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Abstract: This study aimed to explore the health impacts, mechanisms of toxicity, and key gene
biomarkers of a mixture of the most prominent perfluoroalkyl/polyfluoroalkyl substances (PFAS)
through in silico ADMET and toxicogenomic analysis. The following databases and tools were used:
AdmetSAR (2.0), ADMETlab (2.0), Comparative Toxicogenomic Database, ToppGene Suite portal,
Metascape (3.5), GeneMANIA server, and CytoHubba and CytoNCA Cytoscape (3.10.3) plug-ins.
ADMET analysis showed that PFAS compounds pose risks of organ-specific toxicity, prolonged
retention, and metabolic disruptions. Forty mutual genes were identified for all the tested PFAS. The
mutual gene set was linked to disruption of lipid metabolism, particularly through nuclear receptors.
The most important gene clusters identified were nuclear receptor signaling and PPAR signaling
pathways, with kidney and liver diseases, diabetes, and obesity as the most significant related
diseases. Phenotype data showed that PFAS compounds impact cell death, growth, inflammation,
steroid biosynthesis, and thyroid hormone metabolism. Gene network analysis revealed that 52% of
the 40 mutual genes showed co-expression, with co-localization as the next major interaction (18.23%).
Eight key genes were extracted from the network: EHHADH, APOA2, MBL2, SULT2A1, FABP1,
PPARA, PCK2, and PLIN2. These results highlight the need for further research to fully understand
the health risks of PFAS mixtures.

Keywords: PFAS; genes; toxicokinetics; perfluorooctanesulfonic acid; perfluorooctanoic acid; perfluo-
rohexanesulfonic acid; perfluoro-nonanoic acid; perfluorodecanoic acid; perfluoroundecanoic acid;
perfluoroheptanesulfonic acid

1. Introduction

Per- and polyfluoroalkyl substances (PFAS) are synthetic compounds known for their
chemical stability, which results in their long-term persistence in the environment [1]. These sub-
stances exhibit high mobility, making them prevalent even in remote regions [2]. Because these
substances accumulate in both animal and human organisms, while their concentration rises as
they move up the food chain, they are often called “forever chemicals” [3]. PFAS are known for
their resistance to stains, heat, oil, grease, and water. This makes them highly valuable in a range
of applications: these substances prevent food from sticking to cookware, enhance stain resis-
tance in furniture and carpets, provide waterproofing for clothing and mattresses, and ensure
grease resistance in certain food packaging materials [4]. Moreover, some of the most common
applications of these substances include the synthesis of pesticides, production of firefighting
foams, automobiles, cosmetics, the aviation and textile industry, etc. [5–7]. It is widely accepted
that the consumption of food and drinking water is the main route of exposure for the general
population to these substances [8,9], while inhalation and dermal contact are significant for
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occupational toxicology [10]. PFAS oral absorption is ranging from over 50% to above 95%, and
these substances are extensively distributed in the liver, kidneys, and blood, where they bind to
albumin and other proteins. They are not metabolized and are primarily eliminated through
urine, with smaller quantities found in feces and breast milk [11]. PFAS toxicity primarily
arises from activating peroxisome proliferator-activated receptor alpha (PPARα), impacting
lipid metabolism [12]. It has been suggested that PPARα activation by these substances differs
greatly depending on the functional group, length of the carbon chain, and species of the recep-
tor [13]. PFAS toxicity mechanisms also involve interactions with other nuclear receptors, such
as constitutive androstane receptor (CAR), pregnane X receptor (PXR), and possibly farnesoid X
receptor (FXR) [12]. Consequently, these substances are associated with many harmful effects
on human health, including hormonal imbalance, immune system dysfunction, liver damage,
growth and developmental disorders, reproductive issues, and the development of cancer [14].
The two most well-known and extensively studied PFAS compounds are perfluorooctanoic
acid (PFOA) and perfluorooctanesulfonic acid (PFOS), as documented in the 2018 report by the
Agency for Toxic Substances and Disease Registry (ATSDR). In response to growing concerns
about the harmful effects of PFOA on human health, wildlife, and the environment, the U.S.
Environmental Protection Agency (EPA) launched the PFOA Stewardship Program in 2006 [15].
According to the assessment by the European Food Safety Authority (EFSA), the seven most
prominent PFAS compounds in terms of human exposure include PFOS, PFOA, perfluorohex-
anesulfonic acid (PFHxS), perfluoro-nonanoic acid (PFNA), perfluorodecanoic acid (PFDA),
perfluoroundecanoic acid (PFUnDA), and perfluoroheptanesulfonic acid (PFHpS) [16].

Due to their environmental persistence and potential harm to human health, the
Stockholm Convention lists several PFAS, with an aim to restrict (Anex B) or eliminate the
production and use of these chemicals (Anex A). In 2009, PFOS, its salts, and perfluorooc-
tane sulfonyl fluoride (PFOSF) were included in Annex B, with amendments in 2019 to
restrict exemptions. PFOA, its salts, and related compounds were added to Annex A in
2019, and PFHxS, its salts, and related compounds were included in 2022. The review of
long-chain perfluorocarboxylic acids (LC-PFCAs) for potential listing is ongoing [17].

Nevertheless, despite these restrictions, the widespread nature of these substances
and their pervasiveness ensure their continued existence in our environment. However,
regardless of the fact that people are exposed to PFAS in mixtures [16], there is a scarcity
of mechanistic toxicity studies on PFAS mixtures, which could offer valuable insights into
how exposure to multiple PFAS compounds is linked to adverse health effects. In vitro
studies on PFAS mixtures have shown that these compounds can produce additive effects
or interact in synergistic or antagonistic ways. The type of interaction depends on several
factors, such as the species under investigation, the levels and ratios of doses, and the
specific components of the mixture [13]. Regarding PPARα activation, synergistic effects
were observed in PFAS mixtures containing PFOS, PFNA, and PFHxS when tested on an
in vitro model of human hepatocytes [18]. Additionally, binary mixtures of PFOA with
PFOS, PFHxA, PFNA, or PFHxS exhibited additive effects in PPARα activation at lower
doses, while higher doses resulted in more pronounced, synergistic effects in transfected
kidney cell line COS-1 [19,20]. Considerable PPARα activation was also demonstrated in
a 12-week study on male and female C57BL/6J mice exposed to a mixture of five PFAS
(PFOA, PFOS, PFNA, PFHxS, and hexafluoropropylene oxide dimer acid (GenX)) [21].

Artificial intelligence, a rapidly growing branch of computer science, increasingly
uses various machine learning techniques to predict and assess the toxicity of chemi-
cals [22]. Considerable efforts have gone into developing in silico models and leveraging
toxicogenomics data to improve alternative methods for assessing human health risks [23].

Our environment contains various small molecular compounds—such as medications,
pesticides, food additives, industrial chemicals, and pollutants—that impact our health.
Assessing absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties
has become essential to evaluate their potential effects or risks to the human body [24]. On the
other hand, toxicogenomics enables the effective identification of health risks by analyzing
gene–environmental stressors’ interactions in disease development [25,26], thus enabling the
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prediction of relevant biological interactions [27]. In mechanistic toxicology, toxicogenomics is
suitable for (a) identifying gene ontology (biological processes, molecular functions, cellular
components), molecular pathways and connected diseases based on the input gene sets, and
(b) discovering genomic biomarkers linked to chemical exposure [28,29]. Additionally, in
the context of studying the toxicity of mixtures, toxicogenomics aims to uncover mutual
pathways and interactions where chemicals might act together, leading to possible additive
or synergistic effects. This approach allows for a comprehensive assessment of how various
chemicals interact with genes, revealing potential combined effects within a mixture [25].
One of the conducted toxicogenomic studies which assessed the link between PFAS mixtures
and polycystic ovary syndrome (PCOS) found 74 genes linked to both PFAS exposure and
PCOS, highlighting cell cycle regulation and steroid hormone synthesis—particularly genes
like CCNB1 and SRD5A1 [30]. However, despite the critical need for research, in silico
toxicogenomic studies assessing the overall toxicity potential of PFAS mixtures (especially
one of the most prominent PFAS) remain notably scarce.

To address this gap, the current research aims to perform an in silico ADMET analysis
to evaluate the toxicokinetics and toxicity of a PFAS mixture, with a focus on shared ADMET
properties. Following this, toxicogenomic data mining will be performed to investigate the
gene-level mechanisms driving the observed toxic effects.

2. Results
2.1. ADMET Analyses

The results of the ADMET analysis performed using admetSAR are presented in
Table 1, providing insights into absorption, bioavailability, transporter inhibition, enzyme
inhibition, receptor binding, metabolism and toxicity endpoints. A “+” indicates that the
substance is associated with the respective ADMET property, while a “−” indicates no
association according to the predictions.

Table 1. ADME-Tox prediction results for each of the examined PFAS (admetSAR; http://lmmd.
ecust.edu.cn/admetsar2; accessed on 11 August 2024).

Category PFOS PFOA PFHxS PFNA PFDA PFUnDA
Absorption

Crossing the blood–brain barrier + + + + + +
Intestinal absorption + + + + + +

Par 3 Caco-2 − + + + − −
Bioavailability

Oral bioavailability + − + − − −
Transporter inhibition

The bile salt export pump (BSEP) inhibitor − − − − − +
Enzyme inhibition
OATP1B1 inhibitor − − + + + +
OATP1B3 inhibitor − − + + + +
Receptor binding

Aromatase binding + + − − + +
Binding of estrogen receptors + + + + + +

PPAR gamma + + + + + +
Toxicity

Carcinogenicity (Total) + + + + + +
Eye damage + + + + + +
Eye irritation + + + + + +

Toxicity to fish + − + + − −
Micronuclearity + + + + + +

Mitochondrial toxicity + − + + − −
Nephrotoxicity + + + + + +

Reproductive toxicity + + + + + +

http://lmmd.ecust.edu.cn/admetsar2
http://lmmd.ecust.edu.cn/admetsar2


Int. J. Mol. Sci. 2024, 25, 12333 4 of 23

Table 1. Cont.

Category PFOS PFOA PFHxS PFNA PFDA PFUnDA
Respiratory toxicity + − + + − −

Skin damage + + + + + +
Skin irritation + + + + + +

Skin sensitization + + + + + +
A “+” indicates that the substance is associated with the respective ADMET property, while a “−” indicates no
association according to the predictions.

Additionally, more detailed findings from the ADMETlab analysis are summarized in
Supplementary Table S1.

2.2. Toxicogenomic Analyses

In the CTD database, out of the seven examined PFAS, PFHpS showed interactions
with only one gene, HSD11B2, which was not found on the common gene list for the
remaining six substances. Bearing this in mind, PFHpS was excluded from further inves-
tigation. For the remaining 6 PFAS compounds, a set of 40 mutual genes was identified:
A2M, ABCA1, ACOT2, ALB, ANGPTL4, APOA2, CPT1A, CYP2B10, CYP3A11, CYP7A1,
DDIT3, EHHADH, ESR1, FABP1, FAS, FASN, GSTM3, HADHA, HGF, HMGCR, HMGCS1,
HMGCS2, HMOX1, IL6, MBL2, NFE2L2, NR1I2, PCK2, PDK4, PLIN2, POR, PPARA, PPARG,
PTPN11, SERPIND1, SLCO1A1, SOD1, SULT2A1, TTR, TXNIP.

Full names of each of these genes are given in the Supplementary File S1 Table S2.
Forty mutual genes were used for ToppGene Suite analysis to provide insights into how

these genes are functionally connected and biologically relevant in the context of PFAS effects.
Table 2 provides a detailed overview of the extracted molecular functions, biological processes,
molecular pathways, and diseases identified for the 40 mutual genes extracted from the 6 exam-
ined PFAS substances. This table highlights the shared mechanisms and pathways implicated
by these substances, offering insights into their collective biological impact.

Table 2. Molecular functions, biological processes, molecular pathways, and diseases associated with
40 genes common to all examined PFAS substances (ToppGene Suite; https://toppgene.cchmc.org;
accessed on 16 August 2024).

ID Name p-Value

M
ol

ec
ul

ar
fu

nc
ti

on
s

GO:0004879 activity of nuclear receptors 1.421 × 10−6

GO:0098531 activity of a ligand-activated transcription factor 1.421 × 10−6

GO:0004421 hydroxymethylglutaryl-CoA synthase activity 2.835 × 10−6

GO:0016509 long-chain-3-hydroxyacyl-CoA dehydrogenase activity 8.481 × 10−6

GO:0003707 activity of nuclear steroid receptors 1.789 × 10−5

GO:0008289 lipid binding 3.732 × 10−5

GO:0046912 acyltransferase activity, acyl groups are converted to alkyl during transfer 4.227 × 10−5

GO:0016491 oxidoreductase activity 4.952 × 10−5

GO:0003857 3-Hydroxyacyl-dehydrogenase activity 5.911 × 10−5

GO:0016616 oxidoreductase activity, which acts on the CH-OH group of the donor, NAD or NADP as
the acceptor 7.775 × 10−5

GO:0018812 3-hydroxyacyl-CoA dehydratase activity 7.873 × 10−5

GO:0005496 steroid binding 8.235 × 10−5

GO:0001221 binding of transcription coregulators 9.473 × 10−5

GO:0016614 oxidoreductase activity, which acts on the donor CH-OH group 1.028 × 10−4

GO:0001223 binding of transcriptional coactivators 1.123 × 10−4

https://toppgene.cchmc.org
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Table 2. Cont.

ID Name p-Value

Bi
ol

og
ic

al
pr

oc
es

se
s

GO:0006629 lipid metabolism process 3.716 × 10−21

GO:0044255 metabolic process of cellular lipids 3.531 × 10−17

GO:0031667 response to nutrient levels 5.332 × 10−15

GO:0009991 response to an extracellular stimulus 1.379 × 10−14

GO:0009410 response to a xenobiotic stimulus 9.931 × 10−14

GO:0033993 response to lipids 6.107 × 10−13

GO:0009725 hormone response 3.006 × 10−12

GO:0014070 response to an organic cyclic compound 5.254 × 10−12

GO:0008203 metabolic process of cholesterol 5.852 × 10−12

GO:0006631 metabolic process of fatty acids 5.858 × 10−12

GO:0016125 metabolic process of sterols 1.142 × 10−11

GO:1902652 secondary metabolic process of alcohol 1.323 × 10−11

GO:0008202 steroid metabolic process 1.645 × 10−11

GO:1901701 cellular response to an oxygen-containing compound 1.747 × 10−11

GO:0019395 oxidation of fatty acids 2.288 × 10−11

Pa
th

w
ay

s

M27316 regulation of lipid metabolism by PPARA 5.093 × 10−19

M39428 nuclear receptors 5.131 × 10−18

M39553 PPAR signaling pathway 4.193 × 10−16

M13088 PPAR signaling pathway 5.731 × 10−16

MM15995 PPAR signaling pathway 1.041 × 10−15

M27451 lipid metabolism 1.073 × 10−14

M39547 PPARA road 3.066 × 10−11

MM15920 cholesterol metabolism 3.457 × 10−11

M39679 SREBF and MIR33 in cholesterol and lipid homeostasis 5.509 × 10−10

M39853 cholesterol metabolism 1.379 × 10−9

MM14563 metabolism 3.431 × 10−9

MM15866 nuclear receptors in lipid metabolism and toxicity 8.973 × 10−9

M41830 cytoprotection by HMOX-1 9.346 × 10−9

MM15193 lipid metabolism 1.027 × 10−8

M39488 nuclear receptors in lipid metabolism 2.026 × 10−8

D
is

ea
se

s

C0022661 kidney failure, chronic 1.504 × 10−14

C0038433 streptozotocin diabetes 1.150 × 10−9

C0011853 diabetes mellitus, experimental 1.150 × 10−9

C0002152 diabetes 1.150 × 10−9

C0860207 drug-induced liver disease 1.669 × 10−9

C3658290 acute drug-induced liver damage 1.669 × 10−9

C4277682 liver damage caused by chemicals and drugs 1.669 × 10−9

C1262760 drug-induced hepatitis 1.669 × 10−9

C0019193 hepatitis, toxic 1.669 × 10−9

C4279912 chemically induced hepatotoxicity 1.669 × 10−9

C0028754 obesity 9.517 × 10−9

C1565662 acute renal failure 2.269 × 10−8

C2609414 acute kidney injury 2.269 × 10−8

C0022660 kidney failure, acute 2.269 × 10−8

C1704377 Bright’s disease 3.725 × 10−8
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The clusters generated using MCODE analysis are shown in Figure 1. As depicted
in the figure, three interconnected gene clusters were detected. The identified MCODE
networks are associated with significant biological processes and pathways (Table 3).
The Red network is linked to pathways involved in cancer and lung fibrosis. The Blue
network is connected to the Liver X receptor pathway and metabolic processes involving
carboxylic acids. The Green network is related to the regulation of lipid metabolism and
the PPAR signaling pathway. The most relevant gene ontology processes obtained by
MCODE analysis and connected to the three identified clusters were nuclear receptors’
meta pathway, when PPARA activates gene expression, and regulation of lipid metabolism
by PPARalpha.
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Table 3. Generated MCODE networks (depicted in Figure 1) and their associated biological pathways
and processes (Metascape 3.5 software; https://metascape.org; accessed on 16 August 2024).

Color MCODE Gene Ontology Description Log10(P)

Red

MCODE_1 WP5434 Pathways in cancer −9.8

MCODE_1 hsa05200 Pathways in cancer −9.7

MCODE_1 WP3624 Lung fibrosis −9.2

Blue

MCODE_2 WP2874 Liver X receptor pathway −13.0

MCODE_2 GO:0032787 Monocarboxylic acid metabolic process −10.6

MCODE_2 GO:0019752 Carboxylic acid metabolic process −9.5

Green

MCODE_3 R-HSA-1989781 PPARA activates gene expression −12.1

MCODE_3 R-HSA-400206 Regulation of lipid metabolism by PPARalpha −12.1

MCODE_3 hsa03320 PPAR signaling pathway −9.8

Eight common phenotypes were found for all the investigated PFAS: cell death, cell
growth, cell population proliferation, inflammatory response, positive regulation of cell
population proliferation, positive regulation of telomere maintenance via telomere length-
ening, the steroid biosynthetic process, and the thyroid hormone metabolic process (Supple-
mentary Table S2). The phenotypic data identified in the CTD were derived from in vitro
and in vivo studies conducted on three organisms—rats, mice, and zebrafish—as well as
human biomonitoring studies. Supplementary File S2 contains the detailed data about the
phenotype–gene interactions.

Next, network analysis was conducted on the 40 mutual genes to examine their inter-
actions and identify key genes that serve as central hubs or connectors within the network.
Over half of these genes exhibited co-expression (52.00%), with co-localization representing
the second most significant form of interaction among them (18.23%) (Figure 2).
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For a clearer understanding of the specific relationships within each interaction type,
Supplementary Figure S1 in Supplementary File S1 presents the GeneMania network,
showing both a combined interaction view and separate circular layouts for individual
interaction types.

Among the gene network, five genes were identified as hub genes: EHHADH, APOA2,
MBL2, SULT2A1, and FABP1.

Further centrality analysis highlighted key genes in the network that have strong
interactions with others and play significant roles in connecting different pathways (Supple-
mentary Table S3 in File S1). The genes FABP1, EHHADH, APOA2, PPARA, and PCK2 show
the highest degree and closeness, indicating they are central hubs with extensive interac-
tions and the capacity to quickly influence other nodes. Additionally, FABP1, EHHADH,
APOA2, PCK2, and PLIN2 had the highest betweenness, suggesting they are key connectors
within the network. These combined metrics highlight their critical roles in maintaining
network connectivity and overall regulatory influence.

For each PFAS chemical examined in the study, relevant chemical–hub gene interaction
data were extracted from the CTD (EHHADH, APOA2, MBL2, SULT2A1, FABP1). Three
additional relevant genes (PPARA, PCK2, and PLIN2) obtained by centrality analysis
were also taken into account. The analysis focused on identifying the most significant
interactions, with particular emphasis on mRNA expression (ME) and protein expression
(PE) changes. These findings are detailed in Table 4.

Table 4. Chemical–hub gene interactions and their effects on mRNA and protein expression for
each examined PFAS chemical (Comparative Toxicogenomic Database (CTD) (https://ctdbase.org);
Accessed on 16 August 2024).

EHHADH APOA2 MBL2 SULT2A1

ME PE ME PE ME PE ME PE

PFOS + + +/− N/A +/− N/A +/− N/A

PFOA + + + +/− +/− N/A +/− −
PFHxS + N/A + N/A + N/A + N/A

PFNA +/− N/A + N/A + N/A +/− N/A

PFDA + N/A +/− N/A − N/A − N/A

PFUnDA + N/A +/− N/A − N/A + N/A

FABP1 PPARA PCK2 PLIN2

ME PE ME PE ME PE ME PE

PFOS +/− N/A +/− N/A + N/A +/− N/A

PFOA +/− + +/− +/− + N/A +/− +

PFHxS + N/A +/− N/A + N/A + N/A

PFNA + N/A + N/A + N/A + N/A

PFDA + N/A − N/A + N/A + N/A

PFUnDA − N/A + N/A + N/A + N/A

ME: mRNA expression; PE: protein expression; +: increases; −: decreases; +/−: can either increase or decrease
depending on the dose, species, duration of exposure, etc.

The upregulated and downregulated key genes were compiled and analyzed using
ToppGene Suite to further explore the potential biological implications of PFAS effects
through systems biology analyses (Supplementary File S1, Tables S4 and S5). The upregu-
lated genes (EHHADH, APOA2, FABP1, PPARA, PCK2, and PLIN2) were linked to various
molecular functions, including lysophospholipid symporter activity, phosphoenolpyruvate
carboxykinase activity, phosphoenolpyruvate carboxykinase (GTP) activity, long-chain-3-
hydroxyacyl-CoA dehydrogenase activity, and high-density lipoprotein particle receptor

https://ctdbase.org
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binding. Additionally, these genes were associated with biological processes such as cellular
lipid catabolic processes, lipid catabolic processes, fatty acid catabolic processes, monocar-
boxylic acid catabolic processes, and positive regulation of lipid catabolic processes. The
analysis also revealed connections to key pathways, including the PPAR signaling pathway
and PPAR-alpha pathway, as well as diseases such as acute kidney tubular necrosis, chronic
kidney failure, fatty liver, steatohepatitis, and hypertensive encephalopathy. The downreg-
ulated genes (MBL2, SULT2A1, FABP1, PPARA), mostly downregulated by PFDA and/or
PFUnDa, were linked to molecular functions such as glycochenodeoxycholate sulfotrans-
ferase activity, lysophospholipid symporter activity, lipid binding, bile-salt sulfotransferase
activity, and alcohol sulfotransferase activity. These downregulated genes were associated
with biological processes including monocarboxylic acid catabolic processes, positive regu-
lation of fatty acid beta-oxidation, positive regulation of fatty acid oxidation, regulation of
fatty acid beta-oxidation, and carboxylic acid catabolic processes. Furthermore, they were
connected to key pathways like the regulation of lipid metabolism by PPAR-alpha, the
PPAR-alpha pathway, and the nuclear receptors meta pathway, as well as diseases such as
acute kidney tubular necrosis, chronic kidney failure, cystic fibrosis, Alzheimer’s disease,
and mannose-binding protein deficiency.

3. Discussion

Since PFAS often contaminate soil, groundwater, and drinking water, leading to ex-
posure to multiple compounds, it is essential to assess their combined effects to fully
understand their impact on human health [31]. Considering this, several in vitro and ani-
mal studies have explored the toxicity of their mixtures. One of the in vitro studies aimed
to investigate how PFAS mixtures composed of PFOS, PFOA, PFNA, and PFHxS affect
lipid metabolism in human HepaRG cells, a model for human hepatocytes. The authors
demonstrated that PFAS induced triglyceride accumulation and altered the expression
of genes associated with steatosis, PPARα target genes, and genes related to lipid and
cholesterol metabolism [18]. Furthermore, binary mixtures of PFOA with PFOS, PFHxA,
PFNA, or PFHxS showed additive effects on PPARα activation at lower doses, whereas
higher doses led to more significant, synergistic effects in transfected COS-1 cells [19,20].
In a 12-week in vivo study, male and female C57BL/6J mice exposed to a mixture of five
PFAS (PFOA, PFOS, PFNA, PFHxS, and GenX) at 2 mg/L showed significant PPARα acti-
vation and elevated serum cholesterol levels. The results have also shown increased sterol
metabolites and bile acids, along with hepatic injury, inflammation, and elevated alanine
aminotransferase levels [21]. Furthermore, after the exposure of male C57BL/6J mice to a
mixture of nine PFAS (PFOA, perfluorobutanoic acid (PFBA), PFOS, perfluoropentanoic
acid (PFPeA), PFNA, PFHxA, PFBS, PFHpA, and PFHxS) at concentrations mirroring hu-
man daily intake (1 µg/L and 50 µg/L) for five weeks, morphological changes in the liver
were observed, such as hepatocyte vacuolization and irregular hepatocyte cord arrange-
ment. Additionally, alterations in genes associated with metabolism and carcinogenesis
were reported, as well as changes in substances like glutathione and 5-aminovaleric acid,
suggesting significant impacts on liver morphology and metabolic processes [32]. After the
exposure of male C57BL/6 mice to a PFAS mixture (PFOS, PFOA, PFNA, PFHxS, GenX)
through drinking water at a concentration of 20 µg/L for 18 weeks, researchers found
significant changes in sperm methylation and altered gene expression in the liver and
fat of male offspring, affecting cholesterol metabolism, cell cycle regulation, and myeloid
leukocyte migration. In females, PFAS exposure impacted erythrocyte development and
carbohydrate metabolism [33]. All of these studies highlighted the urgent necessity to
further comprehend the collective impacts of PFAS exposure. However, to the best of our
knowledge, a mixture of the most prominent PFAS chemicals has not yet been assessed
in vitro, in vivo, or in silico. Hence, we aimed to conduct an in silico ADMET analysis to
assess the toxicokinetics and toxicity of this PFAS mixture, followed by toxicogenomic data
mining to explore the gene-level mechanisms driving these effects.
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3.1. ADMET Analysis

Results of both admetSAR and ADMETlab analysis have highlighted potential health
risks associated with PFAS substances, including potential for organ-specific toxicities,
metabolic interference, and prolonged presence in the body. The results of admetSAR test-
ing shown in Table 1 indicated a series of common characteristics for all tested substances,
suggesting the potential for additive or synergistic effects when these substances are present
in a mixture. According to these results, PFAS substances have shown a potential ability
for intestinal absorption, contributing to their further distribution in the body. It is also
suggested that all of these substances can pass through the blood–brain barrier, indicating
their ability to reach the central nervous system. They were found to affect PPAR-gamma
receptors, which promote fat storage and regulate hormones that maintain glucose home-
ostasis [34]. Additionally, all tested substances were associated with eye and skin irritation
and damage, binding to estrogen receptors, nephrotoxicity, and carcinogenicity. On the
other hand, the results of ADMETlab testing (Supplementary Table S1) have shown that,
according to the Lipinski Rule [35], all substances meet the criteria, indicating they could
be absorbed if ingested, leading to systemic exposure. Among these, PFHxS stood out
with a higher potential for CNS toxicity. Furthermore, these results have indicated that
all the tested PFAS have a prolonged presence in the bloodstream (high plasma protein
binding (PPB)). Next, all of these compounds were identified as substrates for CYP1A2 and
CYP3A4, enzymes responsible for drug metabolism [36]. Additionally, they were found to
inhibit CYP2C8, and all except PFHxS also inhibited CYP2C9. Similarly, all PFAS, apart
from PFHxS, were connected with p53, which is important for tumor suppression [37].
Toxicologically, these PFAS substances were found to potentially exhibit adverse effects,
including eye corrosion and irritation, skin sensitization, respiratory toxicity, hepatotoxicity,
nephrotoxicity, and genotoxicity.

3.2. Gene Ontology, Molecular Pathways and Related Diseases

To identify which of these predictions could stem from PFAS influence at the gene
level and to explore the specific molecular mechanisms, we conducted toxicogenomic
data mining. Forty genes shared across all the examined PFAS substances were identified.
When considering all 40 mutual genes obtained by toxicogenomic analysis together, associ-
ated molecular functions, biological processes, and molecular pathways were identified
to explore potential molecular mechanisms of PFAS toxicity. The list of extracted gene
ontology terms and pathways can be broadly grouped into categories related to lipid
metabolism, nuclear receptor activity, and responses to various stimuli. Lipid metabolism
encompasses processes like cholesterol metabolism, fatty acid oxidation, and sterol and
steroid metabolism, as seen in terms like hydroxymethylglutaryl-CoA synthase activity,
oxidoreductase activity, acyltransferase activity, and pathways such as PPAR signaling
and SREBF and MIR33 in cholesterol and lipid homeostasis. MiR-33, found within the
intron of sterol regulatory element-binding protein (SREBP) 2, plays a role in regulat-
ing cholesterol homeostasis [38], while the nuclear hormone receptor (NHR) superfamily
comprises transcriptional regulators crucial for pathways like development, growth, and
metabolism. Activated by ligands like hormones, these receptors regulate gene expres-
sion [39]. The response to stimuli category includes terms like response to nutrient levels,
response to xenobiotic stimulus, and cellular response to an oxygen-containing compound,
often mediated by nuclear receptors and related pathways. These categories are mutually
connected, particularly through the regulation of lipid metabolism by nuclear receptors
such as PPARA. Nuclear receptors and PPAR signaling pathways were also identified as
particularly important clusters in MCODE analysis. PPARA is a gene which plays a crucial
role in regulating lipid metabolism and uptake [40]. As seen in Figure 2, Green identifies
the network’s association with the regulation of lipid metabolism, and the PPAR signaling
pathway highlights the impact of PFAS on lipid homeostasis, potentially contributing to
disorders such as dyslipidemia or fatty liver disease. The most relevant gene ontology
processes identified—nuclear receptors’ meta pathway, PPARA activation, and regulation
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of lipid metabolism by PPARalpha—further emphasize the role of PFAS in disrupting key
metabolic and regulatory pathways. The Red network’s connection to pathways involved
in cancer and lung fibrosis suggests that PFAS exposure may contribute to or exacerbate
these health conditions. The Blue network, which is linked to the Liver X receptor path-
way and various carboxylic acid metabolic processes, highlights potential disruptions in
metabolic regulation and homeostasis. The liver X receptor pathway influences genes
responsible for proteins that manage cholesterol absorption, transport, removal, excretion,
and conversion to bile acids. Previously conducted toxicological studies link PFAS expo-
sure to various health risks, including developmental, reproductive, neuro-, hepato-, and
immunotoxicity, as well as thyroid disruption and cancer [41]. Effects on growth and devel-
opment have been observed in children, including changes in behavior or early puberty
onset, as well as in newborns, where reduced birth weight has been noted [42]. Long-term
exposure to PFAS in the general population is associated with an increased risk of kidney,
prostate, and testicular cancer, along with disturbances in cholesterol metabolism and
reduced effectiveness of the immune system against infections [42]. However, the current
toxicogenomic study has shown that the most significant diseases associated with exposure
to the investigated mixture of PFAS include kidney dysfunction (acute kidney injury, acute
kidney damage, chronic kidney insufficiency, Bright’s disease (nephritis)) and liver disease
(drug-induced liver disease, acute drug-induced liver damage, liver damage caused by
chemicals and drugs, hepatitis caused by toxic substances, etc.) and the development of
diabetes/obesity, which may indicate the interrelated effects that may occur after exposure
to all these substances simultaneously.

3.3. Phenotype Data

Phenotype data was explored and downloaded from the CTD to investigate the direct
link between molecular-level changes and observable biological outcomes. Eight com-
mon phenotypes were found for all the investigated PFAS: cell death, cell growth, cell
population proliferation, inflammatory response, positive regulation of cell population pro-
liferation, positive regulation of telomere maintenance via telomere lengthening, the steroid
biosynthetic process, and the thyroid hormone metabolic process. Phenotype analysis also
revealed dual interactions (Supplementary File S2), suggesting that the effect is influenced
by variables such as study type (in vitro, in vivo, human), species, cell type, concentration,
and overall study design. For example, PFOS was found to both increase and decrease cell
death, depending on the type of cells it was investigated in and whether it was present
alone or in mixture with other PFAS. This substance increased cell death on non-tumor
human hepatic cells (L-02) in concentrations of 25 and 50 mg/L [43], while it decreased
cell death (U2OS-GR cells) when present in a mixture with other PFAS substances [44].
Similarly, PFOS led to both increased and decreased cell growth. When investigated in vivo,
this substance increased cell growth in mice livers after exposure to 5 mg/kg/day, 28 days,
per os On the other hand, it decreased cell growth in human lung A549 cells (concentra-
tions 25, 50, 100 and 200 µM) [45] and rat neurons (concentration 60 µM) [46]. Likewise,
PFOA could both increase and decrease cell death. When present alone, it was found to
increase cell death in zebrafish liver cell line (0.5, 5, or 10 ppm) [47], rat mast cells (100
and 500 µM) [48], and human trophoblasts (0.1, 1, 10, 25, 100, or 250µM) [49], while it
decreased cell death in the mixture with other PFAS in U2OS-GR cells [44]. Furthermore,
phenotype data suggested that PFAS might decrease the inflammatory response when
examined individually. However, when PFOS is co-treated with another compound (e.g.,
3,4,5,3′,4′-pentachlorobiphenyl (a type of polychlorinated biphenyl), it increased the in-
flammatory response [50]. Similarly, the data have suggested that all the examined PFAS
affected the steroid biosynthetic process and the thyroid hormone metabolism. How-
ever, PFOS was found to be connected to both decreased and increased thyroid hormone
metabolic processes, resulting in altered secretion of thyroxine (T4) and triiodothyronine
(T3), while iodine deficiency was found to exacerbate the effects of some PFAS compounds.
This data was derived from a human cross-sectional study involving 1525 adults, which
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demonstrated that PFHxS and PFOS showed a negative correlation with free thyroxine
(fT4), while all four measured PFAS compounds (PFHxS, PFNA, PFOA, PFOS) were pos-
itively correlated with free triiodothyronine (fT3), the fT3/fT4 ratio, thyroid stimulating
hormone (TSH), and total triiodothyronine (TT3) in the group with combined high thyroid
peroxidase antibodies (TPOAb) levels and low iodine [51]. Other phenotype data in the
CTD was also derived from human biomonitoring studies, allowing the correlation of PFAS
environmental exposure levels with specific biological outcomes. One of these studies
analyzed serum and umbilical cord samples from 84 pregnant women to assess effects on
metabolic processes. PFNA had the lowest concentration linked to steroid biosynthesis in
serum (geometric mean: 0.90 ng/mL). Expectedly, fetal exposure to PFAS was generally
lower than adult exposure. For instance, geometric mean fetal concentration of PFOS
was 2.53 ng/mL, compared to 5.36 ng/mL in adults. Similar trends were seen with other
PFAS (PFDA: adult: 0.87 ng/mL, fetus: 0.37 ng/mL). However, despite reduced fetal
exposure, these compounds were still found to impact steroid biosynthesis [52]. Another
study showed that PFOS in maternal blood significantly affected fetal thyroid hormone
metabolism (300 mother-infant pairs, PFOS geometric mean concentration in mothers’
blood: 10.77 ng/mL) [53]. PFOA impacted the inflammatory response at median plasma
concentrations of 3.31 ng/mL [54], while this substance affected telomere maintenance in
fetal blood even at lower concentrations (0.8 ng/mL) [55].

3.4. Network Analysis

Following the construction of a network with the previously identified 40 shared genes,
co-expression—observed in 52% of these genes—indicated similar expression patterns,
suggesting functional relationships or involvement in shared biological processes. Co-
localization, observed in 18.23% of the genes, involves genes expressed in the same tissue
or proteins located in the same cellular area, indicating they may work together or have
related functions. In the centrality analysis, genes such as FABP1, EHHADH, APOA2,
PPARA, and PCK2 were identified as central hubs within a biological interaction network
due to their high degree and closeness centrality metrics, which means they have numerous
connections with other genes and are strategically positioned to rapidly influence the
activity of neighboring nodes. Additionally, FABP1, EHHADH, APOA2, PCK2, and PLIN2
had the highest betweenness, suggesting they are key connectors within the network,
facilitating communication between different parts of the system.

Hence, after considering centrality and hub gene analysis, EHHADH, APOA2, MBL2,
SULT2A1, FABP1, PPARA, PCK2, and PLIN2 were marked as the most significant within the
set of 40 common genes. EHHADH encodes an enzyme that is involved in beta-oxidation
of fatty acids [56]. APOA2 is a gene that encodes a protein crucial for lipid metabolism,
particularly in the transport and regulation of cholesterol levels [57,58]. MBL2 is the gene
responsible for producing the lectin protein that binds to mannose, which plays a role
in the immune response [59]. SULT2A1 encodes an enzyme which facilitates the sulfate
conjugation of dehydroepiandrosterone (DHEA) and various other steroids [60], while
FABP1 is the gene that encodes a protein bound to fatty acids and plays a key role in
the transport of fatty acids [57,61]. PPARA regulates lipid metabolism and fatty acid
oxidation [62], PCK2 is essential for gluconeogenesis and glucose production [63], and
PLIN2 modulates lipid storage and mobilization by coating lipid droplets [64].

Each of these genes contributes to various aspects of metabolism and organismal
function, which could potentially be disrupted by PFAS. These 8 key genes underwent
further examination in the CTD for specific interactions with PFAS compounds. All PFAS,
apart from PFNA, increased EHHADH mRNA expression. PFNA exhibited a variable
effect, meaning it could either increase or decrease EHHADH mRNA. All PFAS increased
PCK2 mRNA expression, and all PFAS increased PLIN2 mRNA expression, apart from
PFOS and PFOA, which could both increase and decrease it. PFOA, PFHxS, and PFNA
elevated APOA2 mRNA expression, whereas PFDA and PFUnDA showed variable effects,
causing both an increase and decrease. In the case of the other three hub genes, PFAS
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compounds elicited varied responses, with some increasing mRNA gene expression and
some decreasing it, while others displayed a dual effect. PFDA and PFUnDA demonstrated
opposing effects on certain genes compared to other PFAS, as these substances downregu-
lated some of the genes that other PFAS were found to upregulate (MBL2, SULT2A1, FABP1,
and PPARA).

The upregulated genes identified from the analysis of PFAS, specifically EHHADH,
APOA2, FABP1, PPARA, PCK2, and PLIN2, play crucial roles in lipid metabolism and home-
ostasis. ToppGene enrichment analysis for these genes is given in the Supplementary File
S1, Tables S4 and S5. There, according to the top 5 extracted molecular functions, biological
processes, pathways, and diseases, it can be concluded that associated molecular func-
tions, including lysophospholipid symporter activity and long-chain-3-hydroxyacyl-CoA
dehydrogenase activity, suggest a heightened capacity for lipid processing and transport,
aligning with the biological processes linked to lipid catabolism and cellular lipid degra-
dation. These genes are implicated in significant pathways, such as the PPAR signaling
pathway. The connections to diseases such as acute kidney tubular necrosis and chronic
kidney failure further highlight the potential pathophysiological implications of PFAS
exposure, indicating that dysregulation of lipid metabolism may contribute to the devel-
opment of conditions like fatty liver and steatohepatitis. The downregulated genes MBL2,
SULT2A1, FABP1, and PPARA, specifically in response to PFDA and PFUnDA exposure,
also reveal significant linkage with lipid metabolism. Their associated molecular functions,
such as glycochenodeoxycholate sulfotransferase activity and lipid binding, suggest an
impaired ability to process lipids effectively, reflected in biological processes related to fatty
acid catabolism and regulation. The involvement of these genes in critical pathways like
the lipid metabolism regulation by PPARalpha indicates potential metabolic dysfunction.
Furthermore, their links to diseases such as acute kidney tubular necrosis, chronic kidney
failure, cystic fibrosis, and Alzheimer’s disease emphasize the broader health implications
of PFAS exposure.

It is important to note that the metabolic context and specific PFAS involved play a crit-
ical role in determining whether a gene is upregulated or downregulated. The differences
may also reflect variations in exposure levels, duration of exposure, and tissue-specific
responses to the chemical stressors. Thus, while PFDA and PFUnDA lead to a down-
regulation of certain genes, other PFAS may enhance gene expression to promote lipid
metabolism, highlighting the complexity of PFAS effects on biological systems.

3.5. Critical Endpoints

The results of the current ADMET and toxicogenomic study indicate that exposure to
the investigated mixture of PFAS is associated with significant disruptions in biological
pathways, critical endpoints, and diseases related to lipid metabolism, liver toxicity, kidney
function, CNS toxicity, thyroid function disruption, and diabetes. These findings align
with in vivo studies that demonstrate the effects of PFAS exposure. As already mentioned,
our analysis revealed that lipid metabolism, particularly through nuclear receptors and
the PPAR signaling pathway, is significantly disrupted by PFAS exposure. The study
conducted by Elcombe et al. (2012) revealed that rats orally exposed to 20 or 100 ppm of
PFOS for 7 days exhibited several changes in liver parameters. These included an increase
in liver weight and the upregulation of specific enzymes such as acyl CoA oxidase, CYP4A,
CYP2B, and CYP3A, which was also indicated in our ADMET predictions. The activation
of PPAR and CAR/PXR pathways was identified as a key factor contributing to PFOS-
induced liver enlargement and the potential for hepatic tumor formation [65]. Similarly,
after treating male rats with PFOA for 5 days at varying doses, it was suggested that
higher doses of 5 and 20 mg/kg/day downregulated genes related to fatty acid and steroid
metabolism, indicating that longer-chain PFAS impair lipogenic pathways via inhibitory
interactions between PPARα, PPARβ, and PPARγ [66]. In their bioinformatic approach,
Yang et al. (2023) showed that the upregulation of hepatic acyl-CoA oxidase 1 (ACOX1)
in the PPARα-regulated peroxisomal β-oxidation pathway was the key event linked to
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disrupted hepatic lipid metabolism caused by PFOA and PFOS in humans, mice, and
rats. They later confirmed in vivo that administering PFOA and PFOS to mice at 1 mg/kg
body weight for 35 days resulted in ACOX1-mediated oxidative stress, mitochondrial
dysfunction, and lipid accumulation in hepatocytes [67]. These findings correlate with
our MCODE analysis, which identified the involvement of lipid metabolism pathways
and PPAR signaling as particularly important in PFAS mixture toxicity. Additionally, a
study by Li et al. (2021) found that PFOS exposure in C57BL/6 mice at 10 mg PFOS/kg
b.w./day by oral gavage for 14 days dysregulated proteins involved in lipid and xenobiotic
metabolism, leading to liver morphological damage. The upregulation of ceramide and
lysophosphatidylcholine (LPC), which induced liver cell apoptosis, further aligns with
our findings of cell deaths-related gene interactions and phenotype [68]. Another study
by Li et al. (2021) observed PFOS accumulation in the liver, lungs, kidneys, spleen, heart,
and brain of BALB/c mice after exposure to 100 µg/kg b.w./day and 1000 µg/kg b.w./day
for 2 months, causing damage in the liver, affecting glycerophospholipid metabolism and
sphingolipid metabolism [69]. These in vivo studies support the hypothesis that PFAS
exposure leads to disruptions in lipid metabolism, contributing to the development of
liver diseases.

Next, our toxicogenomic analysis identified nephrotoxicity as another key endpoint.
This aligns with the results from in vivo investigations, including the one carried out
by Owumi et al. (2021), which observed elevated levels of renal biomarkers (urea and
creatinine) in rats orally given 5 mg/kg b.w./day of PFOA for a duration of 28 days [70].
Furthermore, Rashid et al. (2020) observed renal damage in mice exposed to 1, 5, 10, or
20 mg/kg b.w./day of PFOA by oral gavage for 10 days, including increased expression of
fibrotic markers (TGF-β and α-SMA) and hypermethylation of Rasal1, an early indicator of
fibroblast activation [71]. Furthermore, in a study on PFOA exposure during pregnancy,
20 mice were gavaged 3.5 mg/kg of PFOA throughout the pregnancy period, which
caused significant changes in kidney weight, histopathological alterations, and markers of
oxidative stress. Transcriptomic analysis showed that PFOA disrupts kidney function in
offspring by altering gene expression related to the circadian rhythm, the PPAR signaling
pathway, and biosynthesis of unsaturated fatty acid [72].

Moreover, our study identified the potential for CNS toxicity, with evidence suggesting
that PFAS may penetrate the blood–brain barrier and disrupt neuronal processes. Cui et al.
(2009) reported that rats treated to 146 µg/b.w. of PFOS for 28 days had ten times higher
brain concentrations than those exposed to lower doses, despite the higher dosage being just
four times that of the lower group. The authors suggested that this phenomenon might be
attributable to increased permeability of the blood–brain barrier at higher dosages, resulting
in a larger accumulation of PFOS in the brain [73]. Sim and Lee (2022) documented long-
term developmental neurotoxicity in mice exposed to 6.1 and 9.1 mg/kg b.w. PFHxS by
oral gavage during neonatal exposure from postnatal day 10. This exposure led to memory
impairment and the downregulation of neuronal proteins like GAP-43 and CaMKII [74].
These proteins are critical for synaptic plasticity and neuronal growth [75], and their
downregulation aligns with our in silico findings of CNS toxicity.

Our findings also suggest that thyroid hormone metabolism may be affected by PFAS
exposure, with potential implications for thyroid function. This is consistent with the study
by Ramhøj et al. (2020), which found a dose-dependent decrease in thyroid hormone levels
in rats exposed to 0.05, 5, or 25 mg/kg b.w./day PFHxS by oral gavage from gestation
day 7 through to postnatal day 22 [76]. Additionally, after exposing adult male rats to
3 mg PFOS/kg/day for 7 days, decreased levels of T4 and T3 were observed [77]. The
disruption of thyroid hormone levels in vivo, together with the extracted phenotype data,
provides strong support for the pathway dysregulation observed in our gene set analysis,
supporting the link between PFAS exposure and endocrine disruption.

A study investigated the effects of PFOS on pancreatic β-cell functions in mice orally
treated with 1 and 5 µg/kg b.w./day for 21 days, revealing that PFOS treatment signif-
icantly increased liver triglycerides while decreasing glycogen levels, impaired insulin
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signaling pathways, reduced insulin and key transcription factor levels in pancreatic islets,
and inhibited glucose-stimulated insulin secretion, thereby highlighting the molecular
mechanisms by which PFOS may contribute to metabolic diseases [78], including diabetes,
which was marked as another critical endpoint in our in silico investigation. Additionally,
murine study reported elevated blood glucose levels and lower glycogen in the liver af-
ter exposure to 5 mg/kg b.w./day PFOA for 28 days. These authors reported increased
phosphorylation of AKT and GSK3β after insulin stimulation in the livers of mice exposed
to PFOA [79]. During mating, gestation, lactation, and up to 30 weeks of age, mice ex-
posed to 3 µg/L of PFUnDA showed increased pancreatic insulitis, more apoptotic cells
in pancreatic islets before insulitis, decreased peritoneal macrophage phagocytosis, fewer
tissue-resident macrophages in pancreatic islets before insulitis, and changed cytokine
secretion in activated splenocytes following exposure [80].

3.6. Limitations

Providing highly valuable insights into the effects of the tested PFAS mixture, our
study highlights the effectiveness of freely accessible web-based tools for ADMET and toxi-
cogenomic data analysis. This study demonstrates the value of toxicogenomic data mining
for (i) developing hypotheses about links between chemical exposure and human dis-
eases; (ii) pinpointing chemical effects on specific molecular targets and cellular pathways;
(iii) predicting the combined toxicological effects of multiple substances; and (iv) extracting
insights that can guide further in vitro and in vivo research. Additionally, ADMET analysis
has proven useful in evaluating compounds’ pharmacokinetic and toxicity profiles, helping
to predict absorption, distribution, metabolism, excretion, and potential toxicity.

However, it also reveals certain limitations associated with platforms such as the
presented ADMET tools, CTD, ToppGene Suite, GeneMANIA, etc. These tools enhance
traditional toxicity testing approaches by depending on the quality and thoroughness of
online resources for their annotations. Challenges arise from issues such as incomplete
interactions and the risk of false positives [81]. admetSAR and ADMETlab, while valuable
tools for predicting ADMET properties, have several limitations. A key limitation of such
tools is the quality and availability of data, as the accuracy of these models relies on high-
quality experimental data for training [24]. The reliability of ADMET profiling predictions
also relies on modeling tools utilized in model development. Consequently, issues such
as experimental errors in the dataset, low-quality models, and the concept of applicability
domain raise significant concerns about prediction accuracy [82]. The multifaceted nature
of chemical exposure must also be considered; various factors—including dose, route of
administration, exposure duration, metabolic processes, developmental stages, and a range
of environmental conditions—significantly influence toxicity outcomes [83]. Interactions
identified in the CTD can vary widely due to curation conditions and study design. Our
results show that while some genes or proteins consistently respond to specific substances,
others display both activation and inhibition, likely due to non-monotonic dose-response
relationships, as often observed with endocrine disruptors [84]. In conclusion, while the in
silico analysis described in our study provides important insights, additional laboratory
studies are essential to investigate how chemical impacts on the identified gene sets can
vary under different external conditions, such as dietary influences or methods of exposure.

4. Materials and Methods

In this study, a range of publicly available databases and software tools were used for
in silico analysis. These included admetSAR (2.0) (https://lmmd.ecust.edu.cn/admetsar2;
accessed on 11 August 2024), ADMETlab (2.0) (https://admetlab3.scbdd.com; accessed
on 11 August 2024), Comparative Toxicogenomics Database (CTD; https://ctdbase.org;
accessed on 15 August 2024), GeneMANIA (https://genemania.org; accessed on 15 August
2024 and 5 November 2024), CytoHubba (https://apps.cytoscape.org/apps/cytohubba;
accessed on 15 August 2024) and CytoNCA (https://apps.cytoscape.org/apps/cytonca)
Cytoscape (3.10.3) plug-ins (accessed on 15 August and 5 November 2024), ToppGene Suite
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portal (https://toppgene.cchmc.org; accessed on 16 August and 5 November 2024), and
Metascape (3.5) (https://metascape.org; accessed on 16 August 2024). All data from these
resources were downloaded in August and November 2024, ensuring the most up-to-date
information was used. (These servers may occasionally be unavailable due to scheduled
maintenance, upgrades, or data updates).

4.1. ADMET Properties: AdmetSAR and ADMETlab

To cross-validate the results and ensure a more comprehensive assessment, two AD-
MET tools were applied, each offering unique strengths and perspectives on the com-
pound’s absorption, distribution, metabolism, excretion, and toxicity. AdmetSAR is a
user-friendly tool for searching ADMET properties based on the structure of a specific com-
pound. AdmetSAR contains a vast amount of information collected from various sources,
enabling easy exploration of chemical profiles. This tool focuses on in silico prediction
using computational models, facilitating the identification and assessment of compound
safety [85]. Similarly, ADMETlab is an advanced platform focusing on evaluating ADMET
chemicals’ properties. In its latest iteration, ADMETlab 3.0, it encompasses 119 ADMET
endpoints, including 21 physicochemical, 20 medicinal chemistry, 9 absorption, 9 distribu-
tion, 14 metabolism, 2 excretion, 36 toxicity properties, and 8 toxicophore rules, offering a
comprehensive array of assessments essential for informed decision-making [86].

4.2. Toxicogenomic Analysis
4.2.1. Comparative Toxicogenomic Database

Comparative Toxicogenomic Database (CTD) is a public resource that evaluates links
between chemicals, genes, and diseases, offering data on gene ontology, chemical expo-
sure, phenotypes, etc. [87,88]. Regular updates are conducted to maintain the reliability,
consistency, and accessibility of the information encompassed by this database [88].

In the CTD, data are collected from in vitro, animal, and human studies. However,
because the CTD prioritizes environmental chemicals and their impact on human health,
only those genes and proteins that exist in human body are included in the database [89].
CTD curators input chemical–gene interactions and disease associations into the CTD
following guidelines set forth by a lead curator [90]. Before the curated data are publicly
released on the CTD website, they are uploaded into a database for quality control assess-
ment. Furthermore, quality control is enhanced by employing controlled vocabularies
and ontologies to ensure consistency in the curated interactions [90,91]. As a result, the
CTD utilizes official gene symbols and names from the National Center for Biotechnology
Information’s (NCBI) Entrez-Gene database, while its disease vocabulary incorporates
terms from MeSH (Medical Subject Headings) and OMIM (Online Mendelian Inheritance
in Man) [83,88].

In this study, the CTD database was utilized to identify genes associated with exposure
to PFAS substances. We used all the available data in the CTD, from both human and
animal studies, as the animal studies contribute valuable insights into gene interactions
and toxicological responses. We only collected curated data for our analysis, ensuring that
all the information used was directly derived from peer-reviewed experimental studies
without inferred interactions. As previously mentioned, EFSA identified seven of the most
significant PFAS chemicals in the environment in terms of ubiquity and their impact on
human health, which include PFOS, PFOA, PFHxS, PFNA, PFDA, PFUnDA, and PFHpS.
Each of these chemicals was successfully located in the CTD database, and corresponding
genes linked to these substances were identified. For the identification of the genes common
to all seven examined PFAS substances, the MyVenn CTD tool (https://ctdbase.org/
tools/myVenn.go; accessed on 15 August 2024) was utilized. Then, to obtain the mutual
phenotypes associated with the investigated PFAS, VennViewer (https://ctdbase.org/tools/
vennViewer.go; accessed on 15 August 2024) and MyVenn tools were used. Afterwards,
data about each mutual phenotype were extracted for every PFAS, individually, from the
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phenotype data cards in CTD. Relevant dose/concentration levels were acquired from the
original published literature available in CTD for each extracted phenotype interaction.

4.2.2. ToppGene Suite Portal

The ToppGene Suite portal assesses gene functions. Its function, ToppFun, accessible
at https://toppgene.cchmc.org/enrichment.jsp (accessed on 16 August and 5 November
2024), allows searching gene ontology, molecular pathways, phenotypes, microRNA interac-
tions, and more [92]. This function was used to explore the potential molecular mechanisms
associated with the combined effects of PFAS mixtures. A set of 40 common genes was
used for the analysis, examining their association with biological processes, molecular
functions, molecular pathways, and diseases. The significance level was determined based
on a p-value of 0.05, with false discovery rate (FDR) correction.

4.2.3. Metascape

Metascape(3.5) (https://metascape.org; accessed on 16 August 2024) is an internet portal
and resource for the annotation and analysis of input gene sets [93], while the Molecular
Complex Detection (MCODE) algorithm is used within Metascape to identify densely connected
parts of the gene network, known as gene clusters [94]. In this research, MCODE analysis
identified clusters among the 40 input genes. MCODE identifies groups of genes that physically
interact with at least one other member of the input set. When this network includes 3 to
500 proteins, MCODE reveals highly interconnected elements of the network [93].

4.2.4. Network Analysis: GeneMANIA, CytoNCA and CytoHubba

The online server GeneMANIA examines the interactions between the genes and enhances
the input gene set by adding the most relevant connected genes [95]. In our study, this tool
was used to explore interactions among the identified 40 mutual genes, focusing on the human
organism (H. sapiens). The GeneMANIA tool can identify different types of gene interactions.
Physical interactions refer to protein–protein interactions, where two gene products are linked
based on evidence from protein studies. Co-expression relies on gene expression data, linking
two genes if their expression patterns show similarity under various conditions. Genetic
interactions denote functional connections between genes, often observed when a change
in one gene affects the effect of another gene. Shared protein domains indicate that gene
products share common protein domains. Co-localization denotes genes expressed in the
same tissue or proteins localized at the same site within the cell. Interactions within molecular
pathways indicate that two gene protein products participate in the same biochemical reaction
within the molecular pathway [96]. Centrality analysis was conducted on the constructed
GeneMania network to confirm the identified hub genes and identify additional key genes
based on their connectivity and influence within the network. The network was analyzed by
CytoNCA, a Cytoscape plug-in designed to calculate various centrality metrics such as degree,
betweenness, and closeness. Degree centrality indicates the number of direct connections a
gene has, betweenness centrality highlights genes that act as bridges within the network, and
closeness centrality shows how quickly a gene can connect to others, thus identifying genes that
are central to the network’s structure and communication [97]. Together, these metrics allowed
for the identification of genes that may play central roles in the studied biological processes. The
CytoHubba Cytoscape (3.10.3) tool was later employed to extract the top 5 genes within the
constructed GeneMANIA network. For each PFAS chemical examined in the study, the relevant
chemical–hub gene interaction data were extracted from the CTD. These interactions include
various types of effects that chemicals can have on gene expression/mRNA expression.

A flowchart illustrating the steps involved in the toxicogenomic analysis workflow is
presented in Figure 3.
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5. Conclusions

The conducted analyses indicated that PFAS exhibit ADME properties that may influ-
ence their potential toxicity. These substances are potentially capable of intestinal absorp-
tion, passing through the blood–brain barrier, metabolic interferences, binding to estrogen
receptors, and prolonged presence in the body, with implications for nephrotoxicity, CNS
toxicity, eye and skin irritation, skin sensitization, and carcinogenicity. Forty genes common
to all the investigated PFAS were identified, while EHHADH, APOA2, MBL2, SULT2A1,
FABP1, PPARA, PCK2, and PLIN2 were singled out as the most significant within this set.
Each of these genes plays a different role in the organism, from beta-oxidation of fatty
acids to cholesterol regulation, gluconeogenesis, and participation in the immune response.
Phenotype data has shown that PFAS compounds impact cell death, growth, inflammation,
steroid biosynthesis, and thyroid hormone metabolism, with effects varying based on the
species, cell type, concentration, and co-exposure. Data from human biomonitoring studies
has shown that, although fetal PFAS exposure was lower than in adults, these substances
might still significantly influence metabolic processes, highlighting the need to monitor
both adult and fetal exposure. The gene ontology and molecular pathway analysis of the
shared gene set revealed the connections between PFAS exposure and processes mostly
related to the disruption of lipid metabolism. Nuclear receptors and the PPAR signaling
pathway, which are marked as important in MCODE analysis, are closely linked to these
processes. These preliminary results strongly suggest the need for further in vitro and
in vivo studies to confirm these interactions and their implications for human health, pro-
viding valuable direction for future research. Furthermore, the in-depth in silico analysis
demonstrated in this study offers a valuable framework for gaining deeper insights into
the molecular mechanisms behind the adverse effects induced not only by PFAS but also
other chemical mixtures.
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