Single-Cell Analysis: A Method for In-Depth Phenotyping of Cells Involved in Asthma
Abstract
:1. Introduction
1.1. Pathophysiology and Treatment of Asthma
1.2. Single-Cell Analysis
2. ScRNA-Seq Analysis of Th2 Lymphocytes
3. ScRNA-Seq Studies of Eosinophils
4. ScRNA-Seq Research of Epithelial Cells
5. Single-Cell Transcriptomic of Type 2 Innate Lymphoid Cells
6. ScRNA-Seq Studies in Other Immune Cells
6.1. Dendritic Cell
6.2. Macrophages
6.3. B Lymphocytes
7. Conclusions and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Hammad, H.; Lambrecht, B.N. The basic immunology of asthma. Cell 2021, 184, 1469–1485. [Google Scholar] [CrossRef] [PubMed]
- Gans, M.D.; Gavrilova, T. Understanding the immunology of asthma: Pathophysiology, biomarkers, and treatments for asthma endotypes. Paediatr. Respir. Rev. 2020, 36, 118–127. [Google Scholar] [CrossRef] [PubMed]
- Pakkasela, J.; Ilmarinen, P.; Honkamaki, J.; Tuomisto, L.E.; Andersen, H.; Piirila, P.; Hisinger-Molkanen, H.; Sovijarvi, A.; Backman, H.; Lundback, B.; et al. Age-specific incidence of allergic and non-allergic asthma. BMC Pulm. Med. 2020, 20, 9. [Google Scholar] [CrossRef] [PubMed]
- Bachert, C.; Marple, B.; Schlosser, R.J.; Hopkins, C.; Schleimer, R.P.; Lambrecht, B.N.; Broker, B.M.; Laidlaw, T.; Song, W.J. Adult chronic rhinosinusitis. Nat. Rev. Dis. Primers 2020, 6, 86. [Google Scholar] [CrossRef] [PubMed]
- Lotvall, J.; Akdis, C.A.; Bacharier, L.B.; Bjermer, L.; Casale, T.B.; Custovic, A.; Lemanske, R.F., Jr.; Wardlaw, A.J.; Wenzel, S.E.; Greenberger, P.A. Asthma endotypes: A new approach to classification of disease entities within the asthma syndrome. J. Allergy Clin. Immunol. 2011, 127, 355–360. [Google Scholar] [CrossRef]
- Venkatesan, P. 2023 GINA report for asthma. Lancet Respir. Med. 2023, 11, 589. [Google Scholar] [CrossRef]
- Corren, J. Asthma phenotypes and endotypes: An evolving paradigm for classification. Discov. Med. 2013, 15, 243–249. [Google Scholar]
- Peters, M.C.; Ringel, L.; Dyjack, N.; Herrin, R.; Woodruff, P.G.; Rios, C.; O’Connor, B.; Fahy, J.V.; Seibold, M.A. A Transcriptomic Method to Determine Airway Immune Dysfunction in T2-High and T2-Low Asthma. Am. J. Respir. Crit. Care Med. 2019, 199, 465–477. [Google Scholar] [CrossRef]
- Ekerljung, L.; Mincheva, R.; Hagstad, S.; Bjerg, A.; Telg, G.; Stratelis, G.; Lotvall, J. Prevalence, clinical characteristics and morbidity of the Asthma-COPD overlap in a general population sample. J. Asthma 2018, 55, 461–469. [Google Scholar] [CrossRef]
- Kwah, J.H.; Peters, A.T. Asthma in adults: Principles of treatment. Allergy Asthma Proc. 2019, 40, 396–402. [Google Scholar] [CrossRef]
- Saco, T.V.; Pepper, A.; Casale, T.B. Uses of biologics in allergic diseases: What to choose and when. Ann. Allergy Asthma Immunol. 2018, 120, 357–366. [Google Scholar] [CrossRef] [PubMed]
- Padem, N.; Saltoun, C. Classification of asthma. Allergy Asthma Proc. 2019, 40, 385–388. [Google Scholar] [CrossRef] [PubMed]
- Jovic, D.; Liang, X.; Zeng, H.; Lin, L.; Xu, F.; Luo, Y. Single-cell RNA sequencing technologies and applications: A brief overview. Clin. Transl. Med. 2022, 12, e694. [Google Scholar] [CrossRef] [PubMed]
- Sage, S.E.; Nicholson, P.; Peters, L.M.; Leeb, T.; Jagannathan, V.; Gerber, V. Single-cell gene expression analysis of cryopreserved equine bronchoalveolar cells. Front. Immunol. 2022, 13, 929922. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Netto, K.G.; Sokulsky, L.A.; Zhou, L.; Xu, H.; Liu, C.; Wang, M.; Wang, H.; Li, H.; Zhang, G.; et al. Single-cell RNA transcriptomic analysis identifies Creb5 and CD11b-DCs as regulator of asthma exacerbations. Mucosal Immunol. 2022, 15, 1363–1374. [Google Scholar] [CrossRef]
- Vieira Braga, F.A.; Kar, G.; Berg, M.; Carpaij, O.A.; Polanski, K.; Simon, L.M.; Brouwer, S.; Gomes, T.; Hesse, L.; Jiang, J.; et al. A cellular census of human lungs identifies novel cell states in health and in asthma. Nat. Med. 2019, 25, 1153–1163. [Google Scholar] [CrossRef]
- Harker, J.A.; Lloyd, C.M. T helper 2 cells in asthma. J. Exp. Med. 2023, 220, e20221094. [Google Scholar] [CrossRef]
- Tang, W.; Li, M.; Teng, F.; Cui, J.; Dong, J.; Wang, W. Single-cell RNA-sequencing in asthma research. Front. Immunol. 2022, 13, 988573. [Google Scholar] [CrossRef]
- Seumois, G.; Ramirez-Suastegui, C.; Schmiedel, B.J.; Liang, S.; Peters, B.; Sette, A.; Vijayanand, P. Single-cell transcriptomic analysis of allergen-specific T cells in allergy and asthma. Sci. Immunol. 2020, 5, eaba6087. [Google Scholar] [CrossRef]
- Wang, J.; Jiang, T.; Hu, J.D. Risk prediction model construction for asthma after allergic rhinitis by blood immune T effector cells. Medicine 2024, 103, e37287. [Google Scholar] [CrossRef]
- Jeong, J.; Kang, I.; Kim, Y.; Ku, K.B.; Park, J.H.; Kim, H.J.; Kim, C.W.; La, J.; Jung, H.E.; Kim, H.C.; et al. Regulation of c-SMAC formation and AKT-mTOR signaling by the TSG101-IFT20 axis in CD4(+) T cells. Cell Mol. Immunol. 2023, 20, 525–539. [Google Scholar] [CrossRef] [PubMed]
- Rosenbaum, J.L.; Witman, G.B. Intraflagellar transport. Nat. Rev. Mol. Cell Biol. 2002, 3, 813–825. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Li, X.; Xu, Z.; Hao, L.; Zhang, Y.; Liu, Z. PI3K-AKT-mTOR signaling pathway: The intersection of allergic asthma and cataract. Pharmazie 2019, 74, 598–600. [Google Scholar] [PubMed]
- Herrera-De La Mata, S.; Ramirez-Suastegui, C.; Mistry, H.; Castaneda-Castro, F.E.; Kyyaly, M.A.; Simon, H.; Liang, S.; Lau, L.; Barber, C.; Mondal, M.; et al. Cytotoxic CD4(+) tissue-resident memory T cells are associated with asthma severity. Med 2023, 4, 875–897.e8. [Google Scholar] [CrossRef]
- Liu, J.; Sun, Y.; Tian, C.; Qin, D.; Gao, L. Deciphering cuproptosis-related signatures in pediatric allergic asthma using integrated scRNA-seq and bulk RNA-seq analysis. J. Asthma 2024, 61, 1316–1327. [Google Scholar] [CrossRef]
- Healey, D.C.C.; Cephus, J.Y.; Barone, S.M.; Chowdhury, N.U.; Dahunsi, D.O.; Madden, M.Z.; Ye, X.; Yu, X.; Olszewski, K.; Young, K.; et al. Targeting In Vivo Metabolic Vulnerabilities of Th2 and Th17 Cells Reduces Airway Inflammation. J. Immunol. 2021, 206, 1127–1139. [Google Scholar] [CrossRef]
- Shen, X.; Zhang, H.; Xie, H.; Chen, L.; Li, S.; Zheng, J.; Chai, R.; Wang, Z.; Zang, Y.; He, S. Reduced CCR6(+)IL-17A(+)Treg Cells in Blood and CCR6-Dependent Accumulation of IL-17A(+)Treg Cells in Lungs of Patients With Allergic Asthma. Front. Immunol. 2021, 12, 710750. [Google Scholar] [CrossRef]
- Thompson, D.A.; Wabara, Y.B.; Duran, S.; Reichenbach, A.; Chen, L.; Collado, K.; Yon, C.; Greally, J.M.; Rastogi, D. Single-cell analysis identifies distinct CD4+ T cells associated with the pathobiology of pediatric obesity-related asthma. bioRxiv 2024. [Google Scholar] [CrossRef]
- Alhamdan, F.; Marsh, L.M.; Pedersen, F.; Alhamwe, B.A.; Tholken, C.; Pfefferle, P.I.; Bahmer, T.; Greulich, T.; Potaczek, D.P.; Garn, H. Differential Regulation of Interferon Signaling Pathways in CD4(+) T Cells of the Low Type-2 Obesity-Associated Asthma Phenotype. Int. J. Mol. Sci. 2021, 22, 10144. [Google Scholar] [CrossRef]
- Helou, D.G.; Quach, C.; Fung, M.; Painter, J.D.; Hurrell, B.P.; Eddie Loh, Y.H.; Howard, E.; Shafiei-Jahani, P.; Soroosh, P.; Sharpe, A.H.; et al. Human PD-1 agonist treatment alleviates neutrophilic asthma by reprogramming T cells. J. Allergy Clin. Immunol. 2023, 151, 526–538.e8. [Google Scholar] [CrossRef]
- Wu, D.; Molofsky, A.B.; Liang, H.E.; Ricardo-Gonzalez, R.R.; Jouihan, H.A.; Bando, J.K.; Chawla, A.; Locksley, R.M. Eosinophils sustain adipose alternatively activated macrophages associated with glucose homeostasis. Science 2011, 332, 243–247. [Google Scholar] [CrossRef] [PubMed]
- Canas, J.A.; Sastre, B.; Rodrigo-Munoz, J.M.; Fernandez-Nieto, M.; Barranco, P.; Quirce, S.; Sastre, J.; Del Pozo, V. Eosinophil-derived exosomes contribute to asthma remodelling by activating structural lung cells. Clin. Exp. Allergy 2018, 48, 1173–1185. [Google Scholar] [CrossRef] [PubMed]
- Drake, M.G.; Lebold, K.M.; Roth-Carter, Q.R.; Pincus, A.B.; Blum, E.D.; Proskocil, B.J.; Jacoby, D.B.; Fryer, A.D.; Nie, Z. Eosinophil and airway nerve interactions in asthma. J. Leukoc. Biol. 2018, 104, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Persson, E.K.; Verstraete, K.; Heyndrickx, I.; Gevaert, E.; Aegerter, H.; Percier, J.M.; Deswarte, K.; Verschueren, K.H.G.; Dansercoer, A.; Gras, D.; et al. Protein crystallization promotes type 2 immunity and is reversible by antibody treatment. Science 2019, 364, eaaw4295. [Google Scholar] [CrossRef] [PubMed]
- de Groot, J.C.; Ten Brinke, A.; Bel, E.H. Management of the patient with eosinophilic asthma: A new era begins. ERJ Open Res. 2015, 1, 00024–2015. [Google Scholar] [CrossRef]
- Kuo, H.P.; Yu, T.R.; Yu, C.T. Hypodense eosinophil number relates to clinical severity, airway hyperresponsiveness and response to inhaled corticosteroids in asthmatic subjects. Eur. Respir. J. 1994, 7, 1452–1459. [Google Scholar] [CrossRef]
- Rodrigo-Munoz, J.M.; Naharro-Gonzalez, S.; Callejas, S.; Relano-Ruperez, C.; Torroja, C.; Benguria, A.; Lorente-Sorolla, C.; Gil-Martinez, M.; Garcia de Castro, Z.; Canas, J.A.; et al. Single-cell RNA sequencing of human blood eosinophils reveals plasticity and absence of canonical cell subsets. Allergy 2024. online ahead of print. [Google Scholar] [CrossRef]
- Jorssen, J.; Van Hulst, G.; Mollers, K.; Pujol, J.; Petrellis, G.; Baptista, A.P.; Schetters, S.; Baron, F.; Caers, J.; Lambrecht, B.N.; et al. Single-cell proteomics and transcriptomics capture eosinophil development and identify the role of IL-5 in their lineage transit amplification. Immunity 2024, 57, 1549–1566.e8. [Google Scholar] [CrossRef]
- Ben-Baruch Morgenstern, N.; Rochman, M.; Kotliar, M.; Dunn, J.L.M.; Mack, L.; Besse, J.; Natale, M.A.; Klingler, A.M.; Felton, J.M.; Caldwell, J.M.; et al. Single-cell RNA-sequencing of human eosinophils in allergic inflammation in the esophagus. J. Allergy Clin. Immunol. 2024, 154, 974–987. [Google Scholar] [CrossRef]
- Iwasaki, N.; Poposki, J.A.; Oka, A.; Kidoguchi, M.; Klingler, A.I.; Suh, L.A.; Bai, J.; Stevens, W.W.; Peters, A.T.; Grammer, L.C.; et al. Single cell RNA sequencing of human eosinophils from nasal polyps reveals eosinophil heterogeneity in chronic rhinosinusitis tissue. J. Allergy Clin. Immunol. 2024, 154, 952–964. [Google Scholar] [CrossRef]
- Abraham, C.M.; Ownby, D.R.; Peterson, E.L.; Wegienka, G.; Zoratti, E.M.; Williams, L.K.; Joseph, C.L.; Johnson, C.C. The relationship between seroatopy and symptoms of either allergic rhinitis or asthma. J. Allergy Clin. Immunol. 2007, 119, 1099–1104. [Google Scholar] [CrossRef] [PubMed]
- Whetstone, C.E.; Ranjbar, M.; Omer, H.; Cusack, R.P.; Gauvreau, G.M. The Role of Airway Epithelial Cell Alarmins in Asthma. Cells 2022, 11, 1105. [Google Scholar] [CrossRef] [PubMed]
- Potaczek, D.P.; Miethe, S.; Schindler, V.; Alhamdan, F.; Garn, H. Role of airway epithelial cells in the development of different asthma phenotypes. Cell Signal 2020, 69, 109523. [Google Scholar] [CrossRef] [PubMed]
- Plasschaert, L.W.; Zilionis, R.; Choo-Wing, R.; Savova, V.; Knehr, J.; Roma, G.; Klein, A.M.; Jaffe, A.B. A single-cell atlas of the airway epithelium reveals the CFTR-rich pulmonary ionocyte. Nature 2018, 560, 377–381. [Google Scholar] [CrossRef]
- Montoro, D.T.; Haber, A.L.; Biton, M.; Vinarsky, V.; Lin, B.; Birket, S.E.; Yuan, F.; Chen, S.; Leung, H.M.; Villoria, J.; et al. A revised airway epithelial hierarchy includes CFTR-expressing ionocytes. Nature 2018, 560, 319–324. [Google Scholar] [CrossRef]
- Jackson, N.D.; Everman, J.L.; Chioccioli, M.; Feriani, L.; Goldfarbmuren, K.C.; Sajuthi, S.P.; Rios, C.L.; Powell, R.; Armstrong, M.; Gomez, J.; et al. Single-Cell and Population Transcriptomics Reveal Pan-epithelial Remodeling in Type 2-High Asthma. Cell Rep. 2020, 32, 107872. [Google Scholar] [CrossRef]
- Santus, P.; Radovanovic, D.; Chiumello, D.A. Mucins and Asthma: Are We Headed to the Revolutionary Road? J. Clin. Med. 2019, 8, 1955. [Google Scholar] [CrossRef]
- Kerr, S.C.; Carrington, S.D.; Oscarson, S.; Gallagher, M.E.; Solon, M.; Yuan, S.; Ahn, J.N.; Dougherty, R.H.; Finkbeiner, W.E.; Peters, M.C.; et al. Intelectin-1 is a prominent protein constituent of pathologic mucus associated with eosinophilic airway inflammation in asthma. Am. J. Respir. Crit. Care Med. 2014, 189, 1005–1007. [Google Scholar] [CrossRef]
- Qiao, L.; Li, S.M.; Liu, J.N.; Duan, H.L.; Jiang, X.F. Revealing the regulation of allergic asthma airway epithelial cell inflammation by STEAP4 targeting MIF through machine learning algorithms and single-cell sequencing analysis. Front. Mol. Biosci. 2024, 11, 1427352. [Google Scholar] [CrossRef]
- Tanaka, Y.; Matsumoto, I.; Iwanami, K.; Inoue, A.; Minami, R.; Umeda, N.; Kanamori, A.; Ochiai, N.; Miyazawa, K.; Sugihara, M.; et al. Six-transmembrane epithelial antigen of prostate4 (STEAP4) is a tumor necrosis factor alpha-induced protein that regulates IL-6, IL-8, and cell proliferation in synovium from patients with rheumatoid arthritis. Mod. Rheumatol. 2012, 22, 128–136. [Google Scholar] [CrossRef]
- Tindemans, I.; Serafini, N.; Di Santo, J.P.; Hendriks, R.W. GATA-3 function in innate and adaptive immunity. Immunity 2014, 41, 191–206. [Google Scholar] [CrossRef] [PubMed]
- Spits, H.; Mjosberg, J. Heterogeneity of type 2 innate lymphoid cells. Nat. Rev. Immunol. 2022, 22, 701–712. [Google Scholar] [CrossRef] [PubMed]
- Mikami, Y.; Takada, Y.; Hagihara, Y.; Kanai, T. Innate lymphoid cells in organ fibrosis. Cytokine Growth Factor. Rev. 2018, 42, 27–36. [Google Scholar] [CrossRef] [PubMed]
- Iwata, A.; Toda, Y.; Furuya, H.; Nakajima, H. Group 2 innate lymphoid cells in human asthma. Allergol. Int. 2023, 72, 194–200. [Google Scholar] [CrossRef] [PubMed]
- Bartemes, K.R.; Kita, H. Roles of innate lymphoid cells (ILCs) in allergic diseases: The 10-year anniversary for ILC2s. J. Allergy Clin. Immunol. 2021, 147, 1531–1547. [Google Scholar] [CrossRef]
- Walker, J.A.; Oliphant, C.J.; Englezakis, A.; Yu, Y.; Clare, S.; Rodewald, H.R.; Belz, G.; Liu, P.; Fallon, P.G.; McKenzie, A.N. Bcl11b is essential for group 2 innate lymphoid cell development. J. Exp. Med. 2015, 212, 875–882. [Google Scholar] [CrossRef]
- Yu, X.; Wang, Y.; Deng, M.; Li, Y.; Ruhn, K.A.; Zhang, C.C.; Hooper, L.V. The basic leucine zipper transcription factor NFIL3 directs the development of a common innate lymphoid cell precursor. eLife 2014, 3, e04406. [Google Scholar] [CrossRef]
- Ishizuka, I.E.; Chea, S.; Gudjonson, H.; Constantinides, M.G.; Dinner, A.R.; Bendelac, A.; Golub, R. Single-cell analysis defines the divergence between the innate lymphoid cell lineage and lymphoid tissue-inducer cell lineage. Nat. Immunol. 2016, 17, 269–276. [Google Scholar] [CrossRef]
- Yu, Y.; Tsang, J.C.; Wang, C.; Clare, S.; Wang, J.; Chen, X.; Brandt, C.; Kane, L.; Campos, L.S.; Lu, L.; et al. Single-cell RNA-seq identifies a PD-1(hi) ILC progenitor and defines its development pathway. Nature 2016, 539, 102–106. [Google Scholar] [CrossRef]
- Zhong, C.; Zheng, M.; Cui, K.; Martins, A.J.; Hu, G.; Li, D.; Tessarollo, L.; Kozlov, S.; Keller, J.R.; Tsang, J.S.; et al. Differential Expression of the Transcription Factor GATA3 Specifies Lineage and Functions of Innate Lymphoid Cells. Immunity 2020, 52, 83–95.e4. [Google Scholar] [CrossRef]
- Hoyler, T.; Klose, C.S.; Souabni, A.; Turqueti-Neves, A.; Pfeifer, D.; Rawlins, E.L.; Voehringer, D.; Busslinger, M.; Diefenbach, A. The transcription factor GATA-3 controls cell fate and maintenance of type 2 innate lymphoid cells. Immunity 2012, 37, 634–648. [Google Scholar] [CrossRef] [PubMed]
- Furuya, H.; Toda, Y.; Iwata, A.; Kanai, M.; Kato, K.; Kumagai, T.; Kageyama, T.; Tanaka, S.; Fujimura, L.; Sakamoto, A.; et al. Stage-specific GATA3 induction promotes ILC2 development after lineage commitment. Nat. Commun. 2024, 15, 5610. [Google Scholar] [CrossRef] [PubMed]
- Wagner, A.; Regev, A.; Yosef, N. Revealing the vectors of cellular identity with single-cell genomics. Nat. Biotechnol. 2016, 34, 1145–1160. [Google Scholar] [CrossRef] [PubMed]
- Tanay, A.; Regev, A. Scaling single-cell genomics from phenomenology to mechanism. Nature 2017, 541, 331–338. [Google Scholar] [CrossRef] [PubMed]
- Wallrapp, A.; Riesenfeld, S.J.; Burkett, P.R.; Abdulnour, R.E.; Nyman, J.; Dionne, D.; Hofree, M.; Cuoco, M.S.; Rodman, C.; Farouq, D.; et al. The neuropeptide NMU amplifies ILC2-driven allergic lung inflammation. Nature 2017, 549, 351–356. [Google Scholar] [CrossRef]
- Wang, L.; Netto, K.G.; Zhou, L.; Liu, X.; Wang, M.; Zhang, G.; Foster, P.S.; Li, F.; Yang, M. Single-cell transcriptomic analysis reveals the immune landscape of lung in steroid-resistant asthma exacerbation. Proc. Natl. Acad. Sci. USA 2021, 118, e2005590118. [Google Scholar] [CrossRef]
- Kaushik, A.; Chang, I.; Han, X.; He, Z.; Komlosi, Z.I.; Ji, X.; Cao, S.; Akdis, C.A.; Boyd, S.; Pulendran, B.; et al. Single cell multi-omic analysis identifies key genes differentially expressed in innate lymphoid cells from COVID-19 patients. Front. Immunol. 2024, 15, 1374828. [Google Scholar] [CrossRef]
- Trivedi, S.; Labuz, D.; Deering-Rice, C.E.; Kim, C.U.; Christensen, H.; Aamodt, S.; Huecksteadt, T.; Sanders, K.; Warren, K.J. IL-33 induces NF-kappaB activation in ILC2 that can be suppressed by in vivo and ex vivo 17beta-estradiol. Front. Allergy 2022, 3, 1062412. [Google Scholar] [CrossRef]
- Xu, H.; Ding, J.; Porter, C.B.M.; Wallrapp, A.; Tabaka, M.; Ma, S.; Fu, S.; Guo, X.; Riesenfeld, S.J.; Su, C.; et al. Transcriptional Atlas of Intestinal Immune Cells Reveals that Neuropeptide alpha-CGRP Modulates Group 2 Innate Lymphoid Cell Responses. Immunity 2019, 51, 696–708.e9. [Google Scholar] [CrossRef]
- Morianos, I.; Semitekolou, M. Dendritic Cells: Critical Regulators of Allergic Asthma. Int. J. Mol. Sci. 2020, 21, 7930. [Google Scholar] [CrossRef]
- Villadangos, J.A.; Schnorrer, P. Intrinsic and cooperative antigen-presenting functions of dendritic-cell subsets in vivo. Nat. Rev. Immunol. 2007, 7, 543–555. [Google Scholar] [CrossRef] [PubMed]
- Collin, M.; Bigley, V. Human dendritic cell subsets: An update. Immunology 2018, 154, 3–20. [Google Scholar] [CrossRef] [PubMed]
- Jirmo, A.C.; Grychtol, R.; Gaedcke, S.; Liu, B.; DeStefano, S.; Happle, C.; Halle, O.; Monteiro, J.T.; Habener, A.; Breiholz, O.D.; et al. Single cell RNA sequencing reveals distinct clusters of Irf8-expressing pulmonary conventional dendritic cells. Front. Immunol. 2023, 14, 1127485. [Google Scholar] [CrossRef] [PubMed]
- Izumi, G.; Nakano, H.; Nakano, K.; Whitehead, G.S.; Grimm, S.A.; Fessler, M.B.; Karmaus, P.W.; Cook, D.N. CD11b(+) lung dendritic cells at different stages of maturation induce Th17 or Th2 differentiation. Nat. Commun. 2021, 12, 5029. [Google Scholar] [CrossRef] [PubMed]
- Moon, H.G.; Eccles, J.D.; Kim, S.J.; Kim, K.H.; Kim, Y.M.; Rehman, J.; Lee, H.; Kanabar, P.; Christman, J.W.; Ackerman, S.J.; et al. Complement C1q essential for aeroallergen sensitization via CSF1R(+) conventional dendritic cells type 2. J. Allergy Clin. Immunol. 2023, 152, 1141–1152.e2. [Google Scholar] [CrossRef]
- Zhu, D.; Li, G.; Yuan, L.; Zeng, Z.; Dong, N.; Wang, C.; Chen, M.; Xie, L.; Ding, G.; Shen, L.; et al. Single-cell RNA sequencing unraveled the expression heterogeneity of hematopoietic stem and progenitor cells and lymphoid cell development dysregulation in childhood asthma. medRxiv 2024. [Google Scholar] [CrossRef]
- Britt, R.D., Jr.; Ruwanpathirana, A.; Ford, M.L.; Lewis, B.W. Macrophages Orchestrate Airway Inflammation, Remodeling, and Resolution in Asthma. Int. J. Mol. Sci. 2023, 24, 10451. [Google Scholar] [CrossRef]
- Zhan, W.; Luo, W.; Zhang, Y.; Xiang, K.; Chen, X.; Shen, S.; Huang, C.; Xu, T.; Ding, W.; Chen, Y.; et al. Sputum Transcriptomics Reveals FCN1+ Macrophage Activation in Mild Eosinophilic Asthma Compared to Non-Asthmatic Eosinophilic Bronchitis. Allergy Asthma Immunol. Res. 2024, 16, 55–70. [Google Scholar] [CrossRef]
- Guo, L.; Huang, E.; Wang, T.; Ling, Y.; Li, Z. Exploring the molecular mechanisms of asthma across multiple datasets. Ann. Med. 2024, 56, 2258926. [Google Scholar] [CrossRef]
- Sage, S.E.; Leeb, T.; Jagannathan, V.; Gerber, V. Single-cell profiling of bronchoalveolar cells reveals a Th17 signature in neutrophilic severe equine asthma. Immunology 2024, 171, 549–565. [Google Scholar] [CrossRef]
- Zhang, D.W.; Ye, J.J.; Sun, Y.; Ji, S.; Kang, J.Y.; Wei, Y.Y.; Fei, G.H. CD19 and POU2AF1 are Potential Immune-Related Biomarkers Involved in the Emphysema of COPD: On Multiple Microarray Analysis. J. Inflamm. Res. 2022, 15, 2491–2507. [Google Scholar] [CrossRef] [PubMed]
- McDonough, J.E.; Ahangari, F.; Li, Q.; Jain, S.; Verleden, S.E.; Herazo-Maya, J.; Vukmirovic, M.; DeIuliis, G.; Tzouvelekis, A.; Tanabe, N.; et al. Transcriptional regulatory model of fibrosis progression in the human lung. JCI Insight 2019, 4, e131597. [Google Scholar] [CrossRef] [PubMed]
- Di Mauro, S.; Scamporrino, A.; Fruciano, M.; Filippello, A.; Fagone, E.; Gili, E.; Scionti, F.; Purrazzo, G.; Di Pino, A.; Scicali, R.; et al. Circulating Coding and Long Non-Coding RNAs as Potential Biomarkers of Idiopathic Pulmonary Fibrosis. Int. J. Mol. Sci. 2020, 21, 8812. [Google Scholar] [CrossRef] [PubMed]
- Aranda, C.J.; Gonzalez-Kozlova, E.; Saunders, S.P.; Fernandes-Braga, W.; Ota, M.; Narayanan, S.; He, J.S.; Del Duca, E.; Swaroop, B.; Gnjatic, S.; et al. IgG memory B cells expressing IL4R and FCER2 are associated with atopic diseases. Allergy 2023, 78, 752–766. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.R.; Hu, R.D.; Ma, M.; You, X.; Cui, H.; He, Y.; Xu, D.; Zhao, Z.B.; Selmi, C.; Eric Gershwin, M.; et al. FoxO1 suppresses IL-10 producing B cell differentiation via negatively regulating Blimp-1 expression and contributes to allergic asthma progression. Mucosal Immunol. 2022, 15, 459–470. [Google Scholar] [CrossRef]
- He, K.; Hettinga, A.; Kale, S.L.; Hu, S.; Xie, M.M.; Dent, A.L.; Ray, A.; Poholek, A.C. Blimp-1 is essential for allergen-induced asthma and Th2 cell development in the lung. J. Exp. Med. 2020, 217, e20190742. [Google Scholar] [CrossRef]
- Yu, X.; Li, L.; Cai, B.; Zhang, W.; Liu, Q.; Li, N.; Shi, X.; Yu, L.; Chen, R.; Qiu, C. Single-cell analysis reveals alterations in cellular composition and cell-cell communication associated with airway inflammation and remodeling in asthma. Respir. Res. 2024, 25, 76. [Google Scholar] [CrossRef]
- Komlosi, Z.I.; van de Veen, W.; Kovacs, N.; Szucs, G.; Sokolowska, M.; O’Mahony, L.; Akdis, M.; Akdis, C.A. Cellular and molecular mechanisms of allergic asthma. Mol. Aspects Med. 2022, 85, 100995. [Google Scholar] [CrossRef]
Advantages | Limitations |
---|---|
Single-cell resolution | Higher technical complexity |
Allows analysis of cellular heterogeneity | Requires specialized equipment and platforms |
Detects differences in gene expression between cells within the same tissue | High cost |
Identifies rare or transitioning cell populations | Generation of large data volumes |
Helps identify cell subpopulations | Data interpretation can be challenging due to complexity |
Allows detailed transcriptomic profiling | Limited sequencing depth |
Enables study of specific cellular states and dynamics | Amplification artifacts (over-amplification or bias) |
Useful in studying complex diseases, such as asthma | Challenges in normalization and sample comparison |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez-González, D.; Guillén-Sánchez, G.; del Pozo, V.; Cañas, J.A. Single-Cell Analysis: A Method for In-Depth Phenotyping of Cells Involved in Asthma. Int. J. Mol. Sci. 2024, 25, 12633. https://doi.org/10.3390/ijms252312633
Rodríguez-González D, Guillén-Sánchez G, del Pozo V, Cañas JA. Single-Cell Analysis: A Method for In-Depth Phenotyping of Cells Involved in Asthma. International Journal of Molecular Sciences. 2024; 25(23):12633. https://doi.org/10.3390/ijms252312633
Chicago/Turabian StyleRodríguez-González, Daniel, Gema Guillén-Sánchez, Victoria del Pozo, and José Antonio Cañas. 2024. "Single-Cell Analysis: A Method for In-Depth Phenotyping of Cells Involved in Asthma" International Journal of Molecular Sciences 25, no. 23: 12633. https://doi.org/10.3390/ijms252312633
APA StyleRodríguez-González, D., Guillén-Sánchez, G., del Pozo, V., & Cañas, J. A. (2024). Single-Cell Analysis: A Method for In-Depth Phenotyping of Cells Involved in Asthma. International Journal of Molecular Sciences, 25(23), 12633. https://doi.org/10.3390/ijms252312633