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Abstract: Constructing scaffolds with the desired structures and functions is one of themain goals of
tissue engineering. Three‑dimensional (3D) bioprinting is a promising technology that enables the
personalized fabrication of devices with regulated biological and mechanical characteristics similar
to natural tissues/organs. To date, 3D bioprinting has been widely explored for biomedical appli‑
cations like tissue engineering, drug delivery, drug screening, and in vitro disease model construc‑
tion. Among different bioinks, photocrosslinkable bioinks have emerged as a powerful choice for
the advanced fabrication of 3D devices, with fast crosslinking speed, high resolution, and great print
fidelity. The photocrosslinkable biomaterials used for light‑based 3D printing play a pivotal role in
the fabrication of functional constructs. Herein, this review outlines the general 3D bioprinting ap‑
proaches related to photocrosslinkable biomaterials, including extrusion‑based printing, inkjet print‑
ing, stereolithography printing, and laser‑assisted printing. Further, the mechanisms, advantages,
and limitations of photopolymerization and photoinitiators are discussed. Next, recent advances
in natural and synthetic photocrosslinkable biomaterials used for 3D bioprinting are highlighted.
Finally, the challenges and future perspectives of photocrosslinkable bioinks and bioprinting ap‑
proaches are envisaged.
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1. Introduction
One of the goals of tissue engineering is to fabricate bioactive scaffolds with specific

structures and functions for regenerative medicine. Researchers have developed numer‑
ous functional constructs in the past decades by combining biomaterials, seed cells, and
biological molecules [1,2]. Despite the remarkable progress in biomedical applications like
injury repair [3,4], disease modeling [5,6], and drug screening [7], the clinical application
of tissue engineering remains unsatisfactory, which is partly attributed to the limited abil‑
ity to build scaffolds with controlled cell or biomaterial distribution, interconnected vas‑
cular systems, and complex geometry [8]. For example, conventional tissue engineering
has explored several strategies, such as particle leaching [9,10], gas foaming [11–13], sol‑
vent casting [14], and electrostatic spinning [15,16], to fabricate scaffolds with the desired
porous structures, thus facilitating control over themechanical performance [17,18], degra‑
dation properties [19–22], cellular response [23,24], and oxygen, nutrient, and metabolic
waste exchange [25–28]. However, developing tissue‑engineered bioactive devices with
customized structures, specific cell organizations, and dynamic physicochemical niches
that satisfy the personalized demands for structural and functional organ regeneration re‑
mains challenging [29–32].

To build customized scaffolds, various 3D bioprinting approaches that aim to recapitu‑
late the key features of native organs/tissues have been developed, such as extrusion‑based,
inkjet, stereolithography, and laser‑assisted 3D bioprinting [33,34]. Three‑dimensional bio‑
printing is an additive biomanufacturing technique that mainly utilizes cell‑laden bioinks
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to build biomimetic constructs in a layer‑by‑layer manner based on predesigned 3D mod‑
els [33,34]. Through 3D bioprinting, it is possible to create scaffolds with controllable geom‑
etry, high cell density, and improved bioactivity that are suitable for regenerative medicines
in vitro or even in vivo.

Despite the exciting achievements of 3D bioprinting in tissue/organ repair [35–37],
drug delivery [38–40], and disease models [41–43], there are still several challenges that
need to be taken into consideration for further research advances. One of the most impor‑
tant parts is the development of appropriate bioinks. Generally, bioinks comprise cells,
biomaterials, growth factors, and other functional additives. As a part of bioinks, bio‑
materials play a crucial role in endowing them with proper printability, biodegradability,
bioactivity, and physiochemical performance [44]. Hydrogel materials are the most com‑
monly used for bioinks due to their hydrating nature being similar to native extracellular
matrix (ECM).

Based on the nature of the biomaterials involved, hydrogels are formed through a
range of physical or covalent crosslinking strategies, such as Schiff base reactions [45],
enzymatic crosslinking [46], ionic crosslinking [47,48], hydrogen bonding [49], and pho‑
tocrosslinking [50]. In particular, proper crosslinking is frequently required to guarantee
scaffold fidelity and integrity in 3D bioprinting. Among biomaterials, photocrosslinkable
biomaterials have attracted huge attention for their ability to rapidly fabricate 3D scaffolds
with enhanced resolution and improved fidelity [51]. To date, numerous natural or syn‑
thetic photocrosslinkable biomaterials have been developed for 3D bioprinting, such as
methacrylate gelatin (GelMA) [52], methacrylate hyaluronic acid (HAMA) [53], methacry‑
late alginate (AlgMA) [54], and Polyethylene glycol diacrylate (PEGDA) [55].

With the rapid development of light‑based 3D bioprinting, it is necessary to present
a general overview of the recent status and trends of photopolymerizable biomaterials
within the field. In this paper, we first briefly introduce the principles, developments, and
features of the most commonly photopolymerization‑related 3D bioprinting technologies,
including extrusion‑based printing, inkjet printing, stereolithography printing, and laser‑
assisted printing. Then, the mechanisms and characteristics of both photopolymerization
reactions and photoinitiators are discussed. Next, we focus on the recent progress and
evolution of photocrosslinkable natural or synthetic biomaterials commonly used in light‑
based 3D bioprinting. Finally, existing limitations and future directions of photocrosslink‑
able materials for 3D bioprinting are discussed.

2. The Major 3D Bioprinting Technologies
2.1. Extrusion‑Based 3D Bioprinting

Currently, the most popular strategies for 3D bioprinting include extrusion printing,
inkjet printing, stereolithography, and light‑assisted printing [33,34]. Among these 3D
printing technologies, extrusion 3D printing is one of the most common [56].

In extrusion‑based 3D bioprinting, the bioink is loaded into a plastic or metal barrel
and then extruded from the printing needle through a piston, screw, or pneumatic extru‑
sion to build 3D scaffolds (Figure 1a) [57–59]. Inmost extrusion‑based 3Dbioprintingmeth‑
ods, bioinks with enough viscosity in the static state are highly preferred to guarantee the
stability and integrity of the printed scaffolds [60–62]. Meanwhile, shear‑thinning proper‑
ties are also required to ensure smooth extrusion, thus reducing the shear force to alleviate
potential cell damage [63–65]. One advantage of extrusion‑based 3D bioprinting is the abil‑
ity to achieve rapid scaffold construction with a high cell density (108–109 cells/mL) [66,67].
However, because of undesirable nozzle clogging, printing failures, and high‑shear‑stress‑
induced cell death, a nozzle that is too small is not favorable for extrusion‑based bioprint‑
ing. As a result, the printing accuracy is limited to around 100 µm [68,69].
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Figure 1. Schematic illustration of (a) extrusion, (b) inkjet, (c) stereolithography, and (d) light‑
assisted 3D bioprinting (The figures were created with BioRender).

2.2. Inkjet 3D Bioprinting
The mechanism of inkjet 3D bioprinting is similar to that of traditional office inkjet

printing. Generally, low‑viscosity bioink is first loaded into a cartridge before being ejected
from the printing nozzle through thermal, piezoelectric, and electromagnetic forces to form
tiny droplets, which are deposited on the platform to build 3D scaffolds (Figure 1b) [70–72].
Although utilizing piezoelectric and electromagnetic interactions is beneficial for produc‑
ing smaller droplets and improving the printing resolution, it can also lead to unexcepted
cell membrane damage or death, which should be taken into careful consideration in inkjet
bioprinting [73,74].

For bioinks used in inkjet 3D bioprinting, low viscosity is essential for allowing the
smooth formation of ink flow and droplets. In addition, quick crosslinking is beneficial
for ensuring a stable printing structure. With inkjet 3D bioprinting, it is possible to ob‑
tain scaffolds with a fine resolution (10–50 µm) [75,76]. Furthermore, cells with viability
higher than 90% also can be achieved because of the use of low‑viscosity bioink [77]. How‑
ever, the inability of inkjet 3D bioprinting to print continuously and quickly with high cell
concentrations (106–107 cells/mL) limits its further application [78].

2.3. Stereolithography 3D Bioprinting
Stereolithography, first introduced in the 1980s, utilizes a photosensitive resin and a

computer‑controlled UV laser to build a layer of cured resin through photopolymerization
in a point‑by‑point scanningmanner. After one layer is completed, the next layer is moved
back to complete the curing. Finally, the printed structure is obtained (Figure 1c) [79,80].
In recent years, stereolithography has also emerged in the field of 3D bioprinting. One of
the advantages of stereolithography bioprinting is that it enables the rapid construction
of biological scaffolds. Moreover, the resolution of printed scaffolds has been greatly im‑
proved due to the use of computer‑guided laser scanning [81–83]. However, continuous
high‑energy UV laser scanning during printing may cause cell damage [84,85].

2.4. Laser‑Assisted 3D Bioprinting
Laser‑assisted printing was initially applied tometal transfer and later, more recently,

to 3D bioprinting. In general, the printing devices consist of the laser source, target plate,
and receiving substrate plate. The target plate often consists of a transparent substrate, a
gold or titanium energy‑absorbing layer, with bioink coated on it. When the laser emitted
to the target plate is absorbed by the absorber layer, a phase change occurs, and the ink
is ejected onto the receiving substrate plate (Figure 1d) [86]. The cells often exhibit high
viability because few shear forces are generated during the printing process [87,88]. The
computer scanning of the laser enables the construction of fine printed structures [89–91].
Similar to inkjet 3D bioprinting, the printing ink used for laser‑assisted 3D bioprinting
requires low viscosity along with secondary crosslinking to form a stable print structure.
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3. Photocrosslinking Reaction
In addition to appropriate printingmethods, printing inks play a pivotal role inmodu‑

lating the scaffold’s biological andmechanical performance. The ideal bioinks shouldmeet
some basic requirements associated with printability, biocompatibility, biodegradability,
and mechanical properties [92,93]. Hydrogel has attracted great attention in 3D bioprint‑
ing for its superiority in recapitulating the microenvironment features of the ECM, which
is essential for cell adhesion, proliferation, and migration [94,95]. Ideally, bioinks should
be viscous liquids to ensure smooth printing and then transform into hydrogels to avoid
scaffold collapse.

In general, printing inks are crosslinked into hydrogels through physical and chemical in‑
teractions. Physical crosslinking mainly includes hydrogen bonding [49], hydrophobic inter‑
actions [96], electrostatic attraction [97], and ionic crosslinking [44]. The hydrogel formed by
non‑covalent physical interaction is mechanically weak. Chemical crosslinking utilizes various
chemical strategies, such as Schiff base reactions [98], azide–alkyl cyclization [99], hydrazide–
aldol coupling [100], Michael addition [101], enzymatic reactions [102,103], and UV [104,105],
visible [106–108] and near‑infrared light [109,110] crosslinking reactions, to induce covalent hy‑
drogel crosslinking. Compared to other crosslinking strategies, photocrosslinking is suitable
for 3D bioprinting for its simple, rapid, and precise control over the curing process, which
helps build scaffolds with the desired structure [111,112]. In the process of photocrosslinking,
the selection and concentration of the photoinitiator, intermediate products, reaction rate, and
other factors are closely related to the biological activity and shape fidelity of 3D‑bioprinted
scaffolds. Therefore, it is necessary to understand the mechanism of photocrosslinking. Cur‑
rently, there are three types of photocrosslinking reactions for 3D bioprinting: free‑radical‑
mediated chainpolymerization, thiol‑ene crosslinking, and redox‑based crosslinking [113–115].

3.1. Free Radical Chain‑Growth Polymerization
Free radical chain‑growth polymerization is the most common method for hydrogel

preparation. The reaction includes three stages: initiation, propagation, and termination.
In the initiation stage, the photoinitiator is decomposed under light irradiation to gener‑
ate free radicals. After successful initiation, the generated radicals can react with the cor‑
responding functional groups on the polymer backbone to produce new covalent bonds
and radical intermediates. These free radical intermediates then continue to react with
unreacted functional groups to generate another radical intermediate. This process contin‑
ues to propagate radical species in a chain‑like manner [116,117]. Propagation continues
until radical quenching occurs through radical coupling (between propagating chains or
between propagating chains and photoinitiator radicals) or chain transferring from prop‑
agating chains to other molecules or inhibitors (Figure 2).
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Free radical polymerization reaction behaviors have been well studied in previous
studies [118–120]. The rate of free radical polymerization is related to the monomer con‑
centration, photoinitiator concentration, photoinitiator molar extinction coefficient, light
intensity, and so on. It is obvious that increasing the monomer concentration, photoinitia‑
tor concentration, or light intensity can help to achieve faster polymerization. However,
this might also result in more cell damage or death. In 3D bioprinting, these parameters
should be determined carefully to balance between the curing rate and cell viability.

Several methacrylate‑based bioinks (GelMA, HAMA, and PEGDA) have been exten‑
sively studied for their quick crosslinking ability and excellent biocompatibility. How‑
ever, the complex polymerization kinetics make it hard to effectively predict the progress
of polymerization. More importantly, since oxygen easily reacts with free radicals to form
peroxyl radicals, the propagation process is prone to be interrupted or terminated. In terms
of 3D bioprinting, the polymerization of the polymer backbone tends to be inhibited by am‑
bient oxygen, which may result in delayed or failed crosslinking. As a consequence, the
shape fidelity of the 3D structure could be affected [113,121]. Although oxygen inhibition
is mitigated by increasing the light intensity or photoinitiator concentration, adding addi‑
tives (amines, N‑vinyl amines, silanes), and removing ambient O2, these interventions can
cause undesired damage to cells during photocrosslinking.

3.2. Thiol‑Ene Polymerization
In recent years, bioinks based on thiol‑ene click chemistry have attracted increasing

attention for their ability to form homogeneous hydrogels in an oxygen‑tolerating and cell‑
friendly way. Thiol‑ene click chemistry allows precise control over hydrogel properties
like the crosslinking density, mesh size, andmechanical performance by changing the type,
concentration, and length of the alkene group and thiol crosslinker. Typically, thiol‑ene
click reactions are facilitated by either catalysts or free radicals. Light‑induced thiol‑ene
crosslinking preserved the merits of thiol‑ene click chemistry while offering a powerful
tool to fabricate 3D scaffolds in a temporally and spatially controlled manner.

Similar to free‑radical‑mediated chain‑growth polymerization, thiol‑ene crosslinking
also requires free radicals to initiate the reaction. During the initiation stage, the free rad‑
icals first convert the thiol groups into thiyl radicals. Due to the fact that oxygen tends to
abstract hydrogen from the thiol group to regenerate the thiyl radical, this process is not
impeded by ambient oxygen. Then, propagation occurs when the thiyl radicals react with
alkene groups to form covalent bonds and generate new radical intermediates. The radical
intermediates can react with another thiol to produce a new thiyl radical or induce poly‑
merization among alkenes (chain growth). Thus, free‑radical‑induced step‑growth and
chain‑growth polymerization may co‑occur in a mixed mode. The tendency to undergo
step growth or chain growth mainly depends on the reactivity of the functional groups
(Figure 3). For example, norbornene exclusively reacts with thiol‑containing crosslinkers
through step‑growth polymerization. Meanwhile, methacrylates can be crosslinked via
both step‑growth and chain‑growth polymerization.

One advantage of thiol‑ene crosslinking is its ability to form a hydrogel rapidly. The re‑
activity of step growth is closely related to the nature of the functional groups, such as the
electron density, radical intermediate stability, and steric hindrance. In work by Northrop
and his coworkers on the reactivity of a series of alkene groups, the authors demonstrated
that norbornene has the highest reactivity [122]. Compared with other alkenes, like acrylates,
methacrylates, vinyl ethers, and vinyl esters, the inherent ring strain endows norbornenewith
a rich electron density that is suitable for thiyl radical attacking (Figure 3c) [122]. Based on
this, bioinks utilizing the thiol–norbornene reaction have attracted enormous interest in re‑
cent research.
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Another benefit of thiol‑ene click chemistry is the precise control over hydrogel net‑
works andmechanical performance. The specific reaction between certain thiol and alkene
groups can be achieved by selecting the appropriate thiol or alkene, thus gaining accurate
control over the hydrogel networks. The stoichiometric ratio of the thiol to the alkene is
correlated with the hydrogel’s mechanical performance. Ideally, a 1:1 stoichiometric ratio
would ensure the full consumption of the thiol and alkene, realizing hydrogel formation
with better mechanical performance. An excess of the thiol or alkene would lead to insuffi‑
cient crosslinking or weak mechanical properties. This allows the modulation of hydrogel
performance in a flexible way. In addition, the remaining thiol or alkene can offer extra
sites for biological modification. For example, thiol‑terminated arginine–glycine–aspartic
acid (RGD) peptide has been frequently conjugated with norbornene through the thiol–
norbornene reaction to improve the cell adhesion performance of the hydrogels [123].

3.3. Redox Photocrosslinking
In redox‑based crosslinking, bioinks are mainly modified with phenolic hydroxyl

groups and crosslinked in the presence of a photosensitizer. Photosensitizers aremolecules
that can be photo‑oxidized into an excited state upon light irradiation. Excited photo‑
sensitizers then produce crosslinkable phenolic hydroxyl radicals through two reactions:
(i) reacting with the phenolic hydroxyl groups directly; (ii) reacting with triplet oxygen
to generate reactive oxygen species (ROS) that can oxidize the phenolic hydroxyl moi‑
eties. The nearby generated phenolic hydroxyl radicals bond to form hydrogel networks
(Figure 4) [124,125].

Comparedwith radical chain‑growth polymerization, an obvious advantage of redox‑
based crosslinking is that ambient oxygen can accelerate phenolic hydroxyl radical pro‑
duction, thus promoting hydrogel formation. However, the excess ROS generated during
crosslinking might result in undesired cell damage. The bioink composition should be
carefully optimized to avoid potential cytotoxicity. The most common strategy to prepare
redox‑based bioinks is to modify the polymer chains with phenolic hydroxyl groups, such
as tyramine‑modified hyaluronic acid (HA‑tyr) and alginate (Alg‑tyr) [126,127]. In recent
studies, tyrosine‑rich extracellular matrix materials were also developed for 3D bioprint‑
ing [124].
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In addition to the crosslinking strategy, the photoinitiator also plays an important role

in photocrosslinking‑based bioprinting. Photoinitiators are compounds that can catalyze
photopolymerization by generating crosslinking agents upon light irradiation. Typically,
photoinitiators are categorized as cationic and free radical photoinitiators, depending on
their different initiating mechanisms. However, cationic photoinitiators are unsuitable for
3D bioprinting due to the continuous release of toxic Lewis or Broensted acid byproducts
during the initiating stage [128,129].

Free radical photoinitiators are the most common photoinitiators used in 3D bioprint‑
ing. In general, free radical photoinitiators are categorized as type I and type II according
to the mechanism of generating free radicals. For a type I photoinitiator, free radicals are
generated directly with the cleavage of a weak bond upon light irradiation. In contrast,
free radical production with a type II photoinitiator is more complex. The activated pho‑
toinitiator requires a co‑initiator to serve as a hydrogen donor, thus generating secondary
radicals to initiate photopolymerization (Scheme 1) [130].
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The photoinitiator is generally selected based on parameters such as solubility, ab‑
sorption spectra, molar extinction coefficient, quantum yield, and cytotoxicity. Firstly,
the photoinitiator should be water‑soluble to avoid adding toxic organic solvents. Sec‑
ondly, the photoinitiator should produce proper light absorption spectra that overlap well
with the light sources. A high molar extinction coefficient is also preferred to guarantee
sufficient quantum yield efficiency, thus ensuring fast crosslinking with safe light inten‑
sity. Furthermore, the photoinitiator should show excellent cytocompatibility at the work‑
ing concentration. Given these considerations, only a few photoinitiators are suitable for
3D bioprinting.

To date, a variety of photoinitiators have been explored in 3D bioprinting (Table 1).
2‑Hydroxy‑1‑[4‑(hydroxyethoxy)phenyl]‑2‑methyl‑1‑propanone (Irgacure 2959) is a type
I photoinitiator with a molar extinction coefficient of 4 M−1 cm−1 at 365 nm. Given its
water‑soluble nature, Irgacure 2959 allows photocrosslinking in aqueous conditions. In
an early study, Williams et al. evaluated the toxicity of several UV‑light‑based photoini‑
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tiators, including Irgacure 2959, 1‑hydroxycyclohexyl‑1‑phenyl ketone (Irgacure 184), and
2,2‑dimethoxy‑2‑phenylacetophenone (Irgacure 651), in six different cells lines in detail.
They demonstrated that Irgacure 2959 shows minimal cytotoxicity in various mammalian
cells [131]. Despite the good cytocompatibility of Irgacure 2959, there are still some draw‑
backs. For example, since Irgacure 2959 only exhibits a low molar extinction coefficient
(4 M−1 cm−1) at 365 nm, long‑term irradiation, strong light intensity, or high photoinitia‑
tor concentration is required for efficient crosslinking. However, this may cause undesired
cell damage or genetic mutations in the encapsulated cells [132]. Meanwhile, its relatively
low water solubility (0.7 w/v%) has also restricted the further application of Irgacure 2959.

Table 1. Representative UV and visible light photoinitiators.

Name TPO Irgacure 2959 LAP VA‑086 Riboflavin

Absorption spectrum
(λmax nm)

350–380
420–440 365 365/405 365–385 444

Structure
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In recent years, another type I photoinitiator, lithium phenyl‑2,4,6‑trimethylbenzoyl
phosphinate (LAP), has aroused more attention in light‑based 3D bioprinting. Compared
with Irgacure 2959, LAP’s high water solubility (8.5 w/v %) makes it suitable for various
crosslinking systems [146]. In addition, in the work by Xu and coworkers, the cells within
scaffolds cured by LAP showed higher cell viability than those of Irgacure 2959 [132]. LAP
also exhibits much stronger light absorption (365 nm, 218 M−1 cm−1) than Irgacure 2959,
which allows faster free radical generation [135]. Due to its strong initiation ability, amuch
lower LAP concentration is used in bioinks. Another advantage of LAP is that it can be
used as a visible light photoinitiator (405 nm, 25 M−1 cm−1) to circumvent potential UV‑
light damage [135].
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In addition to Irgacure 2959 and LAP, 2,4,6‑trimethylbenzoyl‑diphenylphosphine ox‑
ide (TPO) has also been explored in light‑based 3D printing. TPO is a thermally stable
photoinitiator that exhibits a high molar extinction coefficient at 365 nm (680 M−1 cm−1).
Similar to LAP, TPO also has an absorption spectrum in the visible light range. However,
since TPO is almost insoluble in water, its application in aqueous bioinks is limited. To
address this problem, Pawar and coworkers prepared a new TPO nanoparticle that shows
high water dispersibility and strong photoinitiating ability, which offers a solution to pre‑
pare a water‑soluble TPO photoinitiator [133].

2,2′‑Azobis[2‑methyl‑N‑(2‑hydroxyethyl)propionamide] (VA‑086) is another water‑
soluble photoinitiator for light‑based 3D bioprinting [147]. Compared to Irgacure 2959,
VA‑086 displays less cytotoxicity, even at a 10‑fold higher concentration [148,149]. Upon
UV light irradiation, VA‑086will dissociate to generate free radicals andN2 as a byproduct.
Although the introduction of N2 will lead to an opaque appearance, the pore structure of
the hydrogel is enhanced [148,150].

AlthoughUV‑light‑basedphotoinitiators have beenwidely used in 3Dbioprinting, the
cell damage and low penetration of UV light still obstruct their further application. Due to
its good cell compatibility, visible light allows the construction of hydrogels with improved
biological performance. To realize visible light photopolymerization, several visible‑light‑
based photoinitiators, such as riboflavin (RF), fluorescein (FR), camphorquinone (CQ),
tris(2,2′‑bipyridyl)ruthenium(II) ([Ru(II) bpy3]2+), and Eosin‑Y, have been developed in
recent years.

4. Biomaterials for Light‑Based 3D Bioprinting
4.1. Natural Materials

Currently, a variety of natural and synthetic polymers are used in 3D bioprinting.
The ability to mimic the physicochemical microenvironment in which the cells are located
makes natural biomaterials ideal candidates for bioinks [93]. For these reasons, natural
biomaterials, especially those derived from the main components of the extracellular ma‑
trix, such as collagen, gelatin, and hyaluronic acid (HA), have been widely used in 3D bio‑
printing [151–153]. In addition, numerous modification strategies have been introduced
to prepare photocurable biomaterials.

4.1.1. Collagen
Collagen is a class of fibrous proteins in mammalian tissues with a specific alpha‑

triple‑helix structure that provides mechanical support and enables the adhesion and mi‑
gration of cells [154]. Depending on its structure and composition, collagen is divided into
three types: type I, II, and III collagen [155]. Among them, type I collagen accounts for
more than 90% of the total collagen mass in the body [155,156]. Based on their excellent
bioactivity, collagen hydrogels have been widely used in various applications, like skin,
cartilage, and blood vessel regeneration [157–161].

In the presence of residual tyrosine, the photocrosslinking of unmodified collagen can
be achieved by photosensitizer‑mediated redox crosslinking [162,163]. Although no addi‑
tional chemical modification is required, the curing process involves a long UV irradiation
time [162]. To address this, collagen was modified with extra photocrosslinkable groups,
like methacrylate, norbornene, and thiols, to enhance both the curing rate and mechanical
strength (Figure 5) [164,165].

Although typical methacrylate collagen (ColMA) bioinks have been successfully de‑
veloped in 3D bioprinting, some limitations are still worth noting. First, since collagen
tends to be physically crosslinked at neutral pH and room temperature, cells are frequently
dispersed within an acidic ColMA solution before pH adjustment to prepare cell‑laden
bioinks, which is not favorable for 3D bioprinting. Low‑temperature 3D bioprinting is
a potential method. In the work by Yang et al., the authors prepared low‑concentration
ColMA scaffolds with good biocompatibility and bioactivity by using a low‑temperature
DLP 3D printing technique [166]. In addition to this, ColMA also faces oxygen inhibition,
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ROS accumulation, and other problems [167–169]. To address the drawbacks of traditional
ColMA, Guo et al. prepared norbornene‑modified collagen (NorCol) by conjugating car‑
bic anhydride (CA) to a collagen backbone [170]. With the extra carboxyl groups, NorCol
not only exhibited improved solubility under neutral conditions but also showed excellent
miscibility with alginate and gelatin. This strategy enables hybrid bioink to respond to
multiple stimuli, resulting in continuous crosslinked NorCol networks in hybrid hydro‑
gels (Figure 5) [170].
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Figure 5. Collagen‑based photocrosslinking bioinks. (a) Schematic representation of methacrylate‑
[171,172], maleic‑ [173], norbornene‑ [170], and thiol‑modified [174] collagen synthesis. (b) The
relative solubility of NorCol and collagen at different pH values. (c) The miscibility of Nor‑
Col with gelatin and alginate. (d) Temperature‑sensitive extrusion bioprinting of NorCol bioinks.
(d) (i) Schematic of temperature‑sensitive extrusion bioprinting of NorCol bio‑inks. (ii) Printed Nor‑
Col hydrogels (12 layers, 3 mm) after 1 day of culture. Fluorescencemicrographs showing cell (iii) vi‑
ability (day 1) and (iv) spreading (day 5) within NorCol hydrogels (Copyright 2021 American Chem‑
ical Society [170]).

4.1.2. Gelatin
When collagen is heated to high temperatures, its triple‑helix structure will irreversibly

disintegrate, resulting in the formation of gelatin (Figure 6). Due to the disintegration of the
supramolecular structure, gelatin has a lower molecular weight and better solubility than
collagen. As the denatured product of collagen, gelatin preserves similar biological fea‑
tures to collagen, such as abundant RGD sequences for cell adhesion and growth [175], and
retains matrix metalloproteinase (MMP)‑cleavable sequences that facilitate cell migration,
growth, and extracellular matrix remodeling [176–178]. Unlike collagen, neutral water‑
soluble gelatin requires no additional acid and pH adjustment operations during bioink
preparation. The gelatin solution also has thermal‑responsive properties but is temporar‑
ily crosslinked at low temperatures [179].
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Figure 6. Schematic illustration of collagen hydrolysis and representative routes to synthesize
methacrylate, norbornene, vinyl, and tyrosine‑modified gelatin.

In 3D bioprinting, gelatin can serve as the sacrificial material to build constructs with
vascular networks or porous structures. For permanent 3D scaffold fabrication, additional
chemical modification is frequently required. Among photocrosslinkable gelatin deriva‑
tives, GelMA is the most commonly used for 3D bioprinting due to its excellent biocom‑
patibility, good processability, and stable physical properties. In general, GelMA is syn‑
thesized through the reaction between methacrylic anhydride and the amino or hydroxyl
groups of gelatin [180,181]. In the presence of photoinitiators and light irradiation, photo‑
reactive methacrylate groups can be activated by free radicals to form permanent covalent
bonds between gelatin backbones. Due to their goodbioactivity and stability, various types
of cells (stem cells, progenitor cells, cancer cells, primary cells, etc.) were 3D‑printed by
GelMAhydrogels for tissue engineering and regenerativemedicine. Despite the versatility
of GelMA in cell culture and 3D bioprinting, ROS accumulation during gelation still affects
cell viability [112]. In addition, cell viability is also related to the substitution degree (SD)
of methacrylate groups of GelMA.He et al. prepared a series of GelMA bioinks with differ‑
ent methacrylate degrees and evaluated the viability of cells within GelMA scaffolds [52].
Notably, the cells embedded in GelMA scaffolds with a lower SD showed higher viability.
The use of a GelMA hydrogel with low strength facilitated cell spreading in the model
(Figure 7a).

To realize fast and oxygen‑tolerating crosslinking, gelatin‑based thiol–ene bioinks have
been introduced in 3D bioprinting, such as norbornene‑modified PEG (PEGNB)/thiolate
gelatin (GelSH), thiolate PEG (PEGSH)/norbornene‑modified gelatin (GelNB), norbornene‑
modified hyaluronic acid (NorHA)/GelSH, GelNB/DL‑Dithiothreitol (DTT), etc. Since pure
PEG‑based thiol‑ene bioinks lack sufficient viscosity and bioactivity, GelNB or GelSH fre‑
quently plays multiple roles in extrusion‑based bioink systems: (i) a thermal‑responsive in‑
gredient for temporary crosslinking, thus ensuring scaffold integrity; (ii) a curable agent for
permanent photocrosslinking; (iii) a bioactive component to facilitate cell adhesion, migra‑
tion, and extracellular matrix remodeling. The synthesis of GelSH is commonly performed
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through the ringopeningof citioloneorγ‑thiobutyrolactoneor the conjugationof 3,3′‑dithiobis
(propionohydrazide) under an inert atmosphere to avoid thiol oxidation (Figure 6).
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Figure 7. The bioprinting performance of photocrosslinkable gelatin bioinks. (a) The cell viability
within the printed scaffold is affected by the methacrylate degree of GelMA. (i) Photocrosslinking
for solidification. (ii) Evaluation of live and dead cells encapsulating in 7.5% GM‑30/60/90 on day 5.
(iii) Semiquantitative analysis of cell viability, (** p < 0.01, *** p < 0.001) (Copyright 2023 Wi‑
ley [52]). (b) An illustrative scheme of cell‑laden bioprinting using GelMA and GelNB/HepSH
bioinks. (c) HUVEC‑laden constructs are built from GelNB/HepSH and GelMA bioinks. (i) Fluo‑
rescence micrographs showing the bioprinted constructs after 1 and 7 days of culture. (ii) Semiquan‑
titative analysis of cell viability. Fluorescence micrographs showing HUVEC cytoskeleton in both
bioinks after cell culture for 7 days, using (iii) an inverted fluorescence microscope and (iv) a laser
scanning confocal microscope, scale bars = 500 µm. (v,vi) 3D‑printed canine peripheral‑nerve‑like
constructs using the GelNB/HepSH bioink, scale bars = 4 mm (Copyright 2021 American Chemical
Society [112]). (d) GelNB/GelS bioinks can undergo superfast gelation at extremely low photoinitia‑
tor concentrations. (i) Water‑based synthesis of GelNB and GelS from gelatin. (ii) Photocrosslinked
thiol‑ene click hydrogel. (iii) Comparison of the two thiol‑ene hydrogel systems GelNB/DTT and
GelNB/GelS. *** p < 0.001. (e) The 3D bioprinting of an NHDF‑laden hydrogel grid structure (i) 3D
bioprinting of a hydrogel grid structure (1 cm× 1 cm) consisting of four layers on a glass slide. Post‑
printing cell viability analysis of 3D bioprintedNHDF at day 1 using (ii) GelMA and (iii) GelNB/GelS
bioinks. (iv) Distribution of NHDF within the hydrogel, (i) Live/dead staining and (ii) distribution
of NHDF, scale bars = 100 µm, (** p < 0.01) (Copyright 2021Wiley [180]). (f) A schematic comparison
of GelNB synthesized by (i) 5‑norbornene‑2‑carboxylic acid and (ii) CA.
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Currently, the synthesis routes for GelNBmainly include 5‑norbornene‑2‑carboxylic acid
and CA‑basedmodification (Figure 7f). The reaction between 5‑norbornene‑2‑carboxylic acid
and gelatin is cumbersome and requires multiple steps to synthesize GelNB [180,182]. In
contrast, the direct reaction between CA and gelatin was able to achieve GelNB with a
substitution degree of about 44% [183]. However, excess water‑insoluble CA was used
during the reaction to ensure effective grafting. This may affect the purity of the final
product. Alternatively, a dual‑solvent system composed of DMF/water can achieve the
synthesis of GelNB with a degree of substitution of about 90.1% [184].

Although GelNB/DTT is a versatile and powerful material for 3D bioprinting, bioinks
based on GelNB and thiolate macromolecular crosslinkers have been developed to improve
the curing speed and avoid the potential toxicity of DTT. Thiolatemacromolecular crosslink‑
ers also protect the cell from excess ROS damage. In the work by Zhao et al., who intro‑
duced thiolate heparin (HepSH) as a macromolecular crosslinker, lower ROS levels in the
GelNB/HepSH hydrogel‑loaded human umbilical vein endothelial cells (HUVECs) were
found [112]. Compared with GelMA, HUVECs within a 3D‑printed GelNB/HepSH hydro‑
gel exhibit better viability and spreading ability (Figure 7b,c) [112]. As a cytotoxic molecule,
the uncrosslinked traditional bifunctional thiol crosslinker DTT can lead to undesired cell
damage during long‑term storage or printing operations. This toxicity was greatly avoided
by using a macromolecular crosslinker. In another work by Göckler et al., this cytotoxicity
was greatly avoided by introducing GelSH as a macromolecular crosslinker [180]. In addi‑
tion, GelNB/GelSH bioinks were able to undergo superfast gelation (1–2 s), even though the
photoinitiator concentration was reduced dramatically (0.03%), and promoted continuous
cell growth (Figure 7d,e) [180]. Hence, the thiol‑ene‑based gelatin system is a promising
candidate to replace GelMA.

4.1.3. Hyaluronic Acid
Hyaluronic acid (HA) is an extracellular matrix‑derived glycosaminoglycan with repeat

units consisting of D‑glucuronic acid and N‑acetylglucosamine [185–187]. The abundant car‑
boxyl and hydroxyl groups endow HA with superior hydrophilicity and provide pendent
sites for chemical modification. Due to its excellent biocompatibility and biodegradability,
HA has been widely used for applications such as drug delivery, cell encapsulation, and
wound dressings [105,188–192]. However, the pure HA solution is unable to form a stable
hydrogel for cell encapsulation. In general, extra modification is required to endow HAwith
light‑curing ability, such as alkenyl modification, thiolation, and tyrosine functionalization
(Figure 8a).

Similar to gelatin, methacrylate HA (HAMA) is synthesized by grafting methacrylic
anhydride onto the HA backbone via an esterification reaction [193–195]. To synthesize
NorHA, HA is usually converted into intermediates like HA‑TBA or HA‑ADH, followed
by amidation in the presence of a catalyst [196–202]. The synthetic route involves cum‑
bersome and complex steps (Figure 8d). In addition, the NorHA hydrogel may become
hydrophobic due to the consumption of hydrophilic carboxyl groups. More importantly,
relevant studies have shown that the depletion of carboxyl groups also weakens the CD44
binding ability [203]. Alternatively, direct functionalization via esterification between CA
and hydroxyl groups is a good choice to avoid the cumbersome synthesis step and the de‑
pletion of carboxyl groups (Figure 8a) [184,204]. In thework byGalarraga et al., the authors
synthesized norbornene‑modified HA (NorHACA) based on CA and found that the extra
carboxylic group enables the accelerated degradation of thiol‑ene hydrogels
(Figure 8b,c) [204]. When combined with stable NorHA, the NorHACA/NorHA hydro‑
gel exhibits a tunable degradation profile. NorHACA/NorHA showed great promise in
fabricating hydrolytically degradable bioactive scaffolds through DLP.
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toinitiator (LAP), (** p < 0.01, **** p < 0.0001). (c) Biocompatibility and DLP-based 3D bioprinting of 
NorHACA bioinks. (i) Representative fluorescence micrographs of bMSCs encapsulated in NorHACA 
(5wt%, 40%mod.) bulk hydrogels over time (1, 3, and 7 days), scale bars = 200 µm. (ii) Semiquanti-
tative analysis of cell viability, (* p < 0.05). (iii) Schematic representation of DLP-based 3D printing 
of NorHACA hydrogels with bMSCs. (iv) Representative maximum projection image of bMSCs en-
capsulated in a NorHACA macroporous lattice at day 1, scale bars = 1 mm and 500 µm (Copyright 
2023 American Chemical Society [204]). (d) HA-TBA mediates the synthesis of NorHA. 

For extrusion-based 3D bioprinting, which is the most common among 3D bioprint-
ing methods, pure hyaluronic acid solutions cannot form self-supporting filaments [153]. 
Therefore, proper pre-solidification is frequently introduced for extrusion-based 3D 

Figure 8. Hyaluronic acid‑based photocrosslinking bioinks. (a) Synthesis route of light‑cured
hyaluronic acid. (b) Modification of sodium HA with CA to form NorHACA. (i) Reaction scheme
for NorHACA synthesis. (ii) Degree of modification of HA with norbornene is tuned by changing
the molar ratio of CA to HA repeat units. (iii) Schematic representation of network formation by
visible light‑induced thiol‑ene step‑growth reaction between NorHACA and DTT in the presence
of photoinitiator (LAP), (** p < 0.01, **** p < 0.0001). (c) Biocompatibility and DLP‑based 3D bio‑
printing of NorHACA bioinks. (i) Representative fluorescence micrographs of bMSCs encapsulated
in NorHACA (5wt%, 40%mod.) bulk hydrogels over time (1, 3, and 7 days), scale bars = 200 µm.
(ii) Semiquantitative analysis of cell viability, (* p < 0.05). (iii) Schematic representation of DLP‑based
3D printing of NorHACA hydrogels with bMSCs. (iv) Representative maximum projection image
of bMSCs encapsulated in a NorHACA macroporous lattice at day 1, scale bars = 1 mm and 500 µm
(Copyright 2023 American Chemical Society [204]). (d) HA‑TBA mediates the synthesis of NorHA.

For extrusion‑based 3D bioprinting, which is the most common among 3D bioprinting
methods, pure hyaluronic acid solutions cannot form self‑supporting filaments [153]. There‑
fore, proper pre‑solidification is frequently introduced for extrusion‑based 3D bioprinting of
HA. Meanwhile, combining HA with other natural or synthetic polymers, such as
gelatin [181,189,195], collagen [205], methylcellulose [193,206], sodium alginate [207–209],
polyethylene glycol [210,211], PF127 [212], or polycaprolactone [190,213], is another strategy
to achieve scaffold building.

4.1.4. Alginate
Alginate is a brown‑algae‑derived polysaccharide macromolecule consisting of β‑D‑

mannuronic acid (M) and α‑L‑guluronic acid (G) repeats (Figure 9a). When multivalent
cationsMn+, such as Ca2+, Mg2+, and Ba2+, are inserted into the negatively charged polysac‑
charide chains of alginate, an egg structure is formed through ionic attractions, which re‑
sults in a rapid sol–gel transition (Figure 9a) [214]. Since alginate can be cured mildly at
normal temperature and pH, various cells, such as Schwann cells [47], BMSCs [215], fibrob‑
lasts [216], and HUVECs [217], have been 3D‑printed with alginate bioinks.
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Figure 9. Alginate‑based bioinks. (a) The (i) structure and (ii) gelation mechanism of alginate.
(b) The norbornene alginate bioink (Alg‑norb) was functionalized by light‑mediated RGD grafting
for building L929 cell‑embedded constructs. (i) Schematic overview of the strategy employed to de‑
velop photoactive Alg‑norb for bioprinting. (ii) Photoinitiated thiol−ene reactions of Alg‑norb with
RGD Peptide Sequence (CGGGRGDS). (iii) Images of 3D bioprinted hydrogels loaded with cells at
(a) day 0 and (b) day 7. Green and red cell tracker labeled L929 as two different bioinks printed as
alternating fibers (c) in the X‑Y plane and (d) in the Z direction (Copyright 2018 American Chemical
Society [218]). (c) The synthesis of Alg‑RGD through a thiol‑ene click reaction to promote the cell
growth and vascularization of HUVECs. (i) Design of the HA/Alg‑RGD hydrogel. (ii) Schematic di‑
agram of the 3D printing process. (iii) Fluorescent images of GFP‑HUVECs cultured in the hydrogel
at intervals of 3, 7, and 14 days post‑3D printing, along with magnified images of selected regions
(scale bar = 1 mm and 200 µm, respectively) (Copyright 2023 American Chemical Society [219]).

Despite mammals lacking enzymes that can degrade sodium alginate, ionically
crosslinked alginate scaffolds are still subject to degradation by ion exchange in vivo [220,221].
Apart from this, the impact of ionic crosslinkers on the viability of loaded cells is another ques‑
tion in alginate‑based 3D bioprinting. As excess multivalent cations may cause undesired cell
damage, the concentration of ionic crosslinkers should be carefully selected. Therefore, it is
necessary to endow alginate with a light‑curing ability to improve stability and biocompati‑
bility. Photocurable AlgMA also can be prepared via methacrylic anhydride [214,222]. Com‑
pared to a purely ionically crosslinked alginate hydrogel, the structural stability of covalently
crosslinked AlgMA scaffolds was significantly improved [214].

Generally, norbornene‑modified alginate (AlgNB) can be synthesized through amida‑
tion between 5‑norbornene‑2‑methyamine and carboxyl groups. Although the hydrophilic‑
ity of the thiol‑ene hydrogel might be affected, this provides extra sites for bioactive mod‑
ification. In particular, due to its non‑fouling nature, the pure alginate hydrogel lacks a
suitable environment to facilitate cell adhesion, migration, and growing [223]. Numer‑
ous studies have shown that the bioactivity of alginate can be improved by mixing it with
hyaluronic acid [208], collagen [224], or gelatin [225] to form a composite bioink. In ad‑
dition, the cell adhesion capacity of sodium alginate can be enhanced by RGD grafting
of sodium alginate [218,226]. In a typical work, Ooi et al. created a thiol‑ene crosslink‑
ing Alg‑norb hydrogel that exhibited tunable mechanical and swelling properties, rapid
gelation, and excellent bioactivity for extrusion bioprinting (Figure 9b) [212]. The thiol
RGD sequence (CGGGRGDS) was grafted on Alg‑norb through a photoinitiated thiol‑ene
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reaction. Similarly, in another work by Liu et al., the RGD sequence (CGDS) was conju‑
gated to maleimide‑modified alginate (Alg‑Mal) through a click reaction (Figure 9c) [219].
Although this requires a longer reaction time, these printed scaffolds exhibit improved
biological performance.

4.1.5. Silk Fibroin
Silk fibroin (SF) is a natural material derived from the Bombyx mori silkworm and

is composed of an H‑chain (350 kDa), L‑chain (26 kDa), and amorphous glycoprotein P25
(30 kDa) with a ratio of 6:6:1 (Figure 10a) [227,228]. Considering its excellent biocompat‑
ibility, stable mechanical properties, biodegradability, and low cytotoxicity, it is no sur‑
prise that the FDA approved SF for biomedical applications. To date, SF has been selected
for various aspects of regenerative medicine, including bone regeneration [229], cartilage
repair [230], wound healing [231], and angiogenesis [231,232]. For example, it has been
demonstrated that silk fibroin can promote the differentiation of mesenchymal stem cells
toward an osteogenic phenotype, which makes SF an ideal choice for bone tissue engineer‑
ing [233,234].

Depending on its great bioactivity, SF is also a promising candidate to serve as a scaf‑
fold backbone for 3D bioprinting. Due to the existence of strong hydrophobic interactions
and H‑bonding, the SF hydrogel is more stable and stronger than other natural biomate‑
rials [235]. However, the printability of pure SF bioinks is still limited by low viscosity.
Hence, SF is frequently blended with other biomaterials to reach proper viscosity, thus
improving the structural integrity and stability of the printed scaffolds [236]. For exam‑
ple, in the work by Moon and coworkers, SF was blended with iota‑carrageenan (CG).
The prepared SF/CG ink exhibited suitable viscosity and shear‑thinning properties, which
ensures high shape fidelity (Figure 10b) [237]. However, to build stable constructs, extra
light irradiation is required to initiate redox‑mediated dityrosine crosslinking (Figure 10b).
Thanks to its natural tyrosine residues, which endow SF with an inherent redox‑based
photocrosslinking ability, no additional chemical conjugation of photo‑reactive moieties is
required [238].

Although it has been reported that SF bioinks can complete gelation within seconds
under visible light irradiation, the influence of oxidated photoinitiators on the survival of
embedded cells remains challenging [239,240]. To this end, photocrosslinkable SF deriva‑
tives such as norbornene‑modified SF (SF‑NB) [241] and methacrylate SF (SFMA) [242]
were synthesized. Through photocrosslinking modification, it is possible to realize cell‑
friendly crosslinking and enhance physical performance. Bhar et al. prepared a compos‑
ite bioink containing SFMA, GelMA, and photoactivated human platelet releasate (PPR)
to build an immunocompetent human skin model, where SFMA was employed to main‑
tain the strength, stability, and elasticity of the printed constructs (Figure 10c) [243]. With
this design, the printed artificial model showed tunable physical properties to support the
biomimetic skin epidermal and dermal structures.
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(Copyright 2024 Wiely [243]). 
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Figure 10. SF‑based photocrosslinkable bioink. (a) Production, structure, and modification of SF
(Copyright 2023 Elsevier [228]). (b) The design and printing performance of the redox‑crosslinkable
SF/CG bioink. (i) Schematic of the printing process of SF/CG bioink. (ii) CAD images depict‑
ing the ear, nose, and hand and printed images at various angles (Copyright 2024 Elsevier [237]).
(c)Methacrylate‑group‑functionalized SF for recapitulating human skinmodels through 3Dbioprint‑
ing (Copyright 2024 Wiely [243]).

4.1.6. Decellularized Extracellular Matrix
A decellularized extracellular matrix (dECM) is a natural tissue‑ or organ‑derivedma‑

terial obtained by chemical or physical decellularization techniques (Figure 11a). Apart
from its great biocompatibility and biodegradability, dECM is superior in preserving the
in vivo physical, mechanical, and biological microenvironment, thus facilitating tissue‑
specific cell proliferation and differentiation. Currently, dECM bioinks are extensively
developed for cartilage [244–246], heart [247], liver [248,249], skin [250], and tendon re‑
generation [251] for their ability to offer tissue‑specific cues to guide cell growth.

The viscous dECM solution is thermally responsive and experiences invertible sol–
gel transition at body temperature, which makes dECM suitable for extrusion‑based 3D
bioprinting. However, due to unstable physical gelation, as‑printed dECM scaffolds are
often mechanically weak with unsatisfactory resolutions. Therefore, mechanical reinforce‑
ment strategies, such as incorporating support materials and extra crosslinking, are fre‑
quently introduced to improve printability and integrity. In addition to co‑printing with
synthetic or natural supportingmaterials (e.g., PCL, gelatin, alginate) and adding crosslink‑
ers (e.g., genipin), photocrosslinking modification is another common approach to stabi‑
lizing dECM 3D scaffolds.
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(i) A schematic of visible-light active dityrosine synthesis. (ii) Extrusion-based printing of dECM. 
(iii) DLP photopatterning with 100 µm step-size constructs, scale bars = 100 µm for white represent 
printed fiber, 500 µm for live/dead images, (Copyright 2021 Wiely [124]). (d) Liver dECM was func-
tionalized by glycidyl methacrylate and methacrylic anhydride for the systematic comparison of 
different type of methacrylate dECM bioinks. The (i) preparation and (ii) modification of live dECM 
(Copyright 2024 Elsevier [254]). (e) The decellularized small intestine submucosa (dSIS) was func-
tionalized by norbornene to create an orthogonally crosslinked dSIS hydrogel for cancer and vascu-
lar tissue engineering. (i) 1H NMR spectra of dSIS and dSIS-NB. Peak a: alkene protons (HC=CH), 
Peak b: ethyl protons (CH2), Peaks c and d: methine protons (C3CH). (ii) Schematic of thiol-nor-
bornene photo-crosslinking. (iii) Schematic of DLP bioprinting. (iv) In situ, photo rheometry of dSIS-
NB gelation with tartrazine added as a photo absorber to improve printing fidelity, dotted line in-
dicate light on. (v) A CAD image of astar-shaped object for DLP bioprinting and the DLP printed 
dSIS-NB gel. (vi) A representative live/dead confocal image of interconnected microvascular HU-
VEC network within the printed hydrogel on day 3 (Copyright 2024 Wiely [255]). 

Moreover, a suitable mechanical clue is critical for cells to differentiate and function 
in an organ-specific way. Through proper photocrosslinking, it is possible to build a 
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photocrosslinking due to their abundant native tyrosine residues. One advantage of this 
approach is the effective protection of pristine bioactivity. In a typical work, Jang et al. 
realized the photocrosslinking of dECM when vitamin B2 was used as a UV-light-sensi-
tive photoinitiator [256]. Although vitamin B2 is approved by the FDA for the treatment 
of corneal disorders, the use of UV light can lead to potential DNA damage. For the ap-
plication of such dECM bioinks, visible light is certainly a more attractive option to initiate 
crosslinking. To address these issues, Ru/SPS was developed to realize safe and efficient 
visible-light-mediated crosslinking of dECM (Figure 11b) [253]. 
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eyeball (Co-dECM) dECM-derived bioinks, which can be crosslinked rapidly within 5 s 

Figure 11. dECM‑based photocrosslinkable bioinks. (a) The production and modification of dECM
(Copyright 2023 Ivyspring [252]). (b) The Ru/SPS‑induced visible light crosslinking of dECM. (i) The
crosslinking mechanism. (ii) The gelled dECM hydrogel (Copyright 2023 Wiely [253]). (c) The light‑
activated dityrosine crosslinking reaction in dECM bioink to realize centimeter‑scale 3D bioprinting.
(i) A schematic of visible‑light active dityrosine synthesis. (ii) Extrusion‑based printing of dECM.
(iii) DLP photopatterning with 100 µm step‑size constructs, scale bars = 100 µm for white represent
printed fiber, 500 µm for live/dead images, (Copyright 2021 Wiely [124]). (d) Liver dECM was func‑
tionalized by glycidyl methacrylate and methacrylic anhydride for the systematic comparison of
different type of methacrylate dECM bioinks. The (i) preparation and (ii) modification of live dECM
(Copyright 2024 Elsevier [254]). (e) The decellularized small intestine submucosa (dSIS) was func‑
tionalized by norbornene to create an orthogonally crosslinked dSIS hydrogel for cancer and vascular
tissue engineering. (i) 1H NMR spectra of dSIS and dSIS‑NB. Peak a: alkene protons (HC=CH), Peak
b: ethyl protons (CH2), Peaks c and d: methine protons (C3CH). (ii) Schematic of thiol‑norbornene
photo‑crosslinking. (iii) Schematic of DLP bioprinting. (iv) In situ, photo rheometry of dSIS‑NB
gelation with tartrazine added as a photo absorber to improve printing fidelity, dotted line indicate
light on. (v) A CAD image of astar‑shaped object for DLP bioprinting and the DLP printed dSIS‑NB
gel. (vi) A representative live/dead confocal image of interconnectedmicrovascularHUVECnetwork
within the printed hydrogel on day 3 (Copyright 2024 Wiely [255]).

Moreover, a suitable mechanical clue is critical for cells to differentiate and func‑
tion in an organ‑specific way. Through proper photocrosslinking, it is possible to build
a dECM hydrogel with enhanced and tunable mechanical strength similar to the original
tissue or organ. Like silk fibroin, many dECM materials are readily available for redox
photocrosslinking due to their abundant native tyrosine residues. One advantage of this
approach is the effective protection of pristine bioactivity. In a typical work, Jang et al. re‑
alized the photocrosslinking of dECM when vitamin B2 was used as a UV‑light‑sensitive
photoinitiator [256]. Although vitamin B2 is approved by the FDA for the treatment of
corneal disorders, the use of UV light can lead to potential DNA damage. For the appli‑
cation of such dECM bioinks, visible light is certainly a more attractive option to initiate
crosslinking. To address these issues, Ru/SPS was developed to realize safe and efficient
visible‑light‑mediated crosslinking of dECM (Figure 11b) [253].
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For 3D bioprinting, Kim and coworkers reported porcine heart (hdECM) and bovine eye‑
ball (Co‑dECM) dECM‑derived bioinks, which can be crosslinked rapidly within 5 s through
Ru/SPS‑mediated visible light crosslinking. The printed scaffolds exhibit improved printabil‑
ity, physical performance, and excellent bioactivity at the centimeter scale (Figure 11c) [124].
However, the potential damage induced by excess oxidated photoinitiator is still the main
obstacle to the further application of dECM bioinks.

Chemically modified photo‑reactive dECM (e.g., dECM‑MA, dECM‑NB) allows con‑
trollable rapid gelation and enhances mechanical stability while avoiding the use of oxida‑
tive photoinitiators [257]. Similarly, methacrylation is one of the main methods to modify
dECM with photo‑reactive ability, which mainly includes glycidyl methacrylate (GMA)
or methacrylic anhydride (MA) functionalization. Although the structural integrity of
dECM is not strongly affected by GMA or MA modification, more methacrylate groups
can be grafted on dECM through a ring‑opening reaction between GMA and amine or hy‑
droxyl groups (Figure 11d). In addition, with the introduction of additional hydrophilic
hydroxyl moieties, the GMA dECM hydrogel exhibited better bioactivity [254]. Similarly,
in another work by Duong et al., CA was used to create norbornene‑functionalized small
intestine submucosa (dSIS‑NB), which enabled the introduction of extra carboxyl groups
(Figure 11e) [255]. The dSIS‑NB bioinks showed versatility in building biomimetic scaf‑
folds to support fast cancer cell spreading and angiogenesis through both DLP and extru‑
sion bioprinting [255].

4.2. Synthetic Materials
4.2.1. Polyethylene Glycol

In contrast to natural biomaterials, synthetic polymers can be prepared in large quanti‑
ties with controllable molecular weights and functional groups. Polyethylene glycol (PEG)
is a linear polymer synthesized from ethylene glycol via polymerization. PEG has been
approved by the FDA for pharmaceutical andmedical applications due to its excellent bio‑
compatibility and low immunogenicity [258]. It is no surprise that PEG and its derivatives
have been widely explored in photocrosslinkable bioinks to serve as polymer backbones,
crosslinkers, or sacrificial materials [259–261]. With terminal hydroxy groups, PEG can
react with methacryloyl chloride or acryloyl chloride under basic conditions to synthesize
PEGMA or PEGDA through esterification. The PEGMA or PEGDA precursor is readily
crosslinked into hydrogels through chain‑growth polymerization [55,262]. The physical
properties of the PEG hydrogel can be efficiently adjusted by varying themolecular weight
andmonomer concentration. For thiol‑ene‑based photocrosslinking, PEG is frequently thi‑
olated or norbornene‑functionalized into various derivatives such as PEG‑4SH and PEG‑
4NB, thus realizing versatile control over the hydrogel properties (Figure 12a) [263–265].
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Figure 12. PEG-based photocrosslinkable bioinks. (a) A schematic of the structures of modified pho-
tocrosslinkable PEG derivatives for 3D bioprinting. (b) A schematic diagram of the process for pre-
paring a hydrogel with cell adhesion properties. (A) Schematic representation of the ink design and 
the hydrogel manufacturing process. (B) Synthetic approach toward labelled RGD peptides (Copy-
right 2024 Wiley [266]). (c) A schematic illustration of the fabrication of enzymatically degradable 
PEG hydrogels to mimic matrix remodeling. (A) Components used in the development of the bio-
inspired pseudo-reversible stiffening and softening hydrogels include PEG-4-Nb (Mn∼ 5, 10, or 20 
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Figure 12. PEG‑based photocrosslinkable bioinks. (a) A schematic of the structures of modified
photocrosslinkable PEG derivatives for 3D bioprinting. (b) A schematic diagram of the process for
preparing a hydrogel with cell adhesion properties. (A) Schematic representation of the ink design
and the hydrogel manufacturing process. (B) Synthetic approach toward labelled RGD peptides
(Copyright 2024 Wiley [266]). (c) A schematic illustration of the fabrication of enzymatically degrad‑
able PEG hydrogels to mimic matrix remodeling. (A) Components used in the development of the
bioinspired pseudo‑reversible stiffening and softening hydrogels include PEG‑4‑Nb (Mn∼ 5, 10, or
20 kDa), PEG‑8‑Nb (Mn∼40 kDa), di‑thiol nondegradable linkers (PEG‑2‑SH; Mn∼ 2 or 3.4 kDa), di‑
thiol MMP degradable linker, a di‑thiol MMP PEG‑conjugate (PEG8MMP), and an MMP‑thrombin
degradable peptide linker (MMP+Thb). (B) Hydrogel tools were designed tomimic aspects of matrix
degradation or matrix deposition that occurs duringmatrix remodeling of the cellular microenviron‑
ment through incorporation of PEG8MMP and MMP+Thb linkers, respectively. (C) A reduction of
matrix densitywas achieved by photopolymerization of PEG hydrogels in the presence of a combina‑
tion of MMP and MMP+Thb linkers, enabling triggered softening through a reduction of crosslink
density upon incubation with thrombin. (D) For triggered stiffening, hydrogels were formed by
photopolymerization of PEG hydrogels in the presence of MMP crosslinkers followed by secondary
photopolymerization of excess reactive handles with PEG or peptide linkers (Copyright 2022 Wi‑
ley [267]). (d) A schematic representation of MSN bioinks for extrusion‑based in situ bioprinting
applications (Copyright 2023 Elsevier [268]).

Providing a proper microenvironment to promote cell growth is essential for bioinks.
Despite its good biocompatibility and hydrophilicity, it is hard for PEG to support con‑
tinuous cell growth due to the lack of suitable cell adhesion and enzymatically degrad‑
able sites. Therefore, a variety of natural biomaterials have been blended with PEG to
improve its bioactivity, such as gelatin, collagen, and hyaluronic acid [211,269,270]. Mean‑
while, the bioactivity of PEG‑based bioinks can also be effectively improved by incorporat‑
ing biological ingredients like RGD sequences or heparin‑binding sites [271–274]. For in‑
stance, Schwegler et al. incorporated a chemically synthesized RGD sequence into PEGDA,
thereby giving the printed material cell adhesion sites without changing its mechanical
properties (Figure 12b) [266]. The most common strategy to address the lack of MMP‑
degradable sites is introducing MMP‑responsive crosslinking agents [275,276]. For in‑
stance, Chen et al. introduced a tunable‑degradability hydrogel, which was synthesized
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by integratingMMP‑sensitive peptideswith norbornene‑modified eight‑arm polyethylene
glycol macromers [277]. To endow the PEG hydrogel with dynamic mechanical perfor‑
mance similar to matrix remodeling, Wiley et al. developed a dual‑enzyme (thrombin and
MMP)‑degradable peptide linker. The obtained PEG hydrogel allows a dynamic modula‑
tion process similar to matrix remodeling (Figure 12c) [267].

In another work, Zengin et al. developed a composite bioink containing MMP‑sensitive
peptide‑modifiedmesoporous silica nanoparticles (MSN‑MMPs), which resulted in anMMP‑
9‑biodegradable hydrogel (Figure 12d) [268]. Furthermore, additional cysteine‑modifiedRGD
peptide incorporation enhanced cell‑matrix interactions and supported the viability and pro‑
liferation of MG63 cells within 3D‑bioprinted scaffolds (Figure 12d) [268].

4.2.2. Pluronic F127
Pluronic is a class of copolymers consisting of hydrophilic polyethylene oxide (PEO)

and hydrophobic polypropylene oxide (PPO). Pluronic F127 (PF127) is a triblock polyether
copolymer of PEO‑PPO‑PEO (Figure 13a). When the temperature is raised to the lowest
critical solution temperature (LCST), the hydrophobic chains of PF127 will aggregate. In
contrast, the hydrophilic chains will stretch into the aqueous phase to form microspheres.
Finally, a hydrogel is formed through the aggregation of microspheres (Figure 13a) [278].
Based on its innate temperature‑sensitive property, PF127 is widely used in 3D bioprint‑
ing to act as a sacrificial ingredient, polymer backbone, or supporting material [279–281].
Zheng et al. reported an electrohydrodynamic (EHD) inkjet printing system composed
of GelMA and PF127, where PF127 served as a sacrificial matrix to create biomimetic mi‑
crovascular structures (Figure 13b) [282]. Human dermal fibroblasts (HDFs) and HUVECs
were successfully co‑cultured to form a structurewith tissue‑specificmorphology and high
spatial resolution (30 µm). In another work by Lewis et al., PF127was co‑printedwith liver
dECM to fabricate biomimetic geometry to guide the directional formation of biliary trees.
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Figure 13. PF127 and PVA for 3D bioprinting. (a) A schematic diagram of the structure and gel
formation mechanism of PF127 (Copyright 2020 American Chemical Society [283]). (b) A schematic
diagram of PF127 as a sacrificial material for the preparation of microvascular tissue. (i) Schematic
of the manufacturing process. (ii) Perfusion of fluorescent dextran solution into a GFP‑HDFs/RFP‑
HUVECs co‑culture construct (Copyright 2021 IOP Publishing [282]). (c) Norbornene‑modified PVA
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and gelatin were used to construct a cell‑laden hydrogel through volumetric bioprinting (VBP) to
promote cell growth and support osteogenic differentiation. (i) (a) Schematic of the set‑up for VBP.
(b) Illustration of VBP of a PVA bioresin. (c) Chemical structures of norbornene‑modified PVA, thi‑
olated crosslinker (PEG2SH), and photoinitiator (LAP). (d) Mechanism of radical‑mediated thiol‑
norbornene photoclick reaction. (ii) (a) Live(green)/dead(red) stained hMSCs following 24 h after
printing, scale bars = 100 µm (i, iv). Confocal images of actin‑nuclei stained hMSCs in soft and stiff
gels at 24 h (ii, v) and 7 days (iii, vi) after printing, scale bars = 100 µm (ii, v) and 50 µm (iii, vi). Scale
bars for all inserts are 20 µm. Visualization of single cells in soft and stiff matrix using automated
IMARIS dendrite tracking, scale bars = 10µm (iii‑1, vi‑1). (b) Quantification of cell viability of hMSCs
at different time points. (c) Quantification of average cell area in soft and stiff constructs over time.
(* p = 0.0485; ns, not significant; n ≥ 3) (d) Confocal image of actin‑nuclei stained hMSCs showing
cell‑cell contacts in the soft gels following 14 days of osteogenic culture (Copyright 2023Wiley [284]).

Although PF127 can form a hydrogel at body temperature, a pure PF127 hydrogel
tends to disintegrate rapidly upon the penetration of ambient water, which is unacceptable
for permanent 3D device construction. Therefore, the modification of PF127 is frequently
performed, like esterification between acryloyl chloride and hydroxy groups. Similar to
PEGDA, the stability and fidelity of 3D‑printed PF127 diacrylate (PF127DA) scaffolds are
greatly improved by covalent crosslinking [285–287]. Since PF127 lacks cell adhesion sites,
it is often co‑printed with natural polymeric materials to improve bioactivity [280]. In the
work byMillik et al., they reported a coaxial‑nozzle‑mediated tubular coextrusion printing
system, where the pure PF127 of the inner phase served as a sacrificial material to guide
tube formation. At the same time, the F127–bisurethane methacrylate (F127‑BUM) of the
outer layer was photocrosslinked to create permanent constructs [288]. After functional‑
ization with collagen I to promote cell adhesion, it is possible to build luminal scaffolds
(∼150 µm) with monolayers of HUVECs.

4.2.3. Polyvinyl Alcohol
Polyvinyl alcohol (PVA) is a nontoxic, biodegradable, and biocompatible hydrophilic

linear polymer that has been approved by the FDA for biomedical applications. Similar to
PF127, PVA has also served as a sacrificial material [289], supporting agent [290], and hy‑
drogel backbone [291]. One outstanding feature of PVA is its abundant hydroxyl groups,
which allowphysical crosslinking throughH‑bonding. Although toxic additives are not re‑
quired for physical crosslinking, the PVA hydrogel prepared through H‑bonding requires
long, repeated freeze–thaw cycles, which is impractical for cell encapsulation [292]. In
contrast, PVA can be crosslinked through chemical crosslinkers (boric acid, aldehydes, or
epichlorohydrin) under mild conditions, which makes it possible to realize stable cell en‑
capsulation [293]. However, the toxicity of small chemical crosslinking molecules is still
one of the main obstacles to further biological advances. Therefore, it is necessary to per‑
form extra chemical modifications to realize safe cell encapsulation and 3D bioprinting
of PVA. The abundant hydroxyl groups provide enough sites for chemical modification,
such as amine [294], carboxyl [295], methacrylate [296], norbornene [294], and thiol [297]
groups.

Generally, PVA is often modified by photo‑reactive moieties like methacrylate or nor‑
bornene to create a photocrosslinked hydrogel with stable and strong networks. The im‑
proved gelation speed, enhanced stability, and preserved biocompatibility have made the
photocrosslinked PVA hydrogel a promising candidate for tissue engineering and regen‑
erative medicine. For example, Guo and coworkers developed a composite hydrogel com‑
posed of methacrylate‑modified PVA (PVAMA), AlgMA, and GelMA to induce pancreatic
differentiation of induced pluripotent cells (iPSCs) [298]. The incorporation of PVAMA
and AlgMA provided a high‑water‑content environment to support cell migration [298].

Meanwhile, PVA‑based photocrosslinkable bioink also plays an important role in 3D
bioprinting. In a study by Lim and coworkers, the authors developed a PVAMA and
GelMA composite bioink that enables high resolution for DLP‑based bioprinting
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(25–50 µm) [299]. The printed constructs were able to support the growth and maintain
the stemness of encapsulated stem cells [299]. Based on the merits of thiol‑ene chemistry,
norbornene‑modified PVA (nPVA) was also synthesized through esterification between
CA and hydroxyl groups. Zhu and coworkers prepared a PVA‑NB hydrogel through
thiol‑ene photocrosslinking, which showed great potential to serve as a tissue scaffold for
pelvic organ prolapse treatment [300]. In another work, Qiu and coworkers developed
a dynamic bioink based on nPVA and gelatin, which allows the rapid fabrication of cell‑
laden constructs through tomographic VBP (Figure 13c) [284]. The fabricated constructs
exhibit controlled physicochemical performance that facilitates continual cell growth, sup‑
ports the osteogenic differentiation of stem cells, and realizes aligned multicellular aggre‑
gates [284]. Although pure photocrosslinkable PVA can be 3D‑printed into scaffolds with
desired mechanical properties and fidelities, PVA is frequently functionalized by RGD or
blended with natural biomaterials to improve the bioactivity due to its antifouling nature
and lack of cell adhesion sites [299,301]. For summary, the Representative biomaterials for
light‑based 3D bioprinting were presented at Table 2.

Table 2. Representative biomaterials for light‑based 3D bioprinting.

Biomaterials
Typical
Photocrosslinkable
Derivatives

Strengths Weaknesses Applications Refs.

Natural

Collagen ColMA;
NorCol

Good
biocompatibility
and bioactivity;
Thermally
responsive;
Minimal
antigenicity;
MMP‑degradable;
Abundant cell
adhesion sites

Poor mechanical
strength;
Poor solubility

Skin, cartilage,
blood vessel, etc. [157–161,164–166]

Gelatin
GelMA;
GelNB;
GelSH

Excellent
biocompatibility;
Thermally
responsive;
Stable physical
properties;
MMP‑degradable;
Abundant cell
adhesion sites

Poor mechanical
strength;
Limited tunability
of mechanical
properties

Bone, cartilage,
liver, heart, blood
vessel, skin, etc.

[112,175,180,181,302–306]

Hyaluronic acid
HAMA;
HA‑Tyr;
NorHA

Good
biocompatibility;
Biodegradable;
Superior
hydrophilicity

Lack of cell
adhesion sites

Drug delivery,
wound dressing,
bone, cartilage, etc.

[105,188–192,204,307]

Alginate AlgMA;
AlgNB

Good
biocompatibility;
Biodegradable

Lack of cell
adhesion sites

Skin, cartilage, liver,
etc. [214,222,223,308–310]

Silk fibroin SFMA;
SF‑NB

Stable mechanical
properties;
Biocompatibility;
Biodegradable;
Low cytotoxicity

Lack of cell
adhesion sites

Bone regeneration,
cartilage repair,
wound dressing,
angiogenesis, etc.

[229–232,241,242]

Decellularized
Extracellular Matrix

dECM‑MA;
dECM‑NB

Good
biocompatibility;
Biodegradable;
Simulation of the
microenvironment
in vivo

Slow gelation speed;
Insufficient
mechanical strength

Cartilage, heart,
liver, skin, tendon
regeneration, etc.

[244–251,253]

Synthetic

Polyethylene Glycol
PEGMA;
PEGDA;
PEG‑SH/PEG‑NB

Good
biocompatibility;
Hydrophilicity;
Low immune
inflammation

Lack of cell
adhesion sites and
enzymatically
degradable sites

Wound dressing,
eye, heart, bone, etc. [55,258,262–265,311–314]

Pluronic F127 PF127MA;
PF127DA

Good
biocompatibility;
Thermally
responsive

Lack of cell
adhesion sites and
enzymatically
degradable sites

Skin, cartilage, bone,
etc. [280,285–287,315–317]

Polyvinyl alcohol PVAMA;
PVA‑NB

Good
biocompatibility;
Enough sites for
chemical
modifications

Lack of cell
adhesion sites and
enzymatically
degradable sites

Skin, bone, cartilage,
etc. [298,300,318–320]
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4.3. Biocompatibility, Degradation, and Applications
Biocompatibility means that biological materials and their degradation products are

nontoxic to cells in vitro and can perform their functions in vivo without causing adverse
reactions [321]. Biocompatibility testing methods are generally divided into cytotoxicity
assessment in vitro and systemic toxicity assessment in vivo. For example, experiments
in vitro often treat cells with the extracts or solutions of biomaterials to evaluate their im‑
pact on cell viability, growth, proliferation, and migration. Experiments in vivo typically
implant biomaterials under the skin or in the muscle tissue of rodents to see whether there
are potential foreign body reactions, toxicity, or carcinogenic effects [114]. The biomate‑
rial used for 3D bioprinting should be selected on the basis of both good printability and
great biocompatibility. Despite the choice of biocompatible natural or synthetic biomateri‑
als, careful optimization of the printing system to avoid the side effects induced by shear
forces, piezoelectric interaction, light irradiation, or the photoinitiator during light‑based
3D bioprinting is required. For example, the light source should be carefully selected since
short‑wavelength UV light might lead to serious DNA injury, and NIR light can result in
severe thermal damage [322].

With the increasing application of biomaterials in the biomedical field, it is critical
to understand the degradation rates and mechanisms of biomaterials to determine their
applicability. Biodegradable biomaterials are usually degraded by hydrolysis or proteoly‑
sis [323]. Proteolysis requires that implanted biomaterials have biodegradable peptide se‑
quences that can be recognized and cut off by enzymes produced by cells in or around the
biomaterials, such as collagen and gelatin, which all have matrix metalloproteinases [324].
The advantage of proteolysis is that the rate of degradation is closer to the rate of cell
growth. Another method of degradation is hydrolysis, which is much slower and applica‑
ble to alginate. This is beneficial if a longer‑lasting implant is desired.

Hard tissue refers to tissue that forms in the body through biomineralization, such as
bone tissue. Natural biomaterials such as collagen and gelatin have beenwidely used in the
3D printing of bone tissue due to their good biodegradability and biocompatibility [325].
However, due to their poor mechanical properties, they are often mixed with synthetic
polymer materials. In addition to mechanical properties, the printed bone tissue should
also be bone conductive, so biomolecules such as bonemorphogenetic proteins and growth
factors are often added to bioinks to induce bone signaling [326].

The 3D printing of soft tissues such as heart tissue also has specific requirements for
bioinks. Blood vessel formation is an issue that must be considered in the 3D printing pro‑
cess due to the high blood vessel density of heart tissue. Sacrificial inks such as gelatin and
Pluronic are often used to form hollow channels with smaller diameters [327]. In addition,
in order to achieve the specific functionalization of the bioink, the bioink formula also
needs to be adjusted accordingly; for example, the incorporation of extracellular matrix
proteins like collagen and connexin into the bioink can promote cell adhesion and prolif‑
eration and matrix remodeling. Secreted small molecules such as transforming growth
factors can also promote the maturation of printed heart tissue [328].

5. Conclusions and Future Perspectives
This paper provides an overview of photocrosslinking 3D bioprinting methods and

light‑curable biomaterials for photocrosslinking. We review the printing principles and
current limitations of extrusion, inkjet, stereolithography, and light‑assisted bioprinting
and summarize the three photocrosslinking reaction mechanisms, photoinitiator types,
and the advantages, disadvantages, and current applications of various photocured bio‑
materials. Among the cutting‑edge 3D bioprinting methods, photocrosslinking‑based 3D
bioprinting allows the rapid, facile, and precise fabrication of bioactive scaffolds. During
the printing process, the 3D structure and physical properties of the printed material can
be controlled by adjusting the light duration, light intensity, and photoinitiator concentra‑
tion to meet requirements. Despite the rapid development of photocrosslinking‑based 3D
bioprinting, there are still some challenges.
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5.1. Cell Survival
It is important to ensure high cell viability in the bioink during the printing process.

Shear stress is one of the reasons for the decrease in cell viability. No matter which print‑
ing method is used, the bioink will inevitably produce certain shear stress. However, high
shear stress candeform cells anddestroy cellmembranes, resulting in reduced cell viability.
The extrusion needle diameter and shape, the printing speed, and other printing parame‑
ters will affect the shear stress. For example, although a smaller‑diameter extrusion needle
has the advantage of improving printing accuracy, the increased shear stress and extrusion
stress will affect cell viability. Therefore, it is necessary to evaluate the effect of different
printing parameters on cell viabilitywhen printing. Meanwhile, exploring approaches that
alleviate undesired cell damage will improve the survival of cells and enhance their via‑
bility. Microencapsulation and nanoencapsulation are expected to be potential methods.
Their advantage is that they can envelope the cells inside to reduce the stimulation of the
external environment on the cells.

In addition, the fabrication of large functional constructs for tissue engineering is
another issue for 3D bioprinting. Properly interconnected vascular networks are key to
the transportation of nutrients, oxygen, and metabolic waste. Through embedded print‑
ing and sacrificial printing, it is possible to build large constructs with enhanced nutrient
supply [329]. Control over the capillary‑like structure remains challenging. Despite DLP‑
based 3D bioprinting offering a powerful tool to address this, the advanced fabrication of
large constructs with perfusive microchannels is difficult.

5.2. Development of Crosslinking System
The mechanical injury induced by mechanical parameters such as electronic, thermal,

light, and shear forces during printing is still one of the reasons for low cell viability. Ex‑
ploring approaches that alleviate undesired cell damage will improve the survival of cells
and enhance their viability. In light‑based 3D bioprinting, one of the main challenges is
cell damage induced by light, especially high‑energy, low‑wavelength UV light. Besides
its convenience and precision merits, excess light irradiation has also proven detrimental
to cell survival, growth, and function. Hence, it is necessary to explore bioink systems ca‑
pable of ultrafast gelation under cell‑compatible light irradiation. This can be achieved by
developing a highly light‑reactive polymer backbone, screening novel, efficient photoini‑
tiators, or adding light‑protective UV absorbers. The balance between the photoinitiator’s
exciting efficiency and the light source should be carefully considered to minimize cell
damage. There is a need to develop biosafety photoinitiators with high molar extinction
coefficients in safer light regions, thus achieving cell‑compatible photocrosslinking.

Apart from light irradiation, the photoinitiator is another factor that strongly affects
the viability and function of the embedded cells. This might mainly be attributed to the
inherent toxicity of the photoinitiator, as well as the generation of cell‑damaging free rad‑
icals and other byproducts. Therefore, it is necessary to develop a photoinitiator‑free pho‑
tocrosslinking strategy for 3D bioprinting. Several photoinitiator‑free hydrogels based on
crosslinking mediated by bismaleimides [330], acrylate [331], coumarin derivatives [332],
o‑nitrobenzene derivatives [333], azide [334,335], and styrylpyridinium (SbQ) [336] have
been successfully created (Figure 14). However, most hydrogels were crosslinked upon
long and strong UV irradiation, which is a challenge in cell‑laden 3D bioprinting. The
photoinitiator‑free crosslinked hydrogel is still mainly used to fabricate cell‑free constructs.
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Figure 14. Representative photoinitiator‑free photocrosslinking strategies. (a) A schematic dia‑
gram of UV light crosslinking based on coumarin derivatives. (b) A schematic diagram of UV‑
light‑triggered imine crosslinking (Copyright 2021 American Association for the Advancement of
Science [337]). (c) A schematic diagram of UV‑light‑mediated dual crosslinking based on azide‑
modified chitosan (Copyright 2011 American Chemical Society [335]). (d) A schematic diagram of
photoinitiator‑free photocrosslinking with SbQ as an intermediate. (i) Synthesis of PVA‑SBQ and
(ii) UV‑light‑mediated crosslinking mechanism.

5.3. In Vivo Bioprinting
Another issue in photocrosslinking 3D bioprinting for building constructs in vivo is lim‑

ited light penetration, which restricts the method’s feasibility. Due to the weak penetration
of UV or visible light, which are the most commonly used, the gelation of bioinks within the
deep region of large constructs is difficult, which can result in undesired defects. In addition,
the poor tissue penetration ability also limits the in vivo application of UV or visible light.
With a strong tissue penetration ability, near‑infrared (NIR) light has been reported to hold
great potential in realizing in vivo 3D bioprinting (Figure 15) [338,339]. However, the thermal
effect of NIR light should be carefully considered in in vivo applications.
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Figure 15. The application of NIR‑light‑mediated photocrosslinking based on upconversion
nanoparticles (UCNPs) for in vivo 3D bioprinting. (a) NIR photopolymerization‑based 3D printing
technology that enables the noninvasive in vivo 3D bioprinting of tissue constructs (Copyright 2020
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American Association for the Advancement of Science [340]). (b) The 3D bioprinting of noninva‑
sive fracture scaffolds in vivo by the NIR photocuring method. (i) Schematic of the noninvasive
fixation of a broken bone with the UCNPs‑assisted 3D bioprinting in‑vivo. (ii) Fixation scaffolds
for (a) oblique and (b) comminuted fractures using UCNPs‑assisted NIR 3Dprinting. Images (I, II,
III, and IV) show the pre‑fracture, post‑fracture, 3D skeleton fixation, and corresponding magnified
images of the bones respectively. The shin bones of chickens were used in the experiment, scale
bar = 0.65 cm. (c) Photograph and CT image with a broken rat. (d) Bioink is subcutaneously injected
into the fracture area. (e) 3D in‑vivo printing. (f) Images of fracture fixation positions in‑vivo, scale
bar = 0.6 cm (Copyright 2024 Wiley [339]).

5.4. Clinical Conversion
Biological scaffolds composed of biomaterials and living cells have complex mech‑

anisms and unknown long‑term effects. In the 3D printing process, a small change in
multi‑component biomaterials can cause significant and unpredictable changes [341]. At
present, there are no established regulatory standards for 3D printing technology, bioma‑
terials, or the entire printing process. Therefore, in order to achieve the transformation of
biological scaffolds from the laboratory to the clinic, the physical and chemical properties,
biocompatibility, degradation performance, and biological activity of biological scaffolds
in vivo should be rigorously evaluated in a variety of large animal models before clinical
application to meet clinical needs [342]. In addition, in order to more quickly and effec‑
tively translate this process to the clinic, there is an urgent need to develop strict regulatory
and safety guidelines to evaluate the toxicity of biomaterials and incorporated biomacro‑
molecules such as photoinitiators, as well as the therapeutic effects and potential adverse
effects of biological scaffolds [343].

To summarize, although photocrosslinking 3D bioprinting remains challenging in
many ways, photocrosslinkable hydrogels remain one of the most promising materials in
tissue engineering. It is believed that with progress in biomaterials and tissue engineering,
photocrosslinking 3D bioprinting will be more widely used.
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