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Abstract: Mycobacterium tuberculosis (M. tb) is a remarkably versatile pathogen that possesses a unique
ability to counteract the host’s defence mechanisms to control the infection. Several mycobacterial
protein kinases and phosphatases were found to play a key role in impeding phagosome maturation
in macrophages and accordingly blocking the phagosome–lysosome fusion, therefore allowing
the bacteria to survive. During phagocytosis, both M. tb and the host’s phagocytic cells develop
mechanisms to fight each other, resulting in pathogen elimination or survival. In this respect, M. tb
uses a phosphorylation-based signal transduction mechanism, whereby it senses extracellular signals
from the host and initiates the appropriate adaptation responses. Indeed, the ability of M. tb to exist in
different states in the host (persistent quiescent state or actively replicating mode) is mainly mediated
through protein phosphorylation/dephosphorylation signalling. The M. tb regulatory and defensive
responses coordinate different aspects of the bacilli’s physiology, for instance, cell wall components,
metabolic activity, virulence, and growth. Herein, we will discuss the implication of M. tb kinases and
phosphatases in hijacking the host immune system, perpetuating the infection. In addition, the role of
PknG, MPtpA, MPtpB, and SapM inhibitors in resetting the host immune system will be highlighted.

Keywords: mycobacterial kinases; mycobacterial phosphatases; host immune response; mycobacterial
kinase inhibitor; mycobacterial phosphatase inhibitor; PknG; MPtpA; MPtpB; SapM

1. Introduction

Signal transduction is a cellular mechanism that is critical for adaptation of bacterial
pathogens to extracellular environmental changes [1]. It involves sensing a signal or input
via a sensor protein, followed by generating an intracellular response or output via a trans-
ducer protein [1]. This process is governed by bacterial protein kinases and phosphatases
that mediate protein phosphorylation and dephosphorylation, respectively [2]. In bacte-
ria, the stimulus–response adjusting mechanism is mainly regulated by a two-component
system, comprising histidine kinase sensors and their corresponding response regulators
(transducers) [2]. In this regard, a histidine kinase is stimulated by a particular intracellular or
environmental signal, which results in autophosphorylating a key histidine residue [3]. This
phosphorylated histidine then serves as a substrate to the cognate response regulator, wherein
an aspartate residue is autophosphorylated. In response to this phosphorylation cascade, the
response regulators, which are mainly DNA binding proteins, trigger the expression of certain
genes, bringing forth the requisite response [3]. In eukaryotes, the backbone of the signal
transduction network consists of serine, threonine, and tyrosine (Ser/Thr/Tyr) protein kinases
and their coupled phosphatases [2]. The histidine/aspartate (His/Asp) phosphorylation
(two-component system) was previously thought to be exclusive to prokaryotes, whereas the
Ser/Thr/Tyr phosphorylation was considered a eukaryotic trait. However, both systems were
detected in numerous prokaryotic and eukaryotic cells [3–5].

In M. tb, the pathogenic success mostly relies on the ability of the mycobacteria to sense
and adjust to the complex and dynamic environmental cues of the host [3]. Accordingly,
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the M. tb possesses a wide repertoire of an advanced intracellular signal transduction net-
work encompassing (1) eleven “eukaryotic-like” serine/threonine protein kinases (STPKs);
(2) twelve classic prokaryotic signalling machinery (two-component system protein ki-
nases); (3) a single protein tyrosine kinase (PtkA); (4) two protein tyrosine phosphatases
(MPtps); and (5) one Ser/Thr phosphatase (PstP) [3–6]. The presence of Ser/Thr/Tyr
protein kinases and a His/Asp two-component system enables the mycobacterium to
fine-tune its response, depending on the cellular environment. Indeed, M. tb employs the
His/Asp phosphorylation system when a rapid short-term response is required, whilst
the Ser/Thr/Tyr phosphorylation comes into play when a stable long-term response is
mandatory [3]. The M. tb exploitation of the two phosphorylation systems allows for its
survival and adaption in complex environments. In fact, the synthetic process of mycolic
acids (MAs), which are located in the M. tb outer membrane and serve as a safeguard to
protect the tubercle bacilli against outside threats, was found to be regulated by protein
kinases and phosphatases [7]. In the review article published in 2019, we summarised
the role of protein phosphorylation/dephosphorylation in modulating the activity of the
enzymes involved in MA biosynthetic machinery in M. tb [7]. The current review will
cover the crucial role of several M. tb kinases and phosphatases in overpowering the host
immune system, leading to mycobacterial survival. Additionally, the notion of restoring
the host immunity capacity to kill the mycobacteria using inhibitors of these kinases and
phosphatases will be discussed.

2. The Critical Role of Macrophages in Controlling Infection

Macrophages constitute the immune system’s first-line of defence against microbial
invaders in the human body and are the connecting link between innate and adaptive immu-
nity [8]. Pathogen invasion sets off a series of macrophages’ signalling cascades, rendering a
hostile environment that undermines the microbial pathogenesis. Indeed, macrophages or-
chestrate a panoply of innate immune events, such as phagocytosis, phagosome–lysosome
fusion, and autophagy, to ensure the pathogen clearance from the body [8]. However, in
certain cases, macrophages become overpowered by the invading microbes, thereby failing
to eliminate them. As a result, these pathogenic intruders manage to form a safe niche
within the host, which constitutes a ticking time bomb that can ultimately transform into a
full-blown disease. Phagocytosis is an essential part of the macrophage killing machinery,
whereby microorganisms are captured, engulfed, and destroyed [9,10]. The phagocytic pro-
cess can generally be divided into the following four main phases: (1) microbial recognition;
(2) phagosome formation and maturation; (3) phagosome–lysosome fusion (phagolysosome
formation); and (4) pathogen degradation [9].

Phagocytosis is initiated upon recognition of distinctive molecular patterns associated
with pathogens [9,10]. This recognition is accomplished via several specialised receptors
on the cell surface of phagocytes, which in turn trigger signalling cascades that prompt
phagocytosis. In this respect, after receptor engagement, the plasma membrane walls off the
microorganism via surrounding it, followed by membrane sealing, forming a vacuole where
the microbe is internalised [9,10] (Figure 1). This phagocytic vesicle (early phagosome), con-
fining the microorganism, subsequently changes its membrane composition and contents
in a process called phagosome maturation, through fusion with endosomes and ultimately
lysosomes. A “kiss and run” dynamic process between early phagosomes and endocytic
vesicles take place, wherein sequential events of fusion and fission lead to the formation of
late phagosomes and recycling of endosomes [10,11]. In fact, early phagosomes procure the
necessary proteins required for phagosomal maturation when they fuse with the endocytic
vesicles (such as early endosomes, late endosomes, and lysosomes), followed by splitting
and recycling of the endocytic organelles [12]. Early phagosomes are characterised by the
presence of Rab5, which is a small membrane-based guanosine triphosphatase (GTPase).
Rab5 regulates the fusion between early phagosomes and endosomes via recruiting early
endosome antigen 1 (EEA1) [10]. It also recruits human vacuolar protein sorting 34 (Vps34),
which is a class III phosphoinositide 3-kinase (PI3K) that is responsible for the generation
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of phosphatidylinositol 3-phosphate (PI3P). This lipid prompts phagosome maturation via
recruiting other effector proteins, such as Rab7, which is a small GTPase, signifying late
phagosomes [10]. In fact, Rab5 is considered the key marker of early phagosome, whereas
in mature late phagosomes, Rab7 takes over, mediating the fusion between phagosomes
and lysosomes and bringing about the dissociation of Rab5 [9,10,13].
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Figure 1. Overview of the phagocytosis of microbial invaders and phagosome maturation, showing
M. tb secreted kinases and phosphatases interfering with the developmental process of phagosomes.
Generally, once engulfed, the pathogen remains confined within early phagosomes, which then
undergo a maturation process that involves fusion with endosomes and lysosomes to eventually
turn into phagolysosomes, the definitive pathogenicidal vacuoles, followed by fission and recy-
cling of the endocytic vesicles. Early phagosomes are marked by the presence of EEA1, PI3P, and
Rab5, which contribute to the phagosome–endosome fusion. Upon the procession of phagosomal
maturation, V-ATPase accumulate on the phagosomal membrane, lowering the pH of phagosomal
lumen. The acidic nature of phagolysosomes constitutes a harsh environment for the microbes
and is a prerequisite for the activation of several hydrolytic enzymes. Subsequently, the antigen
is degraded and presented, alerting the adaptive immune system. M. tb-secreted virulence factors
PknG, MPtpA, MPtpB, and SapM impair the phagolysosome fusion, allowing the bacteria to survive.
MPtpA impedes phagosome acidification via hydrolysing VPS33B and inhibiting the trafficking of
V-ATPase to late phagosomes. MPtpB hydrolyses PI3P and PI(3,5)P2 that mediate the transition to
late phagosomes and phagolysosome, respectively. Similar to MPtpB, SapM blocks the preceding
transition events via hydrolysing PI(4,5)P2, PI3P and binding to Rab7.

When the late phagosomes fuse with lysosomes, they evolve into microbicidal vacuoles
called phagolysosomes. Importantly, vacuolar-type adenosine triphosphatase (V-ATPase
or V-type H+–ATPases) gradually accumulates on the phagosomal membrane upon mat-
uration [10]. Of note, V-ATPases team up with the human vacuolar protein sorting 33B
(VPS33B, Figure 1), which is a crucial component of the phagocytosis process (vide in-
fra) [14,15]. V-ATPases use cytosolic ATP as an energy source to translocate protons
(H+) into the phagosomal lumen, leading to progressive acidification of phagosomes, in
which the phagosomal pH gradually drops from 6.5 (early phagosomes) to 4.5 (phagolyso-
somes) [10,14]. Sturgill-Koszycki and collaborators demonstrated that the lack of acidifica-
tion in mycobacterial-containing phagosomes could correlate to the exclusion of V-ATPase
from the vesicles [16].

A number of sophisticated mechanisms directed towards degrading and eliminating
the pathogen take place in phagolysosomes. Indeed, the phagosome–lysosome fusion
results in membrane remodelling (alterations in the characteristics of the phagosomal
membrane) and the acquisition of more V-ATPases, in addition to lysosomal hydrolases
(proteolytic enzymes), such as proteases, cathepsins, lipases, and lysosomes [10,14]. The
low luminal pH of the phagolysosomes can be directly toxic to the microorganism, in
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addition to being optimal for the hydrolytic enzymes to carry out the degradation process
of the phagocytosed pathogen [9,10]. Furthermore, other microbicidal elements come into
the picture, including scavenger molecules and reactive oxygen species. Collectively, the
oxidative and degradative milieus of the phagolysosomes render the interior environment
inhospitable to the invading microorganisms, which ultimately leads to pathogen degra-
dation [10]. The protein-based microbial antigens resulting from this process are then
presented to the T-lymphocytes, whereupon the adaptive immune system gets activated [9].
Therefore, the adequate maturation of phagosomes into phagolysosomes (innate immunity)
is of paramount importance for the degradation of the pathogen and presenting the de-
graded antigen to the adaptive immunity, which will subsequently result in eliminating the
pathogen. In general, this phagocytic process is efficient in removing the invading microor-
ganisms and maintaining homeostasis. However, several microbes, including M. tb, have
developed tactics to prevent phagosomal ripening and thwart the phagosome–lysosome
fusion [10]. Accordingly, these microbes survive in the host by escaping the macrophage
killing schemes, perpetuating the infection.

3. Role of M. tb Kinases and Phosphatases in Warding off Phagosome Maturation and
Preventing Phagosome–Lysosome Fusion

When the tubercle bacilli are inhaled and enter the lungs, they are faced with various
subpopulations of phagocytic cells, such as dendritic cells and alveolar macrophages [9].
After the bacilli are phagocytosed, M. tb blocks the formation of the final antimicrobial
organelles (phagolysosome) by hijacking the killing pathways of the macrophages, which
precludes the elimination of the bacilli. In fact, M. tb turns the table on the host and uses the
immune cells to shield itself and form a safe harbour where it can survive. Indeed, M. tb
has developed several strategies to subvert the immune response and prevent phagosome
maturation from proceeding in a normal way, thereby inducing chronic infection, and
persisting in a latency mode [9,17]. The ability of M. tb to survive in the macrophages
via blocking the phagosome–lysosome fusion was first published by Armstrong and Hart
nearly 50 years ago [18]. They demonstrated that nearly 70% of phagosomes containing
M. tb failed to fuse with lysosomes. Since then, numerous virulence factors, produced
by M. tb, were found to hamper phagosome maturation and arrest the formation of the
ultimate killing organelles [14,19]. In particular, the mycobacterial protein kinase G (PknG)
was found to be implicated in the prevention of phagosome–lysosome fusion [20]. In addi-
tion, three secreted M. tb phosphatases, the mycobacterial protein tyrosine phosphatases
A and B (MPtpA, MPtpB), in addition to the secreted acid phosphatase M (SapM), co-
ordinately interfere with the stages of development of phagosomes, thereby preventing
pathogen destruction [21]. Taken together, the M. tb-mediated manipulation of host vesic-
ular trafficking processes leads to a malfunction in the process of antigen presentation,
causing an ineffective activation of cell populations that contributes to keeping the infection
at bay [22].

3.1. PknG

Prokaryotes typically use the His/Asp two-component system to regulate their sig-
nal transduction; however, when the M. tb genome was sequenced, 11 members of the
“eukaryotic-like” Ser/Thr kinase family were also discovered, namely PknA, PknB, and
PknD–PknL [23]. Among these STPKs, three kinases, PknA, PknB, and PknG, were found
to be implicated in the mycobacterial intracellular growth and survival. Both PknA and
PknB regulate the mycobacterial cell wall synthesis, cell division-associated morphological
changes, and cell growth [23]. On the other hand, to date, PknG is the only M. tb STPK that
has been reported to modulate the host’s immune system, as a result of which it enhances
the M. tb survival in macrophages [3]. PknG is released by M. tb into the lumen and cytosol
of phagosomes and is considered a key player in the prevention of phagosome–lysosome
fusion [24]. Therefore, PknG expression is believed to be correlated to the pathogenicity
of mycobacteria [20,25]. Since phosphorylation is a key mechanism that is required for
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regulating vesicular trafficking, it is likely that PknG phosphorylates a host protein that
is involved in the phagosome–lysosome fusion, thereby inhibiting this crucial step [19].
However, after being secreted from M. tb in macrophages, the mechanism by which PknG
is translocated to the cytosol and its exact action on the host’s substrates and vesicular
trafficking machinery are yet to be deciphered [19]. Several reports have established the
importance of PknG for mycobacteria to avoid lysosomal delivery in both macrophages
and dendritic cells [20,25,26]. Inactivation of PknG by chemical inhibition or gene dis-
ruption resulted in a rapid lysosomal delivery and mycobacterial degradation in infected
macrophages [20]. Similarly, when dendritic cells were infected with a PknG-deleted
(∆pknG) strain, the mycobacterial mutants were largely transferred to lysosomes [26]. In
fact, in this study, both macrophages and dendritic cells infected with wild-type mycobac-
teria remained mainly in non-lysosomal phagosomes. Surprisingly, Majlessi et al. showed
that the degree of intracellular trafficking of mycobacteria to lysosomes does not impact the
extent to which T-cell responses are generated against mycobacterial antigens [26]. They
conceded that their findings are in marked contrast with other studies that have established
that lysosomal delivery, in both dendritic cells and macrophages, is a prerequisite for the
processing and presentation of antigens. Indeed, they reported that the wild-type my-
cobacteria that resisted lysosomal transfer in macrophages and dendritic cells gave rise to
efficient antigen presentation and T-cell responses identical to the PknG-deficient mycobac-
terial mutants that were instantly shuttled to lysosomes [26]. Interestingly, while PknG was
found to be essential for the survival of M. tb after the bacterium is phagocytosed inside the
macrophage, in in vitro cultures both the PknG-deleted mycobacteria and the wild-type
counterpart survived equally [27]. Other reports unravelled more functional facets of
PknG, showing that, in macrophages, PknG promotes latency-like conditions [28,29]. In
this respect, PknG mediates persistence via modulating cellular metabolism, resulting in
efficient metabolic adaptation under stressful environments, such as hypoxia. In other
words, PknG functions as a “stress regulator” by combating different stressful conditions
experienced by the mycobacteria. In addition, PknG was shown to play a role in abetting
drug tolerance [28]. Indeed, PknG was shown to be a key player in the intrinsic resistance of
mycobacteria to several antibiotics [30]. Hence, in addition to inhibiting the mycobacterial
survival in macrophages, PknG inactivation may also increase the susceptibility of the
bacilli to antibiotics [30]. In another study, deletion of the pknG gene in M. tb resulted
in 40–60% less persisters. In addition, the absence of the pknG gene led to a 5–15-fold
diminished survival of M. tb in a chronically infected animal model of TB treated with
anti-TB drugs [31]. Interestingly, in a murine model of latent TB, the ability of M. tb to
revive after antibiotic treatment was extremely diminished in comparison to wild-type and
complemented strains [31].

3.2. M. tb-Secreted Phosphatases
3.2.1. MPtpA

Among the virulence factors secreted by M. tb into the cytoplasm of host macrophages
are three phosphatases, denominated MPtpA, MPtpB, and SapM [15]. These phosphatases
are vital for altering the host’s signalling pathways and damping down the immune response,
leading to optimal bacillary survival within the host and ultimately pathogenesis. Research
efforts from different laboratories led to major leaps in the current understanding of the mech-
anisms by which these phosphatases contribute to evading immune detection of M. tb [15].
Like PknG, these M. tb-secreted phosphatases are only required for the in vivo growth of
the bacteria. Unlike the traditional essential in vitro M. tb targets, which have been the main
focus of anti-TB drug discovery to date, these phosphatases are dispensable for the in vitro
growth of mycobacteria [15]. However, targeting these phosphatases could provide a leeway
to circumvent the drug delivery issue correlated with the thick hydrophobic cell wall of
M. tb [22]. In addition, inhibiting their immune-related modulating activity could lead to
resetting the macrophage’s signalling and restoring the innate host’s defence mechanisms.
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MPtpA was first identified when the genome of the H37Rv M. tb strain was sequenced,
revealing its homology to eukaryotic protein tyrosine phosphatases [15]. M. tb secretes
MPtpA into the cytosol of host’s macrophages, disrupting key elements involved in phago-
some maturation [14]. In fact, the mptpA gene was found to be overexpressed upon the
entry of M. tb into host macrophages [32]. The cognate substrate of MPtpA was found
to be VPS33B (Figure 1), a key player in the process of phagocytosis, functioning as a
regulator of vesicle trafficking and membrane fusion [14,15]. Indeed, MPtpA and VPS33B
were found to be colocalised in M. tb-infected macrophages [33]. VPS33B is a protein
kinase that is ubiquitously expressed in eukaryotic cells and belongs to class C vesicular
sorting protein (VPS-C) complex [14,15]. Dephosphorylating VPS33B by MPtpA inacti-
vates the host protein, resulting in the arrest of phagosome–lysosome fusion [33]. In a
subsequent study, Wong et al. identified another key MPtpA target that is partnered with
VPS33B, namely V-ATPase [34]. Indeed, the lack of phagosome acidification was found
to be directly attributed to MPtpA due to its binding to the H subunit of the V-ATPase
machinery that drives the low pH of phagosomal lumen. In this regard, they constructed
a two-step process model indicating that MPtpA interaction with the V-ATPase machin-
ery is a precondition for the dephosphorylation of VPS33B within the macrophages [34].
They proposed that, first, the M. tb-secreted MPtpA binds to V-ATPase, resulting in an
initial disruption in membrane fusion, while being placed in close proximity to its catalytic
substrate VPS33B. Thereafter, MPtpA dephosphorylates VPS33B, leading to inactivating
the entire membrane fusion/phagosome maturation machinery and its downstream effec-
tors [34]. Consequently, the concerted abolition of the activity of V-ATPase and VPS33B
by MPtpA prevents V-ATPase trafficking to M. tb-infected phagosomes, perpetuating
the infection in host macrophages. Indeed, genetic deletion of mptpA in M. tb (∆mptpA)
impaired the bacillary survival within human THP-1 infected macrophages, in which
phagosomes harbouring ∆mptpA showed enhanced lysosomal fusion, compared to the
parental strain [33]. In addition, macrophages transfected with the ∆mptpA knockout strain
failed to maintain unacidified phagosomes; therefore, the mycobacteria were continually
cleared from macrophages [34].

3.2.2. MPtpB

In contrast to MPtpA, M. tb’s other secreted protein tyrosine phosphatase, namely
MPtpB, does not have a human ortholog, with only 6% similarity with one human PTP [15].
Interestingly, Koul et al. revealed that the mptpA gene is present in different mycobacterial
species, including M. tb complex and Mycobacterium smegmatis (M. smegmatis), while the
mptpB gene is exclusively present in members of the M. tb complex, suggesting MPtpB
plays a unique role in the biological processes restricted to the M. tb complex [35]. Like
MPtpA, MPtpB is released into the cytoplasm of M. tb-infected macrophages [36]. Beresford
et al. have demonstrated that MPtpB possesses a unique phosphatase activity, with triple
specificity towards phosphoserine/phosphothreonine, phosphotyrosine, and phospho-
inositides (PIs) [37]. In particular, manipulating the host phosphoinositide metabolism is
a strategy used by pathogenic microbes to promote their colonisation within the infected
macrophages [21]. Indeed, the alteration of PI dynamics by M. tb affects the intracellular
traffic events correlated with phagosome maturation, enabling the long-term survival of
bacteria inside the host. In this regard, PI3P, which is an early phagosomal membrane
tag that is critical for the downstream events of the maturation process, was found to be
dephosphorylated by MPtpB (Figure 1) [21]. PI3P is an essential membrane-trafficking
regulatory lipid that is generated by PI3K on the host membranes of early phagosomes and
endosomes and represents a docking site for some proteins associated with the maturation
of phagosomes into phagolysosomes [19]. In addition, MPtpB dephosphorylates PI(3,5)P2,
which is another key lipid component, serving as a marker of late phagosomes, and is
required for the ensuing phagosome–lysosome fusion [21].

The importance of MPtpB in the intracellular survival of M. tb was experimentally proven
by Singh et al. when they constructed an mptpB mutant strain of M. tb [38]. The authors
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showed that disrupting the mptpB gene impaired the ability of M. tb to survive in activated
macrophages. However, in resting macrophages, both the mutant strain and the wild-type
had similar intracellular growth patterns, suggesting the consequential interplay between the
host and M. tb. In addition, in guinea pigs, infection with the disrupted mptpB mutant strain
led to a 70-fold inhibition in bacterial burden in the spleens of infected animals, compared to
the animals infected with the parental strain [38]. Reintroducing the mptpB gene to the mutant
strain enabled the resulting complemented strain to establish infection and raise the survival
rates in guinea pigs to levels on par with the parental strain [38].

3.2.3. SAPM

SapM is a “eukaryotic-like” acid phosphatase that is secreted by M. tb in the host
cell cytosol [39]. Recently, SapM was also found to behave as an atypical alkaline phos-
phatase [21]. Similar to MPtpB, it is believed that SapM functions as a lipid phosphatase,
hydrolysing PI3P on the phagosomal membrane, thereby preventing PI3P accumulation on
phagosomes and blocking phagosome–lysosome fusion [21]. However, how SapM is trans-
ferred from the phagosomal lumen, where it is secreted, to the phagosome’s cytoplasmic
face, where it interacts with PI3P, remains a conundrum [14]. While PI3P normally regulates
the conveyance of phagocytosed consignments to lysosomes, this trafficking event is pre-
empted when the accumulation of PI3P is halted by M. tb. In fact, a PI3P-free environment
must be maintained by M. tb during its occupation in macrophages to accomplish complete
phagolysosomal arrest [14]. In this respect, SapM promotes the continuous removal of PI3P
from phagosomes-containing bacteria, preventing the anchorage of the proteins required
for phagosomes to acquire lysosomal components. Indeed, Vergne et al. demonstrated that
dephosphorylation of PI3P mediated by SapM prevented recruitment of the effector protein
EEA1 to the phagosomal membrane, thereby inhibiting the phagosomes–late endosomes
fusion [40]. SapM and MPtpB-induced hydrolysis of PI3P was also shown to prevent the
Rab5 and Rab7 swapping step that is a prerequisite for the transition to late phagosome [21].
In addition to PI3P, SapM was found to hydrolyse another PI, namely PI(4,5)P2, that is
involved in the nascent phagosome formation and its subsequent scission from the plasma
membrane [21]. Therefore, SapM-mediated blocking of this critical step during the my-
cobacterial invasion facilitates the uptake and colonisation of M. tb within the host. Of note,
SapM showed a broad PI activity when tested against several PIs; however, it displayed
more specificity towards PI(4,5)P2 and PI3P, which are essential in the early stages of
phagocytosis of M. tb and phagosome maturation [21]. In addition, Hu and colleagues
supported the SapM’s role in the intracellular survival of M. tb by showing that it interferes
with autophagy [41]. Similar to phagocytosis, autophagy is a highly conserved natural
process that is operational in numerous immune cells, especially in macrophages [42]. They
both share common features and serve as host defence mechanisms that are required for
fighting infections and maintaining proper homeostasis [43]. In this regard, pathogenic
microorganisms, such as M. tb, produce virulence factors to combat these killing machiner-
ies. Indeed, SapM was shown to block autophagosome–lysosome fusion and suppress
autophagy by binding to Rab7 [41]. Taken together, SapM seems to possess a pleiotropic
role in the pathogenesis of M. tb. Deletion of the sapM gene in M. tb (M. tb ∆sapM) led to
defects in phagosomal maturation arrest and growth inhibition of M. tb in human THP-1
macrophages [44]. Indeed, upon disrupting sapM in M. tb, the resulting strain was severely
attenuated, with an impaired ability to grow or cause pathological damage in guinea pig
tissues, compared to the parental strain. The importance of SapM in the pathogenesis
of M. tb was corroborated when the survival of guinea pigs infected with M. tb ∆sapM
was compared to M. tb-infected animals. Indeed, the M. tb-infected guinea pigs gradually
succumbed to death in 4 months, while not even one M. tb ∆sapM-infected animal died
during the whole duration of the study (7 months) [44].
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4. Restoring the Host Immune Capacity via Inhibiting M. tb Kinases and Phosphatases
4.1. PknG Inhibitors

The critical role of PknG in promoting the survival of mycobacteria inside macrophages
has spurred researchers to search for PknG inhibitors. Unlike most of the currently used
anti-TB drugs that interfere directly with M. tb growth, inhibiting PknG may recondition
the macrophages to carry out their innate microbicidal activity by delivering the bacilli
residing in phagosomes to lysosomes [19]. In other words, inactivating PknG will revert
the macrophage to a degradative milieu, in which the bacilli are efficiently destroyed and
cleared. As a secreted protein, an additional benefit of targeting PknG is that inhibitors
are not required to access the highly impermeable mycobacterial cell membrane [19]. Im-
portantly, despite the high homology between the mycobacterial PknG and the eukaryotic
Ser/Thr kinases, PknG possesses a unique kinase domain that is distinct from the eukary-
otic kinases [45]. AX20017 (1, Table 1), a highly selective PknG inhibitor (IC50 = 0.39 µM),
was found to bind to this unique domain. Indeed, blocking the activity of PknG by this
tetrahydrobenzothiophene led to a rapid mycobacterial transfer to lysosomes, followed
by killing the intracellular-residing M. tb in a dose-dependent manner without impact-
ing the viability of the macrophages [20]. Similar to the ∆pknG mutant in mycobacteria,
AX20017 exhibited no inhibitory activity against mycobacterial growth in culture (outside
host cells) [20]. Although the topology of the kinase domain of PknG is indeed reminiscent
of the eukaryotic kinases, AX20017 is harboured in a narrow pocket that is characterised
by a unique set of amino acids that are absent in human kinases [45]. This finding in turn
explains the high specificity of AX20017 towards PknG and demonstrates that targeting this
M. tb’s secreted virulence factor can be successfully achieved without compromising the
host’s homologous kinases. In a recent study, the implication of PknG in the latency of the
mycobacteria was investigated [31]. Indeed, the inhibitory effect of AX20017 on PknG was
shown to impact the mycobacterial survival in in vitro models of dormancy, such as nutri-
ent starvation, persisters, and hypoxia. Interestingly, the addition of AX20017 or deletion
of the pknG gene demonstrated the ability to suppress the formation of persistent/drug-
tolerant M. tb populations when combined with different antibiotics in vitro and in infected
murine macrophages [31].

Table 1. PknG, MPtpA, MPtpB, and SapM inhibitors involved in restoring the host immune responses.

Inhibitor Target Efficacy
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Sclerotiorin (2, Table 1), extracted from marine fungi, showed an IC50 of 76.5 µM on
PknG [46]. Expectedly, Sclerotiorin failed to inhibit the mycobacterial growth in in vitro
cultures. However, Mycobacterium bovis (M. bovis) Bacille Calmette–Guérin (BCG)-infected
macrophages that were treated with 20 µM Sclerotiorin or AX20017 exhibited a 40% and
54% reduction in the bacterial burden in resting and activated macrophages, respectively.
Importantly, the macrophages remained viable in the presence of both inhibitors. When
sclerotiorin (20 µM or 40 µM) was combined with rifampicin (RIF), the bacterial clearance
was slightly enhanced, compared to using rifampicin alone [46].

To identify PknG inhibitors, Kanehiro et al. screened the PknG inhibitory activities
of 80 kinase inhibitors [47]. AZD7762 (3, Table 1), R406 (4, Table 1), and R406-free base
(R406f, 5, Table 1) stood out as potent PknG inhibitors (IC50 = 30.3, 7.98, and 16.1 µM,
respectively). The three compounds promoted the lysosomal transfer of the M. bovis BCG
in murine macrophages. They also inhibited the survival of the mycobacteria in infected
human macrophages. In addition, R406 and R406f demonstrated bactericidal activities
against the mycobacteria in human macrophages, with no cytotoxicity observed [47].

NU-6027 (6, Table 1) was recently identified to target PknG from a phenotypic screen-
ing of a library of pharmacologically active small molecules, aimed at discovering novel
antimycobacterial agents [48]. NU-6027 was previously shown to potently inhibit the
activity of various kinases, including cyclin-dependent kinase 1 and 2 (CDK1/2) [62]. Its an-
titumour activity was subsequently investigated against numerous human tumour cell lines,
in which it displayed potent tumour cell growth inhibition [62]. When evaluated against
M. tb STPKs, NU-6027 inhibited the autophosphorylation activity associated with both
PknG and PknD in a dose-dependent manner (at 100 mM and 50 mM) without affecting
the kinase activity of the other tested STPKs [48]. Remarkably, NU-6027 potently induced
apoptosis of mycobacteria (M. bovis BCG) in THP-1 infected macrophages, which was cor-
related to an upregulation in the expression of proapoptotic genes in the NU-6027-treated
macrophages. Of note, no cytotoxicity was observed towards THP-1 cells when treated
with NU-6027 at a 25 µM concentration. In addition to macrophages, NU-6027 inhibited the
growth of M. tb in mouse tissues [48]. Taken together, the preceding findings substantiate
the notion that modulating the host/mycobacterial signalling pathways constitutes an
attractive approach for the development of novel anti-TB agents.

4.2. MPtpA Inhibitors

Although a large number of MPtpA inhibitors have been identified, these inhibitors
generally tend to suffer from low selectivity due to the fact that MPtpA shares a 37% similarity
with its human ortholog [15]. However, a chalcone derivative (7, Table 1) was reported in 2010
as a highly selective MPtpA inhibitor with an IC50 value of 50.2µM [49]. More importantly, this
compound reduced M. tb survival by 50% and 77% in infected macrophages at 48 h and 96 h
post infection, respectively. Compound 7 also demonstrated negligible cytotoxicity against
human THP-1 macrophages, killing only 2% of the cells at a 40 µM concentration [49]. In 2017,
a highly specific MPtpA inhibitor (L335M34, 8, Table 1) was reported by Dutta et al., displaying
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more than 20-fold selectivity over a panel of tested human protein tyrosine phosphatases
(PTPs) [50]. Indeed, L335M34 (8) showed an IC50 value of 160 nM against MPtpA, while no
significant activity was observed against all examined human PTPs at concentrations less than
3 µM. Unsurprisingly, L335M34 was bereft of activity in the standard M. tb growth inhibition
assays, whilst it markedly supressed the bacillary load, at low micromolar concentration, in
M. tb-infected macrophages (IC50 = 1.38 µM) [50].

4.3. MPtpB Inhibitors

Numerous selective MPtpB inhibitors were shown to reverse the altered host im-
mune defence reactions and reduce the intracellular growth and survival of M. tb in the
macrophages [63,64]. In 2009, Beresford et al. reported the isoxazole-derived compound 9
(Table 1) as a potent selective MPtpB inhibitor (IC50 = 7 µM) [51]. This compound showed
remarkable reduction of the mycobacterial burden of M. bovis BCG in macrophages at
concentrations of 20, 80, and 160 µM, causing 42%, 64%, and >90% growth attenuation,
respectively, in intracellular mycobacteria [51]. A year later, two studies documented
three potent and selective MPtpB inhibitors: 10, 11, and 12 (IC50 = 1.3, 5.6, and 1.26 µM,
respectively, Table 1) [36,52]. The benzoindole derivative 10 and piperazinyl-thiophenyl-
ethyl-oxalamide derivative 11 demonstrated the ability to overturn the weakened immune
response caused by the mycobacterial phosphatases, recapitulating the mptpB deletion
effects and inhibiting the growth of TB in host cells [52]. Indeed, both compounds 10 and 11
showed nearly total impairment of M. tb growth in murine macrophages at a 10 µM con-
centration, without impacting the viability of macrophages at concentrations up to 100 µM.
Predictably, both compounds failed to inhibit the growth of M. tb in in vitro cultures at
concentrations >100 µM, indicating the unique ability of these compounds to reduce the
intercellular M. tb survival in macrophages by hindering the MPtpB ability to alter the host
immune defences [52]. On the other hand, compound I-A09 (12, Table 1) was identified as a
potent and specific MPtpB inhibitor (IC50 = 1.26 µM) that was able to overcome the pertur-
bation of the host immune surveillance mechanism induced by MPtpB [36]. Interestingly,
this compound not only recapitulated the phenotype of the mptpB-deleted mutant in active
macrophages infected with the M. tb Erdman strain, but it also inhibited the bacillary load
of M. tb in resting macrophages by 90% relative to the untreated cells, while the viability
of macrophages remained unaffected. As expected, I-A09 exhibited no activity against
M. tb in extracellular cultures [minimum inhibitory concentration (MIC) > 100 µM] [36].
In 2013, a hydroxyindole carboxylic acid derivative, 13 (Table 1), was reported to have
high selectivity (at least 100-fold) towards MPtpB (IC50 = 0.079 µM) over a panel of sev-
eral protein tyrosine phosphatases (PTPs) [53]. Importantly, compound 13 demonstrated
high intracellular efficacy in murine macrophages, restoring the host immune responses
challenged by MPtpB. Interestingly, the cellular activity of 13 was found to mimic those of
compounds 10, 11, and 12, which are structurally unrelated to compound 13 [53].

Compound 14 (Table 1) was identified by He et al., which displayed an outstanding
MPtpB inhibitory potency (IC50 = 18 nM) and selectivity, with a more than 10,000-fold
preference towards MPtpB over a wide panel of 25 phosphatases [54]. This compound also
showed excellent activity and specificity in averting the MPtpB function in macrophages.
The following year, a benzofuransalicylate derivative, L01Z08 (15, Table 1), was reported
as a potent and selective MPtpB inhibitor, with an IC50 value of 38 nM [50]. As expected,
L01Z08 was inactive against M. tb in the standard MIC assays, but it significantly dimin-
ished the bacterial load in M. tb-infected murine macrophages at concentrations <5 µM [50].
In two studies, Tabernero’s group examined the activity compound 16 as a selective MPtpB
inhibitor [55,56]. They reported that this compound exhibited dose-dependent efficacy in
inhibiting the intracellular M. bovis BCG bacterial load in murine macrophages up to 84%,
with no activity against extracellular mycobacterial growth, which confirms its exclusive
intracellular activity [55]. More importantly, they found that this compound inhibits the
bacterial load in human macrophages infected with drug-sensitive (DS) and drug-resistant
(DR) M. tb by 63% and 74%, respectively. When combined with first line drugs isoniazid
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(INH, dose = 0.1 µg/mL) and RIF (dose = 0.3 µg/mL), compound 16 (dose = 5 µM) dras-
tically potentiated the inhibition of BCG mycobacterial burden in mouse macrophages
from 25% (INH and RIF only) to >93% (INH, RIF, and compound 16) [55]. Interestingly,
compound 16-treated macrophages demonstrated a prolonged presence of PI3P, which is
crucial for phagosomal maturation and infection clearance. In animal models, compound 16
as a monotherapy reduced the mycobacterial burden in acute and chronic guinea pig mod-
els and showed good oral bioavailability and no adverse drug effects [55]. Apart from M. tb
complex, compound 16 also reduced the mycobacterial burden in macrophages infected
with the nontuberculous mycobacteria (NTM) Mycobacterium avium (M. avium) [56]. It also
demonstrated additive effects when combined with RIF or bedaquiline (BDQ), inhibiting
the intracellular mycobacterial burden of both M. avium and M. tb by 50%, compared to
monotherapy with antibiotics [56].

Two groups reported two natural products, Kuwanon G (17) and Fusarielin M (18, Table 1),
as potent inhibitors against MPtpB (IC50 = 0.83, and 1.05 µM, respectively) [57,58]. Interestingly,
Kuwanon G inhibited the growth of M. tb in vitro at an MIC value of 32 µg/mL and exhibited
cytotoxicity towards human macrophages at a concentration similar to its MIC value [57].
Therefore, the authors used a non-toxic 10 µg/mL concentration of 17 to assess the M. tb
survival in macrophages, in which Kuwanon G demonstrated a 61.3% reduction in M. tb
burden, compared the untreated control [57]. On the other hand, Fusarielin M was shown to
selectively inhibit MPtpB and significantly inhibit the intracellular M. bovis BCG growth in
murine macrophages, reducing the mycobacterial load by 62% at a 20 µM concentration [58].

Recently, Ruddraraju et al. reported the N-aryl oxamic acid analogue 19 (Table 1)
as a highly potent MPtpB inhibitor (IC50 = 0.0064 µM) with >4500-fold selectivity over
a large panel of mammalian PTPs [59]. This compound was shown to block the activity
of MPtpB in murine macrophages. It also showed no cytotoxicity against mouse em-
bryonic fibroblasts at a concentration as high as 25 µM [59]. In 2023, four rhodanine
derivatives, 20–23 (Table 1), were reported to show potent inhibitory activities against
MPtpB (IC50 = 0.48, 0.49, 0.64, 0.35 µM, respectively), with acceptable selectivity towards
MPtpB and low cytotoxicity against macrophages and Vero cells [60]. All four compounds
demonstrated dose-dependent efficacy in inhibiting the intracellular M. tb load in murine
macrophages. Interestingly, compound 22 stood out as the most potent inhibitor intracel-
lularly, which was ascribed to its dual inhibition of both MPtpA and MPtpB; it showed
a very low MIC value of 30 µg/mL against M. tb in in vitro cultures [60]. When mouse
macrophages were treated with either compound 22 or RIF, the M. tb burden was reduced
by 85% compared to the negative control. Importantly, a combination of 22 and RIF led
to a >95% inhibition in the intracellular bacterial load, which is better than the inhibitory
results observed in RIF or 22 alone [60]. Taken together, since both MPtpA and MPtpB are
not essential for M. tb growth in vitro, the phenotypic screening wheel is shifted towards
utilising a combination of ex vivo macrophage infection models and in vitro enzyme inhi-
bition. This unorthodox approach is indeed one of the currently developing trends, aimed
at discovering novel anti-TB compounds.

4.4. SapM Inhibitors

In 2019, two SapM inhibitors were identified, namely L-ascorbic acid and 2-phospho-
L-ascorbic acid (24, Table 1, IC50 = 241 and 234 µM, respectively) [21]. In fact, the latter
compound significantly reduced the bacterial load/survival of the M. tb H37Rv strain in
infected THP-1 macrophages, while displaying no detrimental effect on the viability of
macrophages. In support of the SapM’s function being likely restricted to promoting the
intracellular survival of M. tb, compound 24 showed no inhibitory effect on the extracellular
growth of M. tb at 72 h [21]. More recently, the same group reported Tyrphostin 51 (25)
and Tyrphostin AG183 (26, Table 1) as potent SapM inhibitors (IC50 = 6.3 and 8.2 µM,
respectively) [61]. Treatment of M. tb-infected THP-1 human macrophages with both com-
pounds at 1 µM and 40 µM concentrations led to a substantial decrease in the intracellular
mycobacterial burden, phenotyping the sapM deletion effects. Expectedly, both inhibitors
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failed to inhibit the growth of M. tb in in vitro cultures. Importantly, both compounds
displayed no cytotoxicity, with >70% viability in THP-1 macrophages at concentrations
up to 40 µM for 72 h [61]. Overall, contrary to the current antibiotics that are focused on
inhibiting traditional essential targets in vitro, the intracellular activities of the preceding
MPtpA, MPtpB, and SapM inhibitors constitute a proof of concept that reinstating the
intrinsic host signalling machinery could be exploited in eradicating the TB infection.

5. Conclusions and Future Directions

In this review, we discussed the critical role of M. tb-secreted kinases and phos-
phatases in establishing infection inside the granuloma and their functions within the
phagosomal maturation. The recalcitrant mycobacterial subpopulations prevail during
latent TB infections and are phenotypically tolerant towards antibiotics, accounting for the
long-drawn-out treatment course of TB. One way to target these mycobacterial persisters is
to modulate the phosphorylation/dephosphorylation-based immune evasion mechanisms
of M. tb, which could extricate the macrophages from the M. tb counterforces, potentiating
the existing host immune defences against the bacteria. In fact, using host directed therapies
(HDTs), which allow for the suppression of M. tb-induced host manipulation mechanisms,
presents several benefits in comparison to traditional antibiotics, including the following:
(a) HDTs can act synergistically with different antibiotics and/or shorten the treatment
regimen, (b) HDTs are less likely to generate mycobacterial resistance, and (c) HDTs can be
efficacious not only against DS mycobacteria, but also DR and latent mycobacteria. While
HDTs that improve immune responses and restore host reactions at the site of infections
hold a great potential to eradicate tuberculosis, this promising treatment option is still in its
infancy stage, as more comprehensive studies are needed to evaluate their safety in terms
of cytotoxicity and long-term side effects. Therefore, HDTs should be further investigated
as an adjunct treatment to the current anti-TB drug regimens and not as a sole treatment
option. In this respect, targeting M. tb-secreted kinases and phosphatases using several
chemical probes highlighted herein resulted in unrestrained macrophages with restored
inherent killing qualities, especially when used in combination with other antibiotics. This
underexploited approach represents a new horizon for the development of novel anti-TB
agents effective against the non- or slowly replicating persistent mycobacteria. An Anti-TB
drug discovery approach of combining ex vivo macrophage infection models as well as
in vitro enzyme inhibition proves to be a powerful method to fight non-replicating TB.
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