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Abstract: In this study, Fe3(PO4)2·8H2O magnetic nanoparticles (MNPs) were successfully extracted
from the strain Burkholderia cepacia CG-1. We subsequently characterized their composition, structure,
and morphology, revealing that these nanoparticles consisted of Fe3(PO4)2·8H2O with an average
diameter of 66.87 ± 0.56 nm. Our measurements indicated magnetic parameters of 151 Oe for
coercivity, 2 emu/g for saturation remanence, and 16 emu/g for saturation magnetization. Our
findings confirmed that these magnetic nanoparticles exhibited intrinsic peroxidase-like activity,
catalyzing the oxidation of 3,3,5,5-tetramethylbenzidine (TMB) in the presence of H2O2. Compared
to horseradish peroxidase (HRP), the peroxidase mimic demonstrated greater stability under various
physicochemical conditions. To investigate the mechanisms underlying the peroxidase-like catalysis
of Fe3(PO4)2·8H2O, we employed fluorescence spectroscopy and electron spin resonance (ESR)
analysis. The results revealed that the peroxidase-like activity of Fe3(PO4)2·8H2O stemmed from the
generation of hydroxyl radicals (·OH). Furthermore, we established a platform for the colorimetric
detection of H2O2 and glucose. Our method was capable of detecting H2O2 concentrations as low
as 1.0 × 10−3 mmol/L. Impressively, this sensitive method was successfully applied to determine
glucose levels in human serum.

Keywords: magnetic nanoparticles; Fe3(PO4)2·8H2O; peroxidase-like activity; colorimetric detection

1. Introduction

In recent years, nanomaterials have garnered significant attention for their diverse
applications, thanks to their unique physical, chemical, photochemical, and biological
properties [1]. One notable biological characteristic of nanomaterials is their enzyme-like
activity. In 2007, Gao et al. [2] were the first to report that Fe3O4 magnetic nanoparticles
(FMNPs) exhibited intrinsic enzyme mimetic activity, similar to that of natural peroxidases.
These nanoparticles were found to catalyze the oxidation of various peroxidase substrates,
including TMB and di-azo-aminobenzene (DAB). Subsequently, numerous other inorganic
nanomaterials, such as gold nanoparticles, platinum nanoparticles, CuS nanoparticles, and
Co3O4 nanoparticles, have been investigated for their high catalytic efficiency, which is
attributed to their large surface-to-volume ratio [3–6]. Among these materials, magnetic
nanoparticles (MNPs) are particularly intriguing due to their oxidase-like, peroxidase-like,
catalase-like, and/or superoxide dismutase-like activities, which hold great potential for
biological and medical applications [7].

Compared to naturally occurring peroxidase enzymes, enzyme-like nanoparticles
exhibit significantly greater stability and maintain an almost unchanged catalytic activity
even under harsh conditions [8]. Additionally, peroxidase enzymes are challenging to
produce in large quantities. Conversely, inorganic nanoparticles can be easily synthesized
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in large yields and at a relatively low cost. Given these advantages, nanoparticles have the
potential to replace peroxidases in various applications, including those that rely on the
detection of hydrogen peroxide and glucose.

However, artificially synthesized nanoparticles, produced through chemical means,
have certain drawbacks such as lower purity, easy aggregation, and challenges in coupling
with biomolecules. Consequently, there is an urgent need to develop new nanoparticles that
possess high dispersity and good biocompatibility in the field of enzyme-like nanoparticles.
This has led researchers to explore the use of microorganisms for nanoparticle synthesis.
Among the various methods, the bacterial synthesis of nanoparticles stands out due to
its advantages of a short cultivation cycle and simple operation, making it a prominent
approach in the biosynthesis of metal nanomaterials [9–13].

Bacterial magnetic nanoparticles have garnered more attention than ordinary artificial
magnetic nanoparticles due to their biocompatibility, safety, and superparamagnetic proper-
ties [14]. These magnetic nanoparticles have a wide range of applications, including protein
separation, drug delivery, immunoassays, gene therapy, and immobilization [15]. Notably,
magnetic nanoparticles also exhibit peroxidase-like activity. Guo et al. [16] reported that
magnetic nanoparticles demonstrated potential peroxidase activity and could eliminate
intracellular reactive oxygen species (ROS) in Magnetospirillum gryphiswaldense MSR-1. Sim-
ilarly, Pan et al. [17] extracted biogenic magnetic nanoparticles from the strain Burkholderia
sp. YN01 and found that these nanoparticles possessed intrinsic peroxidase-like activity,
catalyzing the oxidation of the peroxidase substrate TMB in the presence of H2O2. As
a result, magnetic nanoparticles have been successfully used as peroxidase mimics for
H2O2 and glucose detection, as well as pollutant degradation [18]. It is anticipated that
these magnetic nanoparticles may find useful applications as detection tools or in pollutant
degradation in the fields of biosensors and wastewater treatment.

In our previous study, a strain of magnetic- nanoparticle-producing bacteria, named
Burkholderia cepacia CG-1, was isolated from Dongchang Lake in Liaocheng, Shandong
Province, China. In this study, magnetic nanoparticles were successfully separated using
ultrasonication, and their chemical composition, morphology, and magnetic properties
were characterized. Importantly, it was demonstrated that these magnetic nanoparticles
exhibited peroxidase-like activity. As a result, the MNPs were successfully utilized for H2O2
and glucose detection as a peroxidase mimic. All the data indicate that the purified magnetic
nanoparticles have the potential to be used in biotechnology, medicine, biochemistry
detection, and other biological fields.

2. Results
2.1. Characterization of Magnetic Nanoparticles (MNPs)

The MNPs were biosynthesized by the strain B. cepacia CG-1 (as shown in Figure S1),
and their transmission electron microscopy (TEM) images are presented in Figure 1. The
images revealed that the sizes of the purified magnetic nanoparticles were uniform, with
a distribution of about 4.21 ± 0.09 nm when B. cepacia CG-1 was cultured for 3 days
(Figures 1A and S2A). However, when the incubation time was increased to 5 days, the bac-
terial population and vitality increased as the cultivation time increased, resulting in an in-
crease in absorbable Fe ions and an increase in synthesized magnetic nanoparticles [19]. The
MNPs formed nanoclusters with an average size of 66.87 ± 0.56 nm (Figures 1B and S2B).
Additionally, the TEM image (Figure 1C) showed that the MNPs were surrounded by a
membrane (marked with an arrow). This demonstrated that the surface of the nanoparticles
had a biofilm; the biofilm activity was strong and attracted other biofilms, leading to the
aggregation of nanoparticles into clusters when they existed in the live cell [20]. To further
study the microstructure of the MNPs, high-resolution transmission electron microscopy
(HRTEM) was used at a magnification of 800,000× and an accelerating voltage of 200 kV.
The results revealed that the MNPs were formed by the aggregation of crystals with a size
of about 5 nm, and the neat arrangement of atoms could be clearly observed (Figure 1D).
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Figure 1. TEM images of the MNPs: (A,B): The MNPs extracted from the strain B. cepacia CG-1 with
different incubation times ((A) for 3 days and (B) for 5 days); (C): the membrane structure (the red
arrow indicated) surrounding the nanoparticles; (D): HRTEM image of the MNPs (the red circles
were lattice fringes).

X-ray photoelectron spectroscopy (XPS) analysis was employed to further explore
the composition of the MNPs extracted from the strain CG-1. As shown in Figure 2A,
there were Fe 2p, O 1s, and P 2p elements present on the surface of the MNPs according
to the wide spectrum. The photoelectron peaks at 710 eV and 722.9 eV were identified as
the characteristic doublets of Fe 2p3/2 and Fe 2p1/2, respectively, based on the narrow
spectrum of Fe 2p (Figure 2B). Additionally, the characteristic peaks at 528.9 eV and 130.7 eV
corresponded to O 1s and P 2p, respectively, as shown in Figure 2C and 2D. In addition,
there was also a N1S peak present, which may be due to the presence of a small amount of
protein during nanoparticle extraction [21].

The structure of the MNPs could be further characterized by XRD. Figure 2E displays
the X-ray diffractometer (XRD) patterns of the MNPs sample. The XRD pattern exhibited
good crystallinity and closely matched the standard peak for Fe3(PO4)2·8H2O (JCPDS
30-0662). Moreover, no significant impurities were detected in the patterns of the MNPs
sample, suggesting that the sample was highly purified. Based on these results, the sample
was identified as Fe3(PO4)2·8H2O.

To gain insights into the surface properties of the MNPs, Fourier transform infrared
(FTIR) spectroscopy was utilized to identify the functional groups present on the membrane
of the nanoparticles. The results revealed the presence of specific peaks in the wave
number range of 500–1500 cm−1. These peaks indicated the presence of various functional
groups on the surface of the MNPs, including CH3 antisymmetric stretching, the NH4+

asymmetric variable angle, COO− symmetric stretching, the CH2 variable angle of olefin,
and PO3 symmetry extension (as shown in Figure 2F). These findings were consistent with
previous reports that suggested the presence of amino and carboxyl groups on the surface
of the nanoparticles. When compared to the characteristic wave numbers of standard
Fe3(PO4)2·8H2O, there were minor differences in the FTIR spectrum. These differences
could be attributed to variations in crystallinity and the presence of other minor components
in the sample. Overall, the FTIR analysis provided valuable information on the surface
chemistry of the MNPs, which is crucial for understanding their interactions with other
materials and their potential applications.

The hysteresis loop of the MNPs is depicted in Figure 3. The hysteresis parameters, in-
cluding the coercivity, saturation remanence, and saturation magnetization, were measured
to be 151 Oe, 2 emu/g, and 16 emu/g, respectively. These results suggest that the MNPs
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display ferromagnetic behavior and can be classified as semi-hard magnetic materials. This
information is important for understanding the magnetic properties of the nanoparticles
and their potential applications in various fields, such as data storage, magnetic separation,
and biomedical applications.
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2.2. Peroxidase-Like Activity of the Fe3(PO4)2·8H2O Magnetic Nanoparticles (MNPs)

The peroxidase-like activity of the Fe3(PO4)2·8H2O MNPs was assessed by observing
the catalytic oxidation of the peroxidase substrate TMB in the presence of H2O2. The charac-
teristic absorption peak for the oxidation of TMB is at 652 nm, which corresponds to a blue
color change. As illustrated in Figure 4A, in the absence of either H2O2 or Fe3(PO4)2·8H2O
MNPs, the TMB solution remained colorless, indicating that no oxidation reaction took
place. However, when the MNPs were added to the reaction mixture containing TMB
and H2O2, a deep-blue color appeared, and the solution exhibited a strong characteristic
absorbance at 652 nm. These results demonstrate that the Fe3(PO4)2·8H2O MNPs possess
intrinsic peroxidase-like activity, as they were able to catalyze the oxidation of the TMB
substrate by H2O2. This finding highlights the potential of these MNPs for applications in
biocatalysis, biosensing, and other areas where peroxidase-like activity is required.
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buffer solution (pH 3.8) after 10 min (a: buffer+TMB+H2O2+Fe3(PO4)2·8H2O; b: buffer+TMB+
Fe3(PO4)2·8H2O; c: buffer+H2O2+TMB). (B): The catalytic activities of MNPs and leaching solution
(a: buffer+TMB+H2O2+Fe3(PO4)2·8H2O; b: buffer+TMB+H2O2+leaching solution). (C–F): Compari-
son of the stability of HRP and Fe3(PO4)2·8H2O ((C): temperature; (D): pH). (E,F): Steady-state kinetic
assays of Fe3(PO4)2·8H2O. (E): The concentration of H2O2 was constant and the TMB concentration
was varied. (F): The concentration of TMB was constant and the TMB concentration was varied.
Insets are the Lineweaver–Burk plots of the double reciprocal of the Michaelis–Menten equation.
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To further investigate whether the peroxidase-like catalytic activity of the Fe3(PO4)2·8H2O
MNPs was due to the intact MNPs or to free metal ions leaching from the particles, an ex-
periment was conducted. The MNPs were incubated in a standard reaction buffer solution
with a pH of 3.6 for 10 min. Afterward, the MNPs were removed from the solution using
an external magnetic field. The catalytic activity of the resulting leaching solution was then
tested, and the result is shown in Figure 4B. The data indicated that there was almost no en-
zyme activity present in the leaching solution. This finding demonstrates that the intrinsic
peroxidase-like activity of the Fe3(PO4)2·8H2O MNPs cannot be attributed to the leaching
of iron ions into the solution. Instead, the activity occurs on the surface of the MNPs. This
result is important for understanding the mechanism of the peroxidase-like activity of
the MNPs and confirms that the activity is indeed a property of the intact nanoparticles,
rather than a result of free metal ions in the solution. This information can be useful for
optimizing the performance of the MNPs in various applications where peroxidase-like
activity is required.

2.3. Stability of Peroxidase Activity of Fe3(PO4)2·8H2O MNPs and HRP

In this study, the stability of the peroxidase activity of the Fe3(PO4)2·8H2O MNPs and
the natural enzyme horseradish peroxidase (HRP) was evaluated over a wide range of
temperatures and pH values. The results revealed that the MNPs exhibited greater stability
than HRP. The temperature stability studies showed that the Fe3(PO4)2·8H2O MNPs main-
tained their activity between 37 ◦C and 70 ◦C after a 1 h incubation (Figure 4C). On the
other hand, the peroxidase activity of HRP decreased significantly when the enzyme was in-
cubated at lower or higher temperatures. Only 30% or 35% of the relative activity remained
after HRP was incubated at 25 ◦C or 60 ◦C, respectively. Similarly, the Fe3(PO4)2·8H2O
MNPs were found to be stable over a pH range of 3 to 8 (Figure 4D). However, HRP lost
its catalytic activity after being incubated at pH values lower than 3 or higher than 8 for
1 h. These results indicate that, as inorganic nanomaterials, Fe3(PO4)2·8H2O MNPs are
more stable than the natural enzyme HRP. This stability makes the MNPs a promising
candidate for industrial applications where enzymes are required to function under harsh
conditions, such as high temperatures or extreme pH values. The potential applications of
these stable MNPs in various industrial processes, including biocatalysis, biosensing, and
environmental remediation, could be explored further.

2.4. Kinetic Assay of Peroxidase-Like Activity of Fe3(PO4)2·8H2O MNPs

The peroxidase-like catalytic property of the Fe3(PO4)2·8H2O MNPs was further
investigated using steady-state kinetics. The kinetic data were obtained by varying the
concentration of one substrate and fixing the other substrate concentration. As shown in
Figure 4E,F, Michaelis–Menten curves were obtained for Fe3(PO4)2·8H2O MNPs with both
TMB and H2O2 as substrates in a certain range of concentrations. As the concentration of
TMB or H2O2 gradually increased, the initial reaction rate V gradually increased towards
equilibrium, which conformed to the typical Michaelis equation

2.5. Reaction Mechanism for the Catalytic Activity of Fe3(PO4)2·8H2O MNPs as
Peroxidase Mimetics

To delve into the potential active intermediates within the H2O2-Fe3(PO4)2·8H2O reac-
tion system (Figure 5A), terephthalic acid (TA) was chosen as a fluorescence probe due to
its reactivity with ·OH radicals, forming the highly fluorescent 2-hydroxy terephthalic acid
(HTA) [22]. Figure 5B illustrates the impact of varying concentrations of Fe3(PO4)2·8H2O
MNPs on the generation of ·OH radicals, utilizing TA as the fluorescent indicator. No-
tably, in the absence of H2O2, no fluorescence intensity was observed. However, upon the
introduction of both Fe3(PO4)2·8H2O and H2O2 into the reaction system, a fluorescence
became detectable. Furthermore, as the concentration of Fe3(PO4)2·8H2O MNPs increased,
a corresponding enhancement in the fluorescence intensity was observed. This finding
suggests that a greater amount of ·OH radicals was produced in the presence of higher
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concentrations of Fe3(PO4)2·8H2O MNPs, thereby confirming their role in catalyzing the
formation of these reactive oxygen species.
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Electron spin resonance (ESR) was used to further confirm ·OH radical generation
in the H2O2-Fe3(PO4)2·8H2O reaction system (Figure 5C–F). DMPO was used as the spin-
trapping agent. The ESR spectra showed a fourfold characteristic peak with an intensity
ratio of 1:2:2:1 when the system contained Fe3(PO4)2·8H2O MNPs. This specific spectrum
was consistent with the pattern of the typical DMPO-·OH adduct [23]. However, no
such ESR signal could be observed in control reactions in the absence of Fe3(PO4)2·8H2O
MNPs. In addition, the ESR signal intensity increased with an increase in the amount of
Fe3(PO4)2·8H2O MNPs.

Based on the above research, we confirmed that the ·OH radical is the main reactive
intermediate in the H2O2-Fe3(PO4)2·8H2O reaction system. Thus, it could be concluded
that the peroxidase-like activity of Fe3(PO4)2·8H2O actually originates from ·OH radi-
cal generation.
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2.6. Detection of H2O2 and Glucose Using Fe3(PO4)2·8H2O MNPs as Peroxidase Mimetics

Using the intrinsic peroxidase properties of Fe3(PO4)2·8H2O MNPs, we designed a
simple and sensitive colorimetric method for the determination of H2O2 and glucose using
the Fe3(PO4)2·8H2O-catalyzed blue-color reaction. Moreover, this method was used for the
detection of glucose in human serum.

Since the catalytic activity of Fe3(PO4)2·8H2O is H2O2-concentration-dependent, this
can be used to determine the H2O2 concentration. As shown in Figure 6A, the absorp-
tion intensity of TMB at 652 nm increased as the concentration of H2O2 varied from
0.01 mmol L−1 to 1.0 mmol L−1. Figure 6B shows that H2O2 could be detected at levels
as low as 0.001 mmol L−1 with a linear range from 0.01 mmol L−1 to 1.0 mmol L−1. The
linear regression equation was A = 0.36458[H2O2] + 0.12741, and the correlation coefficient
R was 0.99853.
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The glucose content could be readily detected by utilizing the same chromogenic sub-
strates studied above. In principle, glucose oxidase could catalyze the oxidation of glucose
to produce H2O2. Thus, when the catalytic reaction is coupled with the glucose oxidation re-
action by GOx, the change from converted TMB could be used to indirectly measure the glu-
cose content with the aid of Fe3(PO4)2·8H2O MNPs as the peroxide-like enzyme. Figure 6C
shows the visible spectra of TMB with variations in the concentration of glucose from
0.1 mmol L−1 to 0.6 mmol L−1. A typical glucose concentration–response curve is shown
in Figure 6D. The linear regression equation was A = 0.83283[glucose] + 0.04598 with a
correlation coefficient of 0.99246, and the linear range for glucose was from 0.1 mmol L−1

to 0.6 mmol L−1. The detection limit was 5 × 10−3 mmol L−1.
To test whether the detection of glucose is specific, control experiments were performed

using fructose, lactose, sucrose, lithic acid, dopamine, cholesterol, and ascorbic acid. The
selectivity of the colorimetric method is shown in Figure 7. The results showed that there
was an obvious color change for the solution containing 0.5 mmol L−1 glucose. For the
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solutions containing 5 mmol L−1 control samples, no obvious absorption or color could be
observed, which could be attributed to the high affinity of GOx for glucose. These results
confirmed that the proposed assay had good selectivity toward glucose.
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In an attempt to explore the practical applications of Fe3(PO4)2·8H2O MNPs, the
Fe3(PO4)2·8H2O MNPs-H2O2 system was applied to determine the glucose level in human
blood serum samples. Five serum samples with different concentrations of glucose were
diluted 10 times to bring the glucose concentration in the serum samples within the
range of the glucose linear regression equation. As shown in Table 1, the results were
satisfactory and agreed closely with the clinical data provided by the hospital. Moreover,
the relative standard deviation (RSD) varied in the range of 0.61–4.34%, which indicated
that the developed method is reliable. All the results indicated that the Fe3(PO4)2·8H2O
MNPs-H2O2 system is an effective and reliable technology for the detection of glucose in
complicated serum samples.

Table 1. Determinations of glucose contents in human serum.

Sample Provided by Hospital
(mmol L−1)

Experimental Result
(mmol L−1 ± SD, n = 3) RSD (%)

1 5.6 5.45 ± 0.04 0.69
2 6.1 6.10 ± 0.08 1.27
3 5.6 5.73 ± 0.25 4.34
4 5.8 5.72 ± 0.04 0.61
5 5.5 5.35 ± 0.11 2.07

3. Discussion

Magnetic nanoparticles (MNPs) have recently drawn great interest due to their unique
features [24]. Some magnetotactic bacteria are believed to produce ferromagnetic nanopar-
ticles via a biomineralization process. In this study, we found that the strain B. cepacia CG-1
had high efficiency in producing magnetic nanoparticles inside its cells. However, our
earlier study confirmed that another Burkholderia sp. YN01, had the ability for magnetic
nanoparticle production [17]. These results indicated that Burkholderia and its related gen-
era might have the potential for magnetic nanoparticle production when the environment
contains iron ions.

The MNPs purified in this study were identified as Fe3(PO4)2·8H2O. Fe3(PO4)2·8H2O
is a kind of widespread iron phosphate found as minerals of the iron(II) salt vivianite. A
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previous report demonstrated that vivianite formation in the presence of Fe(III)-reducing
microorganisms is a typical phenomenon, and some electroactive bacteria such as Geobacter
metallireducens can synthetize vivianite on their cell surfaces [25,26]. However, there is little
information concerning microbes that could synthesize Fe3(PO4)2·8H2O inside their cells.
To our knowledge, this is the first report that nano-scale Fe3(PO4)2·8H2O MNPs could be
synthesized by B. cepacia CG-1 in its cells. Moreover, it was reported that nonmetal oxyacid
anions, such as PO4

3−, have high negative energy, which can bring out a strong inductive
effect and thus contribute to electronic conduction and reaction with H2O2 [27,28]. This
phenomenon indicates that Fe3(PO4)2·8H2O MNPs has the potential to act as a peroxidase-
like enzyme.

The enzyme activity and properties of biosynthesized Fe3(PO4)2·8H2O MNPs were
studied for the first time in this investigation. It was found to have peroxidase-like activity,
similar to that of other iron-based enzymes [5]. The Fe3(PO4)2·8H2O MNPs exhibited
peroxidase-like activity, catalyzing the oxidation of TMB in the presence of H2O2. It is well
documented that artificial magnetic iron oxide nanoparticles, such as Fe3O4, can mimic
the function of peroxidases, catalyzing the oxidation of various peroxidase substrates like
TMB, di-azo-aminobenzene (DAB), and o-phenylenediamine (OPD), resulting in color
changes similar to those observed with horseradish peroxidase (HRP) [2]. Like that of other
iron-based enzymes, the peroxidase-like activity of Fe3(PO4)2·8H2O is concentration-, pH-,
and temperature-dependent. Compared to naturally occurring peroxidases, iron oxide
nanoparticles offer significantly greater stability across a wide range of pH and temperature
conditions. Additionally, their magnetic properties enable easy recovery and recycling. Our
earlier research confirmed that Fe3O4 nanoparticles extracted from the strain Burkholderia sp.
YN01 could be used as peroxidase mimics [19]. Li et al. [11] reported enhanced peroxidase-
like activities of magnetic nanoparticles under visible-light irradiation. However, the
mineral cores of the MNPs purified in these studies were composed of Fe3O4. No previous
research has explored whether other types of MNPs, consisting of different iron oxide
compounds, possess enzyme-like activities. In this study, we demonstrated for the first
time that MNPs composed of Fe3(PO4)2·8H2O exhibit intrinsic catalytic activity. This novel
type of biogenic MNPs may provide new insights into the formation of MNPs within cells
and hold great potential for medical and biotechnological applications.

In our study, both the fluorescence spectroscopy and ESR analysis confirmed that the
·OH radical is the main reactive intermediate in the H2O2-Fe3(PO4)2·8H2O reaction system.
Moreover, it is worth mentioning that there was no hydroxyl radical production when
the system contained only H2O2. Based on these observations, we concluded that Fe2+

catalyzed the conversion of H2O2 to ·OH radicals based on the Fenton reaction as follows:

Fe2+ + H2O2 → Fe3+ + OH− + ·OH

Then, the generated ·OH oxidized TMB into the typical blue color. This mechanism
was not consistent with that of the reported inorganic nanomaterials, originating from
electron transfer.

It is widely accepted that many peroxidase mimetics, especially organic polymers
and inorganic nanomaterials, could be developed for H2O2 and glucose detection [29].
Compared to HRP, artificial enzymes usually have much lower detection limits for the
substrates. Thus, peroxidase mimetics have received considerable attention in recent
years [30]. However, there have been few reports concerning whether biogenic magnetic
nanoparticles could be used as biosensors to detect H2O2 and glucose. In our study, we
successfully established a novel platform for the colorimetric detection of these substrates.
The results demonstrated that the biosensing system is highly sensitive for H2O2 and
glucose detection. The detection limits were calculated to be 1 µmol L−1 for H2O2 and
5 µmol L−1 for glucose, which were lower than those of systems based on Fe3O4, Por-Ceria,
nitrogen-doped graphene, H2TCPP-NiO, and Cu (Table 2). Based on this outcome, the
bio-synthesized Fe3(PO4)2·8H2O can be applied to medical detection in the future.
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Table 2. Comparisons of this work with other nanomaterial-based enzyme mimics for the detection
of H2O2 and glucose.

Nanomaterial Linear Range (µmol L−1) Detection Limit (µmol L−1) Reference

SDS-MoS2
2–100 * 0.32 * [31]5–500 ** 0.57 **

Fe3O4
5–100 * 3 * [32]50–1000 ** 30 **

H3PW12O40
0.134–67 * 0.134 * [33]0.1–100 ** 0.1 **

Por-Ceria 10–100 * 1.8 * [34]40–150 ** 19 **

Nitrogen-doped graphene 20–1170 * 5.3 * [35]25–375 ** 16 **

Graphene oxide 0.05–1 * 0.05 * [36]1–20 ** 1 **

H2TCPP-NiO 20–100 * 8 * [37]50–500 ** 20 **

Cu 10–1000 * 10 * [38]100–2000 ** 100 **

Fe3(PO4)2·8H2O 10–1000 * 1 * This work100–600 ** 5 **
* For the detection of H2O2; ** for the detection of glucose.

4. Materials and Methods
4.1. Chemicals

TMB, horseradish peroxidase (HRP, EC1.11.1.17, 250–330 U mg−1), and glucose ox-
idase (GOx, EC 1.1.3.4. 47, 200 U mg−1) were obtained from Sigma-Aldrich (St. Louis,
MI, USA). Hydrogen peroxide (H2O2, 30%) was obtained from Aladdin Regent Company
(Shanghai, China). Serum samples were obtained from Northeast Forestry University
Hospital. All of the other chemicals used were of analytical grade or the highest quality
available. Ultrapure deionized (DI) water was used throughout the experiments.

4.2. Bacterial Strain and Culture

The strain that was used in this study was isolated from Dongchang Lake, Liaocheng,
Shandong Province, China (36.45◦ N, 115.97◦ E). The isolate was identified as Burkholderia
cepacia by using 16S rDNA sequencing analysis and was designated as B. cepacia CG-1.

The medium used for magnetosome production contained the following chemicals:
succinic acid 0.74 g L−1, NaNO3 0.25 g L−1, KH2PO4 0.68 g L−1, CH3COONa 0.12 g L−1,
Na2S2O3 0.05 g L−1, ferric citrate 12.25 mg L−1, Wolfe’s mineral solution 5 mL L−1, and
Wolfe’s vitamin solution 10 mL L−1 [39].

4.3. Production and Extraction of Magnetic Nanoparticles

The strain B. cepacia CG-1 was inoculated into a 250 mL flask containing 190 mL of
magnetic nanoparticle production medium for static incubation at 30 ◦C. After 5 days, the
bacterial cells were harvested by centrifugation at 4 ◦C (10,000× g r/min) and washed twice
with 100 mmol L−1 phosphate buffer (pH 7.0). The pellet was resuspended in the same
buffer. The cells were disrupted by sonication at 4 ◦C (5s, 60% output, 200×). Magnetic
nanoparticles were separated from the disrupted cells with a permanent magnet. After
collection, the MNPs were washed with phosphate buffer (pH 7.0) and dried at 60 ◦C under
vacuum for 12 h.

4.4. Characterization of Magnetic Nanoparticles

The morphological investigations of the newly exacted MNPs were carried out via
transmission electron microscopy (HRTEM, Tecnai G2 F30, Hillsboro, OR, USA) at an
accelerating voltage of 200 kV. The X-ray diffraction analysis of the MNPs was performed
on an X-ray diffractometer (XRD, Rigaku, D/max-rB, Tokyo, Japan) using Cu Kα radiation
(λ = 1.5418 Å). A Fourier transform infrared analysis of the MNPs was carried out via
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Fourier transform infrared spectroscopy (FTIR; Bruker, Karlsruhe, Germany) using the
transmission mode, and the scanning range was 400–4000 cm−1. An X-ray photoelectron
spectroscopy (XPS) analysis was conducted with an AXIS ULTRA PLD spectrometer (Kratos
Co., San Diego, CA, USA) using Al as the exciting source at 1486.4 eV with a pass energy of
10 eV. Polluted carbon was used in charged corrections of the binding energy of the MNP
sample at 284.6 eV. Room-temperature magnetic experiments were performed on a vibrating
sample magnetometer, and the hysteresis loop was measured at 20,000 Oe. The saturation
magnetization (MS), saturation remanence (MrS), and coercive force (HC) were determined
after correction for paramagnetic phases. Low-temperature demagnetized experiments
were performed on a Quantum Design Magnetic Property Measurement System.

4.5. Kinetic Analysis

To further investigate the catalytic kinetics of the Fe3(PO4)2·8H2O MNPs-based system,
the kinetic parameters of the peroxidase-like reaction were measured by the enzyme kinetics
theory and methods. The typical Michaelis–Menten curves were recorded under the same
conditions by varying the concentration of one substrate, H2O2 or TMB, while keeping the
other substrate constant. Kinetic constants such as the Michaelis–Menten constant (Km)
and maximal velocity (Vmax) were calculated from Lineweaver–Burk plots [40].

4.6. Comparison of the Stability of Fe3(PO4)2·8H2O MNPs and HRP

In this study, we evaluated the stability of Fe3(PO4)2·8H2O MNPs and HRP under
different pH and temperature values. The pH stability was determined by measuring the
activity remaining after the incubation of Fe3(PO4)2·8H2O MNPs or HRP for 1 h in buffers
of various pH values (2.2–10.6). The thermal stability of Fe3(PO4)2·8H2O MNPs and HRP
was determined by conducting the assay in 0.1 mol L−1 phosphate buffer (pH 7.0) for 1 h
at 4–70 ◦C. After incubation, the enzymes’ remaining activities were measured under their
optimized conditions.

4.7. Measurement of Hydroxyl Radical Formation

For fluorescence spectroscopy, 20 µL of 1 mmol L−1 terephthalic acid, 20 µL of
100 mmol L−1 H2O2, and different concentrations of magnetic nanoparticles were added
into 10 mmoL−1 NaAc buffer (pH 3.6) and incubated for 15 min at room temperature. After
that, the solutions were measured by a fluorescence spectrometer.

For electron spin resonance, 20 µL of 40 mmol L−1 5,5-Dimethyl-1-pyrroline N-oxide
(DMPO), 20 µL of 100 mmol L−1 H2O2, and different concentrations of magnetic nanopar-
ticles were added into 10 mmoL−1 NaAc buffer (pH 3.6) and incubated for 10 min at
room temperature. Samples for ESR spectroscopy were injected into quartz capillary tubes
placed in the ESR cavity. DMPO was used to trap the hydroxyl radicals (·OH) to form the
DMPO/·OH spin adduct.

4.8. H2O2 Detection Using MNPs as Peroxidase Mimetics

A typical colorimetric detection for H2O2 was realized as follows: Initially, 20 µL of
1 mg mL−1 MNPs, 20 µL of 25 mmol L−1 TMB, and 40 µL H2O2 with different concentra-
tions were added into 530 µL of 200 mmoL−1 NaAc buffer (pH 3.6). The mixture was then
incubated at 50 ◦C for 3 min. The resulting solution was used for adsorption spectroscopy
measurements at 652 nm.

4.9. Glucose Detection Using MNPs and Glucose Oxidase

Glucose detection was performed as follows: Initially, 20 µL GOx (5 mg L−1) and
180 µL glucose of different concentrations in 10 mmol L−1NaAC buffer (pH 5.5) were
incubated at 37 ◦C for 30 min to produce H2O2. Afterwards, 20 µL TMB (25 mmol L−1),
30 µL MNP stock solution (1 mg mL−1), and 350 µL of 200 mmoL−1 NaAC buffer (pH 3.6)
were added into the above solution. Finally, the mixture was incubated at 55 ◦C for 30 min
and then used for adsorption spectroscopy measurements at 652 nm.
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For glucose determinations in serum, the serum samples were firstly treated by cen-
trifugation at 3000× g r/min for 20 min. Then, each sample was diluted tenfold using
10 mmol L−1 phosphate buffer (pH 7.0) for the following work. According to the above
procedure, the glucose in serum was measured.
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