Energy Deficiency and Misdistribution Leads to Disrupted Formation in Grain Yield and Rice Quality
Abstract
:1. Introduction
2. Results
2.1. Grain Yield, Its Components, and Rice Quality
2.2. Plant Height and Dynamic Changes of Tillering
2.3. Leaf Chlorophyll Contents and Photosynthetic Rate
2.4. Dry Matter, NSC Production, and Translocation
2.5. Characteristics of Grain-Filling
2.6. Carbohydrate Content and Key Enzymes Related to Grain-Filling
2.7. Characteristics of Energy Metabolism
2.8. Transcriptome Analysis of Carbohydrate and Energy Metabolism
3. Discussion
4. Materials and Methods
4.1. Materials and Experimental Design
4.2. Grain Yield, Its Components, and Rice Quality Determination
4.3. Plant Height and Tiller Dynamics
4.4. Dry Matter Production and Accumulation
4.5. Carbohydrate Content Determination
4.6. Grain-Filling Dynamics
4.7. Key Enzyme Activities During Grain-Filling
4.8. Determination of Energy Metabolism Related Indicators
4.9. RNA-Seq and Bioinformatics Analysis
4.10. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Dong, M.H.; Jiang, Y.; Chen, P.F.; Zhao, B.H.; Gu, J.R. The relationship between non-structural carbohydrates and rice spikelet formation: A Review. J. Agric. Sci. 2020, 10, 1–6. [Google Scholar]
- Chen, T.; Yang, S.; Wei, T.; Li, Y.; Wang, S.; Su, Y. Overexpression of OsGS1;2 for improved nitrogen use efficiency and grain yield of rice: A field test. Field Crops Res. 2023, 303, 109146. [Google Scholar] [CrossRef]
- Zhang, X.; Guo, Z.; Xu, J.; Huang, C.; Dang, H.; Mu, W.; Zhang, L.; Hou, S.; Huang, N.; Li, C.; et al. Nutrient requirements determined by grain yield and protein content to optimize N, P, and K fertilizer management in China. Sci. Total Environ. 2024, 946, 174187. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, X.; Zhai, L.; Zafar, S.; Shen, C.; Zhu, S.; Chen, K.; Wang, Y.; Xu, J. A novel effective panicle number per plant 4 haplotype enhances grain yield by coordinating panicle number and grain number in rice. Crop J. 2024, 12, 202–212. [Google Scholar] [CrossRef]
- Song, J.; Cui, Y.; Fan, H.; Tang, L.; Wang, J. Molecular breeding of Zheyou810, an Indica-Japonica hybrid rice variety with superior quality and high yield. Agriculture 2023, 13, 1807. [Google Scholar] [CrossRef]
- Zhou, Q.; Yuan, R.; Zhang, W.; Gu, J.; Liu, L.; Zhang, H.; Wang, Z.; Yang, J. Grain yield, nitrogen use efficiency and physiological performance of indica/japonica hybrid rice in response to various nitrogen rates. J. Integr. Agric. 2023, 22, 63–79. [Google Scholar] [CrossRef]
- He, H.; Hu, C.; Xu, H.; Yang, R.; You, C.; Ke, J.; Zhang, Q.; Wu, L. High yield, good eating quality, and high N use efficiency for medium hybrid indica rice: From the perspective of balanced source-sink relationships at heading. Eur. J. Agron. 2024, 159, 127281. [Google Scholar] [CrossRef]
- Ye, S.; Liu, M.; Zhai, R.; Ye, J.; Wu, M.; Zhu, G.; Zhang, X. RL99 was essential for high yield formation by regulating leaf morphogenesis and root development in rice. Plant Mol. Bio. Rep. 2024, 15, 1–8. [Google Scholar] [CrossRef]
- Deng, Z.Y.; Qu, Y.Q.; Wu, Y.R.; Zhang, J.S.; Wang, T. Current progress and prospect of crop quality research. Sci. Sin. Vitae. 2021, 51, 1405–1414. [Google Scholar] [CrossRef]
- Yang, W.L. The Physiological Mechanism of High Quality and High Yield in Hybrid Rice. Master’s Thesis, Huazhong Agricultural University, Wuhan, China, 2021; pp. 7–8. [Google Scholar]
- Gao, J.; Gao, L.; Chen, W.; Huang, J.; Qing, D.; Pan, Y.; Ma, C.; Wu, H.; Zhou, W.; Li, J.; et al. Genetic effects of grain quality enhancement in indica hybrid rice: Insights for Molecular Design Breeding. Rice 2024, 17, 39. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Y.; Liu, M.; Yan, P.; Niu, F.; Ma, F.; Hu, J.; He, S.; Cui, J.; Yuan, X.; et al. OsEXPA7 encoding an expansin affects grain size and quality traits in rice (Oryza sativa L.). Rice 2024, 17, 36. [Google Scholar] [CrossRef] [PubMed]
- Hong, W.; Duan, M.; Wang, Y.; Chen, Y.; Mo, Z.; Qi, J.; Pan, S.; Tang, X. Enriching iodine and regulating grain aroma, appearance quality, and yield in aromatic rice by foliar application of sodium iodide. Rice Sci. 2024, 31, 328–342. [Google Scholar]
- Lu, B.; Xu, C.; Li, Z.; Tang, X.; Yang, F.; Xu, D.; Zhu, G.; Zhang, J.; Jiang, Y.; Li, W.; et al. Influence of the temperature during grain filling stage and nitrogen application rate on yield and quality of indica hybrid rice. Field Crops Res. 2024, 309, 109333. [Google Scholar] [CrossRef]
- Xiong, R.; Tan, X.; Wang, H.; Pan, X.; Zeng, Y.; Zeng, Y. Optimized nitrogen fertilizer application strategy improves grain yield and quality of high-quality late indica rice under field ambient warming. Eur. J. Agron. 2024, 154, 127091. [Google Scholar] [CrossRef]
- Wei, P.Y.; Qiu, S.; Tang, J.; Xiao, D.D.; Zhu, Y.; Liu, G.D.; Xing, Z.P.; Hu, Y.J.; Guo, B.W.; Gao, S.Q.; et al. Screening and characterization of high-quality and high-yield japonica rice varieties in Yanhuai region of Anhui province. Acta Agron. Sin. 2020, 46, 571–585. [Google Scholar]
- Zhang, Q.; Hu, Y.J.; Guo, B.W.; Zhang, H.C.; Xu, X.J.; Xu, Y.F.; Zhu, B.H.; Xu, J.F. Study on the Characteristics of Soft japonica Rice Varieties with Good Taste and High Yield in Taihu Lake Area. Chin. J. Rice Sci. 2021, 35, 279–290. [Google Scholar]
- Liu, Q.Y. Good Quality, High Grain Yield and High Nitrogen Efficiency Types of Medium Japonica Rice in the Eastern Region of Jianghuai and Their Morphological and Physiological Characteristics. Ph.D. Thesis, Yangzhou University, Yangzhou, China, 2021; pp. 141–144. [Google Scholar]
- Sousa, J.S.; Calisto, F.; Langer, J.D.; Mills, D.J.; Refojo, P.N.; Teixeira, M.; Kuhlbrandt, W.; Vonck, J.; Pereira, M.M. Structural basis for energy transduction by respiratory alternative complex III. Nat. Commun. 2018, 9, 1728. [Google Scholar] [CrossRef]
- Cao, H.; Duncan, O.; Millar, A.H. Protein turnover in the developing Triticum aestivum grain. New Phytol. 2021, 233, 1188–1201. [Google Scholar] [CrossRef]
- Chen, T.; Yang, X.; Fu, W.; Li, G.; Feng, B.; Fu, G.; Tao, L. Strengthened assimilate transport improves yield and quality of super rice. Agronomy 2022, 12, 753. [Google Scholar] [CrossRef]
- Li, H.; Feng, B.; Li, J.; Fu, W.; Wang, W.; Chen, T.; Liu, L.; Wu, Z.; Peng, S.; Tao, L.; et al. RGA1 alleviates low-light-repressed pollen tube elongation by improving the metabolism and allocation of sugars and energy. Plant Cell Environ. 2023, 46, 1–21. [Google Scholar] [CrossRef]
- Feng, B.; Xu, Y.; Fu, W.; Li, H.; Li, G.; Li, J.; Wang, W.; Tao, L.; Chen, T.; Fu, G. RGA1 negatively regulates thermo-tolerance by affecting carbohydrate metabolism and the energy supply in rice. Rice 2023, 16, 32. [Google Scholar] [CrossRef]
- Jiang, N.; Yu, P.; Fu, W.; Li, G.; Feng, B.; Chen, T.; Li, H.; Tao, L.; Fu, G. Acid invertase confers heat tolerance in rice plants by maintaining energy homoeostasis of spikelets. Plant Cell Environ. 2020, 43, 1273–1287. [Google Scholar] [CrossRef] [PubMed]
- Xiong, D. Perspectives of improving rice photosynthesis for higher grain yield. Crop Environ. 2024, 3, 123–137. [Google Scholar] [CrossRef]
- Jagadish, S. Heat stress during flowering in cereals-effects and adaptation strategies. New Phytol. 2020, 226, 1567–1572. [Google Scholar] [CrossRef]
- Xie, Q.; Xu, J.; Huang, K.; Su, Y.; Tong, J.; Huang, Z.; Huang, C.; Wei, M.; Lin, W.; Xiao, L. Dynamic formation and transcriptional regulation mediated by phytohormones during chalkiness formation in rice. BMC Plant Biol. 2021, 21, 308. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, G.; Cheng, Y.; Xu, J.; Wang, C.; Yang, J. The effects of dry cultivation on grain-filling and chalky grains of upland rice and paddy rice. Food Energy Secur. 2020, 9, e198. [Google Scholar] [CrossRef]
- Chen, L.; Deng, X.; Duan, H.; Tan, X.; Xie, X.; Pan, X.; Guo, L.; Gao, H.; Wei, H.; Zhang, H.; et al. Water management can alleviate the deterioration of rice quality caused by high canopy humidity. Agric. Water Manag. 2023, 289, 108567. [Google Scholar] [CrossRef]
- Chen, Z.; Zhou, W.; Guo, X.; Lin, S.; Li, W.; Yao, J. Heat stress responsive Aux/IAA protein, OsIAA29 regulates grain filling through OsARF17 mediated Auxin signaling pathway. Rice 2024, 17, 16. [Google Scholar] [CrossRef]
- Xiong, Q.; Lu, Y.; Gu, W.; Zhang, Y.; Li, A.; Cai, S.; Zhou, N. Biomarkers of the main nutritional components in purple rice during five successive grain filling stages. Food Chem. X 2024, 23, 101528. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Y.; Song, N.; Chen, Q.; Sun, H.; Peng, T.; Huang, S.; Zhao, Q. Response of grain-filling rate and grain quality of mid-season indica rice to nitrogen application. J. Integr. Agric. 2021, 20, 1465–1473. [Google Scholar] [CrossRef]
- Crofts, N.; Abe, N.; Oitome, N.; Matsushima, R.; Hayashi, M.; Tetlow, I.; Emes, M.; Nakamura, Y.; Fujita, N. Amylopectin biosynthetic enzymes from developing rice seed form enzymatically active protein complexes. J. Exp. Bot. 2015, 66, 4469–4482. [Google Scholar] [CrossRef]
- Seung, D.; Smith, A. Starch granule initiation and morphogenesis-progress in Arabidopsis and cereals. J. Exp. Bot. 2019, 70, 771–784. [Google Scholar] [CrossRef]
- Huang, L.; Tan, H.; Zhang, C.; Li, Q.; Liu, Q. Starch biosynthesis in cereal endosperms: An updated review over the last decade. Plant Commun. 2021, 2, 100237. [Google Scholar] [PubMed]
- Cakir, B.; Shiraishi, S.; Tuncel, A.; Matsusaka, H.; Satoh, R.; Singh, S.; Crofts, N.; Hosaka, Y.; Fujita, N.; Hwang, S.; et al. Analysis of the rice ADP-Glucose transporter (OsBT1) indicates the presence of regulatory processes in the amyloplast stroma that control ADP-Glucose flux into starch. Plant Physiol. 2016, 170, 1271–1283. [Google Scholar]
- Ma, J.; Chen, T.; Lin, J.; Fu, W.; Feng, B.; Li, G.; Li, H.; Li, J.; Wu, Z.; Tao, L.; et al. Functions of nitrogen, phosphorus and potassium in energy status and their influences on rice growth and development. Rice Sci. 2022, 29, 166–179. [Google Scholar]
- Shen, T.; Xiong, Q.; Zhong, L.; Shi, X.; Cao, C.; He, H.; Chen, X. Analysis of main metabolisms during nitrogen deficiency and compensation in rice. Acat. Physiol. Plant. 2019, 41, 1–14. [Google Scholar] [CrossRef]
- Liu, Y.; Han, J.; Liu, D.; Gu, D.; Wang, Y.; Liao, Y.; Wen, X. Effect of plastic film mulching on the grain filling and hormonal changes of maize under different irrigation conditions. PLoS ONE 2015, 10, e0122791. [Google Scholar]
- Zhang, W.; Cao, Z.; Zhou, Q.; Chen, J.; Xu, G.; Gu, J.; Liu, L.; Wang, Z.; Yang, J.; Zhang, H. Grain filling characteristics and their relations with endogenous hormones in large-and small-grain mutants of rice. PLoS ONE 2016, 11, e0165321. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Xu, Y.; Gu, D.; Yin, X.; Jia, Y.; Wen, T.; Jiang, W.; Che, Y.; Li, Q.; Wen, Z.; et al. Response of Different Exogenous Phytohormones to Rice Yield Under Low-Temperature Stress at the Filling Stage. Agronomy 2024, 14, 2450. [Google Scholar] [CrossRef]
Variety/Grain Type |
Mean Grain-Filling Rate (g·grain −1·d −1) |
Active Grain-Filling Period (d) | Period to Reach Maximum Grain-Filling Rate (d) | Maximum Grain-Filling Rate (g·grain −1·d −1) |
---|---|---|---|---|
ZZY1-Superiors | 2.33 a | 10.6 d | 3.9 c | 2.54 a |
ZZY1-Inferiors | 1.04 c | 23.7 b | 15.9 a | 1.14 b |
ZZY8-Superiors | 1.63 b | 14.5 c | 3.7 c | 2.01 a |
ZZY8-Inferiors | 0.79 d | 30.8 a | 14.3 b | 1.11 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Li, G.; Ma, J.; Su, H.; Hu, W.; Lin, J.; Fu, W.; Zeng, Y.; Tao, L.; Fu, G.; et al. Energy Deficiency and Misdistribution Leads to Disrupted Formation in Grain Yield and Rice Quality. Int. J. Mol. Sci. 2024, 25, 12751. https://doi.org/10.3390/ijms252312751
Wang Y, Li G, Ma J, Su H, Hu W, Lin J, Fu W, Zeng Y, Tao L, Fu G, et al. Energy Deficiency and Misdistribution Leads to Disrupted Formation in Grain Yield and Rice Quality. International Journal of Molecular Sciences. 2024; 25(23):12751. https://doi.org/10.3390/ijms252312751
Chicago/Turabian StyleWang, Yiding, Guangyan Li, Jiaying Ma, Haoran Su, Wenfei Hu, Junjiang Lin, Weimeng Fu, Yvxiang Zeng, Longxing Tao, Guanfu Fu, and et al. 2024. "Energy Deficiency and Misdistribution Leads to Disrupted Formation in Grain Yield and Rice Quality" International Journal of Molecular Sciences 25, no. 23: 12751. https://doi.org/10.3390/ijms252312751
APA StyleWang, Y., Li, G., Ma, J., Su, H., Hu, W., Lin, J., Fu, W., Zeng, Y., Tao, L., Fu, G., Xiong, J., & Chen, T. (2024). Energy Deficiency and Misdistribution Leads to Disrupted Formation in Grain Yield and Rice Quality. International Journal of Molecular Sciences, 25(23), 12751. https://doi.org/10.3390/ijms252312751