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Abstract: Brassinazole-resistant (BZR) transcription factors are important transcription factors in
Brassinosteroid (BR)-responsive gene expression. However, limited knowledge exists regarding the
BZR genes in wheat and a limited number of BZR family genes have been previously reported in
wheat. In this study, the synteny analyses of the TaBZR genes suggested that gene duplication events
have played an essential role in the TaBZR family during evolution. The results of RT-qPCR and
transcriptome data analyses exhibited remarkable expression patterns in the BZR genes in different
tissues and under different treatments. The yeast two-hybrid (Y2H) screen result showed that the
TaBZR2.1 protein interacts with Argonaute 4 (AGO4). Taken together, our results not only provide us
a basis for understanding the molecular characteristics and expression patterns of the TaBZR family
genes but also offered the functional characterization of TaBZR2.1 in wheat.

Keywords: wheat; transcription factor; BZR; expression profiles

1. Introduction

Brassinosteroid (BR) is a kind of plant-specific steroidal hormone that plays a crucial
role in many plant biological process, such as regulating plant growth, development, and
the stress response [1]. It is reported that mutant plants with defects in BR biosynthesis or
BR signal components display characteristic phenotypes such as dwarfism [2], constitutive
photomorphogenesis in darkness [3], altered fertility [4], changes in seed size and num-
ber [5–7], delayed flowering, and defects in xylem differentiation [8]. Unlike animal steroid
hormones, plant BRs are perceived by receptors that are located on the cell membrane [9].
Upon receiving the BRs’ signal, the cell membrane receptor kinase BRASSINOSTEROID
INSENSITIVE1 (BRI1) is activated and can phosphorylate a negative regulator, BRI1 kinase
inhibitor 1 (BKI1), inducing its dissociation from the cell membrane [10]. Many plant tran-
scription factors are located downstream of BR signaling events, including key factors such
as BRASSINAZOLE-RESISTANT 1 (BZR) [11]. Acting as positive regulators in BR signaling,
Arabidopsis BES1 and BZR factors are two BES/BZR members of the BZR family [12].

BZR acts as an important regulator in maintaining BR homeostasis for plant growth
and development [13]. It mediates BR-induced gene expression and suppresses BR biosyn-
thesis through feedback mechanisms [11]. BZR transcription factors induce the BR-induced
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genes [11,14–16]. In Arabidopsis, BZR can be phosphorylated by activating BIN2 and in-
teracting with 14-3-3s to regulate BR signaling, which retained BES1/BZR in the cytosol
to prevent BR signaling [17,18]. Dephosphorylation of BZR by PP2A allows it to transfer
to the nucleus to regulate BR-induced gene expression [19]. BZR also mediates the ovule
and seed number in Arabidopsis [5]. It has been reported that BR-activated BZR directly
regulates the genes involved in seed size control such as ZmBES1/BZR-5, which positively
regulates kernel size by inhibiting AP2/EREBP gene transcription [6,7]. Overexpression of
ZmBZR transgenic Arabidopsis results in large organs and seeds [20].

Studies have firmly established that plant development and growth are synergisti-
cally regulated by environmental and hormonal signals, with light and BR serving as
the two central stimuli regulating plant morphogenesis. It is reported that certain pho-
toreceptors mediate brassinosteroid signaling by interacting with BZR. For instance, by
interacting with the photoreceptor phytochrome B (phyB), BZR can repress BR signaling
in Arabidopsis [21]; by interacting with CRY1, BZR and BIN2 can repress BR signaling [22];
and the interaction of PIF4 and BZR controls a hub of transcription networks, integrating
various endogenous and environmental signals [23]. The interaction of BZR and the HY5
mediates the BR and light signaling pathways to regulate the cotyledon opening in seedling
photomorphogenesis in Arabidopsis [24]. Additionally, BZR also plays a vital role in the
response to nitrogen starvation in tomatoes [25].

Furthermore, certain abiotic stresses can induce the expression of BZRs, conferring
tolerance to stresses. For example, a TaBZR gene could be significantly upregulated by salt
treatment in wheat, improving salt tolerance through activating the genes involved in ROS
scavenging and ABA biosynthesis [26]. Tomato BZR can regulate heat stress responses by
ROS signaling [27]. Ectopic expression of a maize BZR gene in Arabidopsis confers tolerance
to osmotic stress [28]. Through CBF-dependent pathways, BZR positively modulates plant
freezing tolerance in Arabidopsis [29]. Ectopic expression of the maize ZmBZR1 gene in rice
and Arabidopsis negatively regulated drought tolerance [30].

The BZR transcription factors have been identified in numerous species [31–33]. Wheat
is a globally significant cereal crop globally, providing approximately 20% of the total calo-
ries consumed by humans [34]. However, compared to other crop species, our understand-
ing of the BZR transcription factors in wheat remains limited. We do not know whether the
wheat BZR gene also responds to plant hormones, participates in the stress response, or has
a role in seed development. This comparative analysis on gene/protein structure, evolution
history, and expression pattern will help to reveal the molecular function of BZR family
genes and provide gene resources for wheat breeding. Therefore, this study characterized
20 members of the wheat BZR gene family and assessed their expression profiles. Addi-
tionally, we further characterized the interacting protein of TaBZR2.1 using Y2H assays
and performed subcellular localization assays. The findings from this investigation may
facilitate further investigation of the molecular functions of the BZR family genes in wheat.

2. Results
2.1. Identification of TaBZR Genes in Wheat

The synteny analyses and chromosomal localization of TaBZR genes showed that
19 out of the 20 TaBZR genes were distributed in 14 of the chromosomes (Figure 1), and the
1 remaining TaBZR gene was mapped onto an unattributed scaffold. With the exception
of the BZR genes on 4B and 4D, the distribution and number of TaBZR genes from the
A/B/D subgenomes were similar. Among them, TaBZR4.4 had four transcripts, TaBZR6
had three transcripts, and TaBZR4.1 had two transcripts. The CDS and polypeptide length,
MW, transcript number, pI, and the predicted subcellular localization were analyzed and
shown in Table S1.
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results revealed that the intron and exon numbers of the TaBZRs were different from 
TaBZR1.1 to TaBZR6. The numbers of exons differed from two to ten, and most of the 
TaBZR genes contained the minimum exon number, i.e., two. Meanwhile, TaBZR4.1 had 
ten, and TaBZR3.1/3.2/4.3/6 contained eight or nine exons. It has been reported that the 
TaBZR genes in tomatoes, Chinese cabbage, and apples do not contain the upstream and 
downstream structures [35]. Meanwhile, all of the TaBZR genes in wheat contained these 
structures, and all of them had exons and introns. 
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Figure 1. The chromosome distribution of the TaBZR genes.

2.2. The Exon–Intron Structure of TaBZR Genes

The gene structures of 20 wheat BZRs were investigated in this study (Figure 2).
The results revealed that the intron and exon numbers of the TaBZRs were different from
TaBZR1.1 to TaBZR6. The numbers of exons differed from two to ten, and most of the
TaBZR genes contained the minimum exon number, i.e., two. Meanwhile, TaBZR4.1 had
ten, and TaBZR3.1/3.2/4.3/6 contained eight or nine exons. It has been reported that the
TaBZR genes in tomatoes, Chinese cabbage, and apples do not contain the upstream and
downstream structures [35]. Meanwhile, all of the TaBZR genes in wheat contained these
structures, and all of them had exons and introns.
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2.3. Analysis of Three-Dimensional Modeling

To further investigate the protein structural effects of the BZRs in wheat, a three-
dimensional (3D) model of BZR proteins was constructed on the SWISS-MODEL website,
and the optimal model was selected according to Global Model Quality Estimation (GMQE)
(Figure 3). The results showed that their structural integrity was preserved throughout
their evolution, which is crucial for their function. A phylogenetic analysis of wheat BZR
genes was conducted in a previous study, and our results strongly support the reliability of
their phylogenetic analysis of the BZR genes [36].
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2.4. Synteny Analyses of TaBZR Genes

Gene duplication events are known as an important source of gene complexity diver-
sity [37]. Synteny analyses of the TaBZR genes were performed to better understand TaBZR
gene family gene duplication and expansion events in wheat (Figure 4). Gene duplication
acts a major factor leading to expansion of the gene family. Current hexaploid wheat was
produced as a result of two natural hybridization events between three diploid species.
In theory, every wheat gene often has three homologous genes, and they are caused by
polyploidization [38]. Figure 4 showed that the TaBZRs were distributed on the 14 wheat
chromosomes. Fourteen TaBZR genes (TaBZR-1.1/1.2/1.3, TaBZR2.1/TaBZR2.2/TaBZR2.3,
TaBZR3.1/TaBZR-3.2, TaBZR4.2/TaBZR4.4/TaBZR4.5, and TaBZR5.1/TaBZR5.2/TaBZR5.3)
were clustered into eleven tandem duplication event regions. These results proved that
gene duplication events are an important driving force during TaBZR gene family evolution.

2.5. Cis-Regulatory Elements in the Promoter Region of TaBZRs

The promoter region of many of the genes contained many cis-acting elements. The
cis-elements in the promoter regions of the TaBZR genes were identified. To understand
the stress-responsive regulatory role of the BZR genes in wheat, promoter cis-acting ele-
ments of TaBZR genes were further analyzed (Figure 5). There were many cis-elements
in the 20 TaBZR genes’ promoter regions, such as anoxic-specific inducibility elements,
anaerobic induction elements, low-temperature-responsive elements, and some plant-
hormone-responsive elements, such as MeJA, ABA, GA, and SA response elements. Some
of the TaBZR gene promoters contain elements associated with the seed-specific regulation
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element, light-responsive element, and meristem expression. Additionally, MYB TF binding
sites involved in light and drought are also found in the promoter regions.
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2.6. Conserved Motifs of TaBZRs

The protein motifs of the TaBZR protein were analyzed utilizing MEME online tools
(Figure 6). We found that motif 1 was conserved in most of the TaBZR transcripts, sug-
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gesting that this region was important for BZR protein functions. Some of the motifs were
found only in a few of the TaBZR subfamilies. For example, motifs 2, 3, 4, 5, 7, 8, and
10 were specific to the subfamily group II. The results of the conserved motif analysis of
TaBZR were generally consistent with those of the TaBZR phylogenetic analysis.
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2.7. Expression Profiles of Wheat BZR Genes

Published data were downloaded and analyzed in this study to gain insight into
the spatial and temporal expression profiles of wheat BZR genes, and the expression pat-
terns of all 20 BZR genes were derived from different development stages of the wheat
tissues that were investigated (Figure 7). The result revealed that some of the TaBZR genes
showed preferential expression in some detected tissues. For example, two genes in anther
(TaBZR3.1/3.2) and four of the genes in lemma (TaBZR2.2/2.4/2.6/3.2) showed the highest
expression levels. In different development stages, some of the TaBZR genes showed signif-
icant expression. For example, the TaBZR2.2/2.4/2.6 genes were gradually increased along
with the root development. Moreover, among the 20 BZR genes, TaBZR2.1/2.3/4.2/4.4/4.5
were barely expressed in all of the detected samples, which may have been due to them
having spatial or temporal expression patterns that may not have been examined in our
study. Overall, the expression profiles of the TaBZRs varied considerably. The differential
expression patterns of the TaBZR genes could provide crucial clues for further investigating
their biological function, implying that these genes may play different roles in wheat.



Int. J. Mol. Sci. 2024, 25, 12545 7 of 17

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 7 of 17 
 

 

Figure 6. Distribution of the conserved motifs of the TaBZRs. (A). Conserved motif analysis of 
TaBZR was performed in this study. The different colored boxes numbered 1–10 indicate different 
motifs. The annotations of the motifs are listed on the right. (B). The conserved amino acid sequences 
in each motif. 

2.7. Expression Profiles of Wheat BZR Genes 
Published data were downloaded and analyzed in this study to gain insight into the 

spatial and temporal expression profiles of wheat BZR genes, and the expression patterns 
of all 20 BZR genes were derived from different development stages of the wheat tissues 
that were investigated (Figure 7). The result revealed that some of the TaBZR genes 
showed preferential expression in some detected tissues. For example, two genes in anther 
(TaBZR3.1/3.2) and four of the genes in lemma (TaBZR2.2/2.4/2.6/3.2) showed the highest 
expression levels. In different development stages, some of the TaBZR genes showed sig-
nificant expression. For example, the TaBZR2.2/2.4/2.6 genes were gradually increased 
along with the root development. Moreover, among the 20 BZR genes, 
TaBZR2.1/2.3/4.2/4.4/4.5 were barely expressed in all of the detected samples, which may 
have been due to them having spatial or temporal expression patterns that may not have 
been examined in our study. Overall, the expression profiles of the TaBZRs varied consid-
erably. The differential expression patterns of the TaBZR genes could provide crucial clues 
for further investigating their biological function, implying that these genes may play dif-
ferent roles in wheat. 

 
Figure 7. The wheat BZR gene expression profiles. Hierarchical clustering of the wheat BZR gene 
expression profiles in 45 of the samples, including different tissues and development stages. The 
numbers in the schematic diagram represent the development stages of the same tissue. 

Certain BZR genes were randomly selected from 20 TaBZR genes to further investi-
gate the expression of TaBZR genes under various different treatments. A qRT-PCR assay 
was performed to analyze the expression levels under different treatments (Figure 8). 
Many of the TaBZR genes were markedly induced under various treatments. For example, 
under cold stress, the expression levels of TaBZR increased, and those of TaBZR1.1/1.2/1.3 
and TaBZR2.1/2.3 initially increased and then later decreased. In the presence of heat and 
ABA treatments, the TaBZR1.1/1.2/1.3 expression levels exhibited an intensive increase 
then decrease, while TaBZR2.1/2.3 and TaBZR5.1/5.3 were reduced. TaBZR1.1/1.2/1.3 and 
TaBZR2.1/2.2/2.3 were reduced under NaCl and mannitol treatments first, but they then 
increased, peaking after 1 or 2 h of treatment. In contrast, TaBZR6 showed a continuous 
downregulation under cold, NaCl, ABA, mannitol, and 24-Epibrassinolide treatments. 
The expression levels of TaBZR1.1/1.2/1.3 and TaBZR2.1/2.2/2.3 were markedly increased 
under 24-BR treatments, and they peaked after 2 h or 0.5 h of treatment, implying that 
they play a crucial role in the BR signal pathway. 
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numbers in the schematic diagram represent the development stages of the same tissue.

Certain BZR genes were randomly selected from 20 TaBZR genes to further investigate
the expression of TaBZR genes under various different treatments. A qRT-PCR assay was
performed to analyze the expression levels under different treatments (Figure 8). Many of
the TaBZR genes were markedly induced under various treatments. For example, under
cold stress, the expression levels of TaBZR increased, and those of TaBZR1.1/1.2/1.3 and
TaBZR2.1/2.3 initially increased and then later decreased. In the presence of heat and
ABA treatments, the TaBZR1.1/1.2/1.3 expression levels exhibited an intensive increase
then decrease, while TaBZR2.1/2.3 and TaBZR5.1/5.3 were reduced. TaBZR1.1/1.2/1.3 and
TaBZR2.1/2.2/2.3 were reduced under NaCl and mannitol treatments first, but they then
increased, peaking after 1 or 2 h of treatment. In contrast, TaBZR6 showed a continuous
downregulation under cold, NaCl, ABA, mannitol, and 24-Epibrassinolide treatments. The
expression levels of TaBZR1.1/1.2/1.3 and TaBZR2.1/2.2/2.3 were markedly increased
under 24-BR treatments, and they peaked after 2 h or 0.5 h of treatment, implying that they
play a crucial role in the BR signal pathway.

2.8. Subcellular Localization Analysis of TaBZR2.1 and Its Tissue-Specific Expression Analysis in Wheat

Since the TaBZR2.1 gene responded to almost all of the treatments in the expression
profile analysis of wheat BZRs, and the expression levels of TaBZR2.1 initially increased in
the early treatment stage and then later decreased, we chose TaBZR2.1 for further analysis.
The TaBZR2.1-GFP fusion vector, which was driven by the CAMV35S, was transformed
into wheat protoplasts and expressed for 24 h to determine the subcellular localization
of TaBZR2.1. The fluorescence signals were detected using confocal microscopy. The
pCAMBIA2300-35S-EGFP vector and the pCAMBIA1300:35S:AtHY5-mCherry were used as
the negative control and as a nuclear marker, respectively [39]. As shown in Figure 9A, the
CaMV35S:GFP signal was observed in the whole cell, whereas the signal of TaBZR2.1-GFP
was overlapped with 35S:AtHY5-mCherry. This result implies that the TaBZR2.1 protein
was confirmed as a nuclear protein. In addition, the TaBZR2.1 tissue-specific expression
profiles showed that TaBZR2.1 gene had a high expression in grain (Figure 9B).
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ysis. The TaBZR2.1-GFP fusion vector, which was driven by the CAMV35S, was trans-
formed into wheat protoplasts and expressed for 24 h to determine the subcellular locali-
zation of TaBZR2.1. The fluorescence signals were detected using confocal microscopy. 
The pCAMBIA2300-35S-EGFP vector and the pCAMBIA1300:35S:AtHY5-mCherry were 
used as the negative control and as a nuclear marker, respectively [39]. As shown in Figure 
9A, the CaMV35S:GFP signal was observed in the whole cell, whereas the signal of 

Figure 8. Expression analysis of the TaBZR genes in response to different treatments by qRT-PCR.
Seeds of wheat cultivar Zhengmai366 (ZM366) were germinated for 3 days in the dark and then
transferred to Hoagland liquid solution. The nutrient solution was changed every three days. At
the trefoil stage (about three weeks old), seedlings were transferred to Hoagland liquid nutrient
solution with ABA (200 mM), NaCl (200 mM), 20% PEG, and epi-BR (1µM) for ABA, NaCl, PEG, and
epi-BR treatment, and seedlings were transferred to chambers at 37 ◦C or 4 ◦C to initiate heat and
cold stress. The data were normalized with TaACTIN and TaGAPDH. The white and black columns in
the diagrams represent the control and treatment groups, respectively. *, p < 0.05. **, p < 0.01.
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Figure 9. Subcellular localization of the TaBZR2.1-GFP fusion protein in the protoplast and TaBZR2.1
tissue-specific expressions. (A). TaBZR2.1-GFP protein driven by the 35S promoter were tran-
siently expressed in protoplast cells of wheat, and they were observed using a confocal microscope.
The GFP signals are represented by a green color; the red color represents the mCherry signals.
Scale bars = 5 µM. (B). TaBZR2.1 tissue-specific expression profiles. Samples of the three-leaf and
filling stages were collected, respectively, and the transcription levels of TaBZR2.1 were measured
using RT-qPCR assays, which were normalized with TaACTIN and TaGAPDH. The letters indicated
significant at p < 0.05. Data are the mean ± SD (n = 3).

2.9. Overexpression of TaBZR2.1 in Arabidopsis Decreases Brassinazole Resistance

The full-length TaBZR2.1 was transferred into the Arabidopsis wild-type Col-0 to fur-
ther investigate the molecular function of TaBZR2.1. A total of 20 T1 transgenic plants
were obtained, and we selected three T3 homozygous lines for further investigation
(Figure S1). Transgenic Arabidopsis lines were exposed to different treatments, including
ABA, NaCl, mannitol, 24-Epibrassinolide, and brassinazole, to further investigate the
role of the TaBZR2.1 gene in stresses. As shown in Figure S2, on 1/2 MS medium, the
overexpression lines showed no significant difference compared to WT. Meanwhile, on
1/2 MS medium with 1 µM of brassinazole, the overexpression lines exhibited a shorter
root length and a smaller leaf area; that is, the transgenic lines were more sensitive to
the brassinazole treatments compared to WT. Additionally, the expression of some of the
stress-induced genes (including AtHsp17.6A, AtHsp17.6B, AtHsp17.6C, AtHsp17.8, SOS1,
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and CAT2) were quantified using RT-qPCR. The results showed that four of the small Hsps
were downregulated in seedlings of the control group, while they were upregulated in
the brassinazole treatment groups; the expression of SOS1 and CAT2 was upregulated
both in the control and brassinazole treatments (Figure 10). Overall, the overexpressed
TaBZR2.1 plants displayed a greater sensitivity to brassinazole tolerance than the Col-0
plants, suggesting that the ectopic expression of TaBZR2.1 brassinazole treatment negatively
affects the root length and leaf area in Arabidopsis. It was also found that the TaBZR2.1
overexpression lines were more sensitive to brassinazole-induced stress.
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Figure 10. Overexpression of the TaBZR2.1 gene in Arabidopsis negatively regulated the brassinazole-
induced stress tolerance. (A). Seedling photographs of the 6-day-old Col-0 and TaBZR2.1-
overexpressing Arabidopsis grown on 1/2 MS with brassinazole (1 µM). (B,C). The root length and
leaf area of the seedlings in (A). The letters indicated significance at p < 0.05 (n = 30). (D,E). The
expression levels of Hsp17.8, Hsp17.6A, Hsp17.B, Hsp17.C, SOS1, and CAT2 in the seedlings under
control (D) and brassinazole (E) treatment. ***, p < 0.001. ns, not significant.

2.10. TaBZR2.1 Physically Interacts with Wheat AGO4

A Y2H library was constructed, and the quality of the library was qualified (Figure 11A,B).
A Y2H screening was performed to elucidate the molecular mechanism by which TaBZR2.1
modulates, and a large number of proteins were enriched (Table S2). We were particularly
interested in one protein, AGO4. The full-length CDS of AGO4 was cloned and it interacted
with TaBZR2.1 in yeast (Figure 11C) Then, a split-LUC assay was performed to further
confirm the interaction. We generated constructs encoding the nLuc and TaBZR2.1 fusion
protein (TaBZR2.1-nLuc) and the cLuc and AGO fusion protein (cLuc-AGO4). Then, these
constructs were infiltrated into tobacco leaves. Likewise, in the split-LUC assay, only
constructs harboring TaBZR2.1 and AGO4 fused to the two halves of the luciferase protein
showed strong LUC signals in the N. benthamiana leaves (Figure 11D), indicating TaBZR2.1
interacts with AGO4 in planta. Taken together, these results showed that TaBZR2.1 interacts
with AGO4 in vivo and in vitro.
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because common wheat has endured two naturally interspecific hybridization events. 
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during the evolutionary process of the wheat [40,41]. Meanwhile, the synteny analyses 
showed that the BZR family expansion in wheat was generated by gene duplication events 
(Figure 4). In addition, three-dimensional modeling of TaBZRs was performed. Moreover, 
we found that the TaBZR proteins from the same subgenome showed similar models (Fig-
ure 3), and they were in agreement with previous findings of the phylogenetic and 
synteny analysis findings [42]. 

BZR genes can be induced by certain phytohormones and various stresses [43–45]. 
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Figure 11. TaBZR2.1 physically interacting with AGO4. (A). Gel electrophoresis results for the iden-
tification of the insert fragments from the yeast library. (B). Yeast library titration. In the experiment,
100 µL of the 1/10, 1/100, 1/1000, and 1/10,000 dilutions and 100 µL of the yeast library were plated on
SD/-Trp medium. Dilution factor = 10−1 (a), 10−2 (b), 10−3 (c), and 10−4 (d). (C). Yeast two-hybrid assay
of TaBZR2.1 interacting with AGO4. BD-TaBZR2.1 (bait) and AD-AGO4 (prey) plasmids were trans-
formed into the yeast (Y2H-gold) competent cell, as indicated and grown on the selection medium.
(D). Split-LUC assay of TaBZR2.1 interacting with AGO4 in the tobacco leaves.

3. Discussion
3.1. Identification and Characteristic Analysis of Wheat BZR Genes

In this study, 20 BZR family genes in wheat were identified, which were named
TaBZR1.1 through TaBZR6 on the basis of wheat gene symbolization guidelines (Figure 1).
The genes in wheat usually have three homologs in three subgenomes (A, B, and D) because
common wheat has endured two naturally interspecific hybridization events. However, in
this study, no BZR gene was found on the 4A chromosome. The absence of the BZR gene
on 4A could be the results of gene modification or the recombination events during the
evolutionary process of the wheat [40,41]. Meanwhile, the synteny analyses showed that
the BZR family expansion in wheat was generated by gene duplication events (Figure 4).
In addition, three-dimensional modeling of TaBZRs was performed. Moreover, we found
that the TaBZR proteins from the same subgenome showed similar models (Figure 3), and
they were in agreement with previous findings of the phylogenetic and synteny analysis
findings [42].

BZR genes can be induced by certain phytohormones and various stresses [43–45].
Previous study shows that maize BZR gene promoters contains light- and stress-responsive
elements [33], while Arabidopsis and soybean BZR gene promoters revealed the presence
of development-related and stress-, hormone-, and light-responsiveness-related cis-acting
elements [46]. The cis-regulatory elements in the promoter region of TaBZR were analyzed
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(Figure 5). Certain TaBZR promoters included the GA-, ABA-, MeJA-, and SA-responsive
elements, suggesting that some TaBZR genes might be regulated by phytohormone and
stress conditions. It was observed in a previous study that some BZRs are key to regulating
organ and seed sizes [5,23]. Moreover, some of the elements of seed-specific regulation and
meristem expression elements have also been found in some TaBZR promoters. The results
imply that the TaBZR genes might be involved in plant growth and development, the stress
response, and phytohormone metabolism networks. Previous studies showed that the BZR
genes can be induced by ABA, cold, drought, and salt stress [31]. And the expression of
ZmBZR genes is responsive to ABA and light [33]. Similarly, in view of the crucial role
played in the stress response, the expression levels of the TaBZR genes under cold (4 ◦C)
and hot (37 ◦C) conditions, as well as under ABA, NaCl, mannitol, and 24-Epibrassinolide,
were investigated in this study (Figure 8). The expression levels of most of the TaBZR genes
dramatically changed when subjected to stress treatments.

Subcellular localization analysis is a valuable tool for gaining insights into the cellular
activities of proteins [42], and the nuclear localization of proteins is a common feature of
transcription factors [23]. Subcellular localization results showed that the TaBZR2.1 protein
was localized in the nucleus (Figure 9A).

3.2. Molecular Functional Analysis of TaBZR2.1

BZR genes have been comprehensively investigated in rice and Arabidopsis, and they
have been implicated in numerous plant processes. There is substantial evidence indicating
that BZR genes play crucial roles in the regulation of plant growth, development, and
response to environmental stress [30,31,34]. Recent studies have demonstrated that wheat
TaBZR2 provides resistance to wheat stripe rust [47]. Overexpression of TaBZR1 in wheat
increases grain size. TaBZR1 mediates wheat chilling tolerance by directly binding to the
TaSAMT1 promoter to activate its expression [48].

BZR genes respond to abiotic stress and plant hormone treatment. For instance, the
overexpression of the tomato BZR1D gene in Arabidopsis positively regulates BR and salt
tolerance [36]. By promoting ABA biosynthesis and ROS scavenging, the TaBZR1 gene can
enhance wheat salt tolerance. To dissect the molecular function of TaBZR2.1, Arabidopsis
overexpression lines were generated using Agrobacterium-mediated transformation (Figure
S1). We identified that the wheat TaBZR2.1 gene is involved in the brassinazole stress
response. In Arabidopsis, the ectopic expression of TaBZR2.1 indicated the shoot root
length and small leaf area under brassinazole treatment, and the TaBZR2.1 overexpression
lines were found to be more sensitive to brassinazole-induced stress (Figure 10). Overall,
TaBZR2.1 played a negative role in brassinazole stress response.

AGO proteins are present in various organisms and exhibit expression across a diverse
array of tissues [49,50]. They are central components of the RNA-induced silencing complex
(RISC) and play an important role in plant development and growth [51]. For example,
Arabidopsis AGO1 regulates leaf and floral stem cell development by binding to miR172
and miR165/166 [3]. In rice, OsAGO17 regulates grain weight and seed size through
miR172 [47]. Additionally, OsAGO18 can bind to miR168, thus participating in antiviral
rice defense pathways [52]. In Arabidopsis and rice, the AGO1 gene is required for normal
plant development [53]. In this study, the Y2H assay was used to identify TaBZR2.1-
interacting proteins. Our findings indicated that TaBZR2.1 directly interacts with AGO4, as
predicted, suggesting that BZR-mediated BR signaling may serve as an important strategy
in miRNA-mediated gene regulation (Figure 11C,D).

Overall, our findings provide valuable clues about the TaBZR family genes and their
functional response to a variety of hormones and stresses in the different plant developmental
processes. However, the molecular functions of TaBZR genes need to be further investigated.
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4. Materials and Methods
4.1. Identification of BZRs in Wheat

The sequences of DNA (FASTA), proteins (FASTA), and the GFF3 files of wheat were
downloaded from EnsemblPlants. The hidden Markov model of the BES1/BZR plant
transcription factor N-terminal (Pfam login number: IPR008540) was obtained from the
Pfam database and BLAST tool was used to identify the homologous proteins in wheat,
maize, rice, and Arabdopsis. The obtained protein sequences were further analyzed by the
NCBI Conserved Domain Database, and the redundant sequences were removed. The
20 BZR genes were named in accordance with gene symbolization guidelines.

4.2. Chromosomal Localization and Collinearity of the TaBZR Genes

The TaBZRs were mapped onto the chromosomes by analyzing the wheat GFF3 files. We
utilized the TBtools software (V1.098, Guangzhou, China) [54] and MCScanX toolkit program
(Athens, OH, USA) to visualize the chromosomal localizations and gene duplications.

4.3. Phylogenetic Analysis of BZR Proteins

The protein sequences of the BZR family in wheat and other selected species were
downloaded and aligned via MUSCLE [55] using the default parameters to assess the
evolutionary relationships of BZR in plants. Using MEGA-X software (V11.0., Philadelphia,
PA, USA), a neighbor-joining phylogenetic tree was generated. Evolview software (V4.0,
Beijing, China) was used to further modify the tree.

4.4. Subcellular Localization of TaBZR in Wheat Protoplasts

The coding sequence (CDS) of TaBZR2.1 (gene ID: TraesCS3A02G123500) was PCR-
amplified from the cDNA of the Zhengmai 366 genetic background of wheat using specific
primers and KOD OneTM PCR Master Mix (TOYOBO, KMM-101, Osaka, Japan), and it
was cloned into the pAN580-GFP vector. The HY5 protein of Arabidopsis was used in this
study as a nuclear marker [27]. These vectors were then transformed into wheat protoplasts.
The steps of the wheat protoplast extraction and transformation were conducted as has
been described in a previous study [56]. The GFP fluorescence signals of the protoplast
were observed under a confocal microscope (Zeiss, Jena, Germany).

4.5. Plant Materials and Stress Treatments

Healthy seeds of wheat cultivar Zhengmai366 (ZM366) were germinated in distilled
water for 3 days in the dark. The germinated seeds were then transferred into a Hoagland
liquid nutrient solution. At the trefoil stage, the seedlings were transferred to nutrient
solution with ABA (final concentration 200 mM), NaCl (final concentration 200 mM), 20%
PEG, and epi-BR (final concentration 1µM) for the ABA, NaCl, PEG, and epi-BR treatments,
respectively. Meanwhile, trefoil-stage wheat was transferred into chambers at either 37 ◦C
or 4 ◦C to initiate heat and cold stress. The solution was changed every three days. Leaf
samples were collected at different time points after treatment.

The full-length open reading frame (ORF) of the TaBZR2.1 gene was cloned into
the Kpn I/Sal I-digested 35S-eGFP vector to generate transgenic plants overexpressing
TaBZR2.1. These constructs were then transformed into Arabdopsis (Col-0) via the Agrobac-
terium dipping flower method. The genomic DNA and RNA of the T1 plant were extracted
to verify the presence of overexpression genes, and the expression levels of the TaBZR2.1
gene and the specific primer pairs were used for PCR amplification (Table S3). Seeds of the
T1 transgenic lines were sterilized and sown on a 1/2 MS medium containing kanamycin
(final concentration 50 µg/mL) for further investigation.

4.6. Gene Expression Pattern Analysis

The RNA of samples collected in this study was extracted using an RNAiso Plus (No:
9108, Takara, Osaka, Japan). The quantity and quality of the extracted RNA from samples
were examined using a Qubit 4.0 Fluorometer (Invitrogen, Carlsbad, CA, USA). The RNA
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were then reverse-transcribed to cDNA for real-time qPCR analysis. The expression levels of
TaBZR2.1 genes were normalized against those of TaACTIN (gene ID: TraesCS5B02G124100)
and TaGAPDH (gene ID: TraesCS6B02G243700). The transcriptomic data from different
tissues were downloaded from the Wheat eFP Browser. A hierarchical cluster map was
obtained by the Tbtools software (V1.098, Guangzhou, China) [54].

4.7. Yeast Two-Hybrid Assay

A Y2H experiment was performed in accordance with the Matchmaker Gold Yeast
Two-Hybrid System (https://www.takarabiomed.com.cn/, accessed on 20 November
2024). To generate the pGBKT7-TaBZR2.1 bait vector, the CDS of TaBZR2.1 was amplified
from the cDNA of wheat and cloned into the digested pGBKT7 vector. The CDS of AGO4
(gene ID: TraesCS3A02G188400) was amplified and ligated into the pGADT7 plasmid in
order to generate the prey vector, producing pGADT7-AGO4. Then, the prey vectors were
co-transformed with bait vectors. The transformants were plated on DDO (SD/-Leu/-Trp)
and QDO medium (SD/-Ade/-His/-Leu/-Trp) with ABA (125 ng/mL).

4.8. Split Luciferase Complementation Assay

cLuc-AGO4 and TaBZR2.1-nLuc vectors were used in the analysis. Constructs were
electroporated into the agrobacterium competent cell (GV3101) and then injected into N.
benthamiana leaves. After 48 h of infiltration, tobacco leaves were sprayed with D-luciferin
(final concentration 1 mM), and then removed from light for 5 min. The signals were
detected using a Night SHADE LB 985 system (Berthold, Stuttgart, Germany).

4.9. Conserved Protein Motifs and Structure of the TaBZRs

We used the MEME software (V5.5.7, Reno, NV, USA) to analyze the conservative
motifs of the TaBZRs, and the results were visualized using the TBtools software (V1.098,
Guangzhou, China) [54]. The exon–intron structures of the TaBZR genes were analyzed
using GSDS 2.0.

4.10. Statistical Analysis

The IBM SPSS Statistics 22 software (Chicago, IL, USA) was used in this study to
analyze the data using one-way ANOVA.

5. Conclusions

A total of 20 TaBZR gene members were identified in wheat in this study, and compre-
hensive bioinformatic analyses were performed for them. The promoter regions of the TaBZR
genes contained elements associated with stress responses and the phytohormone response.
Meanwhile, we confirmed that the TaBZR2.1 protein was located in the nucleus. In addition,
we observed TaBZR2.1 physically interacting with AGO4 in vivo and in vitro. The discoveries
in this study offer valuable clues for further investigation of BZR genes in wheat.
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