predict their molecular interactions that may
underpin their therapeutic effects. The network indicated that falcarindiol from Glehniae
Radix directly affected disease-related proteins, including IL6, IL1B, and TNF. Additionally,
falcarindiol interacted with other proteins such as DRD1, PTPN1, and OPRK1, which are
engaged in a network of interactions with other proteins linked to the disease. These pro-
teins are involved in regulating gene expression, transcriptional activity, and key cellular
processes, including apoptosis, cell proliferation, and inflammatory responses (Figure 5A).
Next, the impact of tetrahydrocoptisine, an active ingredient in Corydalis Tuber, on disease-
related targets was visualized (Figure 5B). Tetrahydrocoptisine was found to modulate
postmenopausal osteoporosis by directly interacting with disease-related proteins such
as IL6, IL1B, and TNF, in addition to affecting disease-associated biological functions and
indirectly interacting with other disease-related proteins. The findings further suggested
that the therapeutic effect of tetrahydrocoptisine was associated with the regulation of
gene expression, apoptosis, cell proliferation, and inflammation. In summary, this study
highlights the therapeutic potential of active ingredients from candidate herbs for post-
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menopausal osteoporosis and provides valuable mechanistic insights by predicting the
biological functions of the proteins involved in their therapeutic effects.
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3. Discussion

This study employed a multiscale network and random walk-based analysis to identify
the potential candidate herbs with therapeutic effects on postmenopausal osteoporosis
and to elucidate their mechanisms of action. The top 10 ranked herbs, which showed high
correlation scores and statistically significant associations (p-value < 0.05) within the disease-
related protein network, included Sophorae Flos, Rhei Undulatai Rhizoma, Leonuri Herba,
Benincasae Semen, Schizonepetae Spica, Glehniae Radix, Cnidi Fructus, Anemarrhenae
Rhizoma, Corydalis Tuber, and Houttuyniae Herba. Notably, some herbs with limited
or no prior evidence of efficacy for postmenopausal osteoporosis, such as Benincasae
Semen, Glehniae Radix, Corydalis Tuber, and Houttuyniae Herba, were identified as novel
candidate herbs. Meanwhile, herbs with previously reported efficacy, including Sophorae
Flos, Rhei Undulatai Rhizoma, Leonuri Herba, Schizonepetae Spica, Cnidi Fructus and
Anemarrhenae Rhizoma, further supported the robustness of the network pharmacology
approach utilized in this study. Overall, these findings enhance our understanding of the
effects of multi-compound traditional herbs on postmenopausal osteoporosis and provide
a foundation for the discovery of new therapeutic agents.

The multiscale network analysis used in this study offered a powerful approach for
assessing the broad impacts of therapeutics and diseases within the human interactome,
accounting for the complex biological functions and pathways beyond protein–protein
interactions [31]. Previous research has shown that this approach outperforms other
network-based methods in identifying active herbal ingredients and their therapeutic effects
on diseases [32]. By simulating propagation effects within the network and calculating
interaction similarities using a biased random walk algorithm, prediction accuracy was
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enhanced. This was achieved by adjusting the transition probabilities to favor movements
toward biological functions over individual proteins. As a result, this approach provided a
comprehensive view of how the protein targets of herbs or active ingredients influence the
critical biological pathways and mechanisms. Previously applied to predict the therapeutic
effects of polyphenols in oxidative liver damage [32], this method was extended here
to postmenopausal osteoporosis. The approach successfully identified candidate herbs
and their core protein targets, which impact disease-associated proteins and pathways in
postmenopausal osteoporosis.

Using Gene Set Enrichment Analysis (GSEA) with KEGG and Gene Ontology, we
identified the signaling pathways and biological functions linked to the core protein targets
of our candidate herbs that are potentially effective against postmenopausal osteoporosis.
The KEGG analysis result revealed that pathways related to inflammation and cell survival,
such as the AGE–RAGE signaling pathway, apoptosis, and C-type lectin receptor signaling,
play central roles in the therapeutic potential of these herbs. For example, the abnormal
accumulation of advanced glycation end products (AGEs) on collagen, often linked to dia-
betes, activates the AGE–RAGE signaling pathway. This activation leads to the inhibition
of osteoblast differentiation and the enhancement of osteoclast-mediated bone resorption,
thereby contributing to bone loss [33,34], while C-type lectin receptor signaling modulates
osteoporosis progression by regulating osteoclast activity and influencing the immune
responses within bone tissue [35]. Moreover, the presence of signaling pathways related to
inflammatory cytokines, such as TNF and IL-17, among the top ranked target-associated
pathways highlighted the significant impact of inflammation on bone metabolism in post-
menopausal osteoporosis [36]. The identification of osteoclast differentiation, a primary
pathological mechanism of osteoporosis, further clarified the role of osteoclast activation in
bone loss after menopause [2]. Pathways involved in immune response regulation, such
as the Toll-like receptor and NOD-like receptor signaling pathways, were also identified.
Moreover, the FoxO and Sphingolipid signaling pathways, which are associated with cell
survival and oxidative stress regulation, suggested a potential role in maintaining bone cell
survival and homeostasis [37,38]. Gene Ontology (GO) analysis further revealed that the
targets of candidate herbs are significantly associated with biological functions related to
apoptosis regulation, oxidative stress response, and inflammation which are major factors
in bone cell survival and the progression of postmenopausal osteoporosis [39]. Associations
were also found with cellular responses to lipopolysaccharides and lipids, which are closely
linked to the inflammatory pathways highlighted the KEGG analysis. In the molecular func-
tion category, a strong association was found with estrogen 16-alpha-hydroxylase activity.
This enzyme converts estrogen to 16α-hydroxyestrone (16α-(OH)E1), a metabolite known
for its estrogen-like physiological effects, particularly in supporting bone formation [40].
Clinical studies on patients with postmenopausal bone loss have shown that decreased
activity of estrogen 16-alpha-hydroxylase may reduce estrogen’s bone-protective effects
thus accelerating bone loss [41]. Collectively, these findings suggest that the therapeutic ef-
fects of candidate herbs with high correlation scores for postmenopausal osteoporosis may
be mediated through core targets involved in various signaling pathways and biological
functions known to influence the disease.

Our study identified novel candidate herbs, including Benincasae Semen, Glehniae
Radix, Corydalis Tuber, and Houttuyniae Herba, which previously lacked clear evidence of
efficacy in treating postmenopausal osteoporosis. Benincasae Semen demonstrated anti-
inflammatory, nephroprotective, cytotoxic and anti-cancer effects, while Glehniae Radix
possesses antioxidant, antitussive, and immune-regulating properties [42,43]. Corydalis
Tuber is known for its analgesic and blood circulation promoting effects [44]. Houttuy-
niae Herba has a broad pharmacological profile, including antioxidant, anti-inflammatory,
anti-cancer, anti-bacterial and hepatoprotective effects, with emerging interest in its skin-
care applications [45,46]. These therapeutic profiles support further exploration of these
herbs’ bioactive compounds as candidates for expanded health applications, including
postmenopausal osteoporosis. Our multiscale network analysis further demonstrated



Int. J. Mol. Sci. 2024, 25, 12322 12 of 17

that active ingredients in these candidate herbs exhibit high correlation scores as well as
significant protein overlap with postmenopausal osteoporosis-related targets, indicating
potential therapeutic relevance. The constructed subnetworks for Benincasae Semen and
Houttuyniae Herba elucidated the mechanisms through which these active ingredients
may act on postmenopausal osteoporosis. The direct interactions of rutin, beta-sitosterol,
quercetin, norisoboldine, and hyperoside with key disease-related proteins such as TGFB1,
TNF, IL1B, IL6, and CAT suggested that these compounds may modulate critical pathways
involved in the pathology of postmenopausal osteoporosis. These interactions influenced
essential biological functions, including the regulation of gene expression, inflammatory
response, NF-kappaB signaling, and apoptosis.

Notably, falcarindiol from Glehniae Radix and tetrahydrocoptisine from Corydalis
Tuber, have not been previously reported in association with postmenopausal osteoporosis.
Our analysis predicted that these compounds modulate key disease-associated biological
functions, including inflammatory response, apoptosis, and cell proliferation. Both fal-
carindiol and tetrahydrocoptisine demonstrated direct interaction with pro-inflammatory
cytokines IL6, IL1B, and TNF, key drivers of osteoclastogenesis and bone resorption in post-
menopausal osteoporosis by activating inflammatory pathways linked to bone loss [36]. Ad-
ditionally, these compounds were found to influence gene expression and bone cell survival
through indirect interactions with proteins such as DRD1, CEBPB, OPRK1, PTPN1, NOS2,
TGFB1, and CAT. For example, CEBPB (C/EBPβ), a transcription factor involved in the
differentiation of osteoblasts and adipocytes, modulates the balance between these cells and
regulates gene expression relevant to bone formation [47]. Alterations in TGF-β1(TGFB1),
as a key regulator of bone formation and resorption balance, influenced by genetic poly-
morphisms and estrogen deficiency are known to increase the risk of postmenopausal
osteoporosis, highlighting the potential relevance of this interaction in mitigating disease
progression [48–50]. Although falcarindiol, also known as (3R,8S)-falcarindiol, has been
identified as a structural component of phthalides in Angelica Radix with known anti-
osteoporotic activity, its role as a constituent of Glehniae Radix remains unexplored [51].
Collectively, these findings underscore the potential of these herbal compounds as novel
candidates for postmenopausal osteoporosis treatment and provide valuable insights into
their mechanisms of action and associated protein functions, establishing a foundation for
future research and clinical applications.

Despite these findings, our study has several limitations that warrant consideration
for future research. First, our method for predicting key protein targets of the herbs was
based on the hypothesis of overlapping effects within the network, which might require
additional optimization to improve predictive accuracy. Second, while our therapeutic
effect predictions relied on a multiscale network analysis, we did not account for specific
mechanisms of action, such as inhibition or activation, between the compounds and their
targets. This gap suggests the need for further validation studies to elucidate these inter-
actions. Additionally, the disease-related proteins were identified from a single database,
potentially limiting the comprehensiveness of our analysis. Nevertheless, to the best of our
knowledge, this study is the first to systematically identify herbal candidates and active
ingredients for postmenopausal osteoporosis using a biased random walk on a multiscale
network, providing a valuable foundation for future investigations.

4. Materials and Methods
4.1. Herb–Ingredient–Target Network Construction

Herbs and their ingredient data were retrieved from the OASIS traditional medicine
database (https://oasis.kiom.re.kr/index.jsp, (accessed on 21 August 2024)), managed
by the Korean Institute of Oriental Medicine (KIOM). The OASIS platform provides data
on potential active ingredients extracted from herbs, identified through physicochemical
analysis techniques such as HPLC and UPLC and validated by pharmacological and
traditional medicine experts. In this study, we collected 12,871 associations between
420 herbs and 4786 ingredients, each identified through its PubChem CID. These ingredient

https://oasis.kiom.re.kr/index.jsp
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data served as foundation input for the subsequent network analysis. Ingredient–target
interaction data, that had been experimentally validated, were compiled from reputable
databases including DrugBank 5.0 [52], Therapeutic Target Database (TTD 2.0) [53], and
the Search Tool for Interactions of Chemicals (STITCH 5) [54], which offer comprehensive
information on established and potential targets, associated diseases, biological pathways,
and drugs targeting these proteins. For precise target identification, SynGO 1.2 was used to
align gene symbols and Uniprot IDs with Entrez Gene IDs [55].

A network was then constructed to represent the associations between herbs, ingre-
dients, and protein targets. In this network, nodes represent the following three types of
entities: herbs, ingredients, and protein targets. Edges represent the relationships between
these entities, specifically herb–ingredient associations and ingredient–target interactions.
All edges were unweighted and undirected, indicating the presence of an association
or interaction without implying directionality or strength. The ingredients identified by
PubChem CID were compared and integrated with the ingredient–target data. Herbs
containing fewer than three target-associated ingredients were excluded to ensure sufficient
data for reliable network analysis. This threshold was chosen because herbs with at least
three active components are more likely to exhibit meaningful pharmacological effects
and provide robust interaction data, which enhances the reliability of our predictions. The
resulting network enabled the visualization and analysis of interactions among the herbs,
components, and protein targets. In this network analysis, the simple pathway count for
each herb was calculated, accounting for instances where multiple components influenced
a single target. This process allowed for the selection of the top 50 targets, with each target’s
relative importance assessed accordingly.

4.2. Gene Set Enrichment Analysis (GSEA)

Biological processes and signaling pathways associated with the protein targets
were identified using gene set enrichment analysis (GSEA) with the GSEApy module
(version 1.1.3) in a Python 3.7 environment, facilitated through the Enrichr platform
(http://amp.pharm.mssm.edu/Enrichr/, (accessed on 12 September 2024)) [56,57]. Enrichr
performs enrichment analysis by drawing on various gene-set libraries, such as Gene
Ontology and the Kyoto Encyclopedia of Genes and Genomes (KEGG) [58,59]. In this
study, adjusted p-values, z-scores, and combined scores were calculated to evaluate the
signaling pathways and biological functions relevant to herbal ingredient targets. The
combined score, multiplying the logarithm of the p-value with the z-score, provided reliable
results, allowing for a systematic evaluation of the effects of herbal components on specific
biological pathways. All signaling pathways identified through enrichment analysis were
included in the analysis, except for those specifically related to diseases.

4.3. Disease-Related Targets

In this study, we utilized postmenopausal osteoporosis-related protein data curated
by Ruiz et al. to analyze the proteins associated with postmenopausal osteoporosis [20].
This dataset was sourced from DisGeNet 2019 (https://www.disgenet.org/, (accessed on
12 September 2024)), a database that rigorously maps disease–gene associations to ensure
research reliability [60]. We focused solely on expert-curated disease–gene associations
provided by DisGeNet for “Osteoporosis, Postmenopausal” thus ensuring relevance to our
study. Data in this curated set draw from highly regarded sources, including UniProt, the
Comparative Toxicogenomics Database, Orphanet, Clinical Genome Resource, Genomics
England PanelApp, Cancer Genome Interpreter, and the Psychiatric Disorders Gene As-
sociation Network. We excluded disease–gene associations based on homology in animal
models or derived from computational literature mining, as well as associations labeled
as therapeutic. This refined disease–protein interaction network formed the basis for
validating the protein information related to postmenopausal osteoporosis in our analysis.

http://amp.pharm.mssm.edu/Enrichr/
https://www.disgenet.org/


Int. J. Mol. Sci. 2024, 25, 12322 14 of 17

4.4. Multiscale Network Analysis for Predicting Disease Associations

The multiscale interactome was constructed following the methodology of Ruiz et al.,
integrating the following three interaction types: protein–protein, protein–biological func-
tion, and biological function–function interactions [20]. Human protein–protein interac-
tion data were sourced from the Biological General Repository for Interaction Datasets
(BioGRID 3.5.178), the Database of Interacting Proteins (DIP), and the Human Reference
Protein Interactome Mapping Project (HuRI), encompassing 387,626 physical interactions
among 17,660 proteins. Protein–biological function interactions were derived from the
human Gene Ontology database, assembling 34,777 experimentally verified associations
between 7993 proteins and 6387 biological functions. Finally, biological function–function
interactions were organized into a highly interconnected hierarchical structure, with
22,545 associations among 9798 functions.

Diffusion profiles were then calculated using the multiscale interactome to assess the prop-
agation effects between the herbal ingredients and proteins associated with postmenopausal
osteoporosis. This analysis utilized a biased random walk with a restart algorithm, enabling a
quantitative evaluation of the influence exerted by herbal targets and ingredient targets within
herbs on postmenopausal osteoporosis-related proteins. Correlation score was then calcu-
lated between herb–ingredient and disease profiles, facilitating the identification of potential
candidate herbs and ingredients for treating postmenopausal osteoporosis.

The primary mechanisms of each ingredient–disease pair were identified by analyzing
diffusion profiles and selecting the top k-proteins or biological functions based on their
influence from either the drug or the disease. A network was then constructed from these se-
lected entities to highlight their significance. Targets of ingredients that were not associated
with disease-related proteins or biological functions were excluded. The highest-ranking
entity in the diffusion profile was deemed the most essential for treatment due to its consid-
erable influence. In our analysis, we set the value of k to 20 to ensure sufficient exploration
of influential nodes. A previous study indicated that when k was set to 10, the top nodes
accounted for approximately 50% of the total visitation frequency in the diffusion profile.
By increasing k to 20, we were able to capture a larger portion of the visitation frequency,
enhancing the comprehensiveness of our analysis. For a comprehensive explanation of the
diffusion profile calculation method, including specific mathematical formulas, iterative
processes, and the rationale for selecting parameter k, please refer to the prior research [20].

5. Conclusions

In conclusion, this study demonstrated a comprehensive multiscale network analysis
approach to proposing novel herbs and compounds for the treatment of postmenopausal
osteoporosis. This methodology enabled the identification of promising therapeutic can-
didates by exploring complex protein interactions and biological pathways, including
previously understudied herbs. However, a limitation of this predictive approach is its
inability to specify precise modes of action, such as activation or inhibition. To address this,
validation of the predicted outcomes through in vitro, in vivo, and clinical studies is essen-
tial. Additionally, as database reliability and scope affect prediction accuracy, integrating
the latest data and diverse sources remains a critical objective. Despite these limitations,
this study presents a pioneering strategy for developing treatments for postmenopausal
osteoporosis, combining multiscale network and random walk algorithms. It holds sub-
stantial academic value by introducing an innovative methodological framework for future
medicinal herb research.
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