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Abstract: Hypothyroidism compromises the testicular redox status and is associated with reduced
sperm quality and infertility in men. In this regard, studies have demonstrated the antioxidant
potential of kisspeptin in reproductive and metabolic diseases. In this study, we evaluate the effects
of kisspeptin-10 (Kp10) on the testicular redox, as well as mediators of the unfolded protein response
(UPR) in adult rats with hypothyroidism. Adult male Wistar rats were randomly separated into the
Control (n = 15), Hypo (n = 13) and Hypo + Kp10 (n = 14) groups, and hypothyroidism was induced
with 6-propyl-2-thiouracil (PTU) for three months. In the last month, half of the hypothyroid animals
received Kp10. Testis samples were collected for enzymatic, immunohistochemical and/or gene
evaluation of mediators of oxidative stress (TBARs, lipid hydroperoxides (LOOH), ROS, peroxynitrite,
SOD, CAT and GPX), endoplasmic reticulum stress (GRP78, ATF6, PERK, CHOP, HO-1 and sXBP1)
and antiapoptocytes (BCL-2). Hypothyroidism increased apoptosis index, TBARS and LOOH concen-
trations, and reduced testicular gene expression of Sod1, Sod2 and Gpx1, as well as the expression
of Grp78, Atf6, Ho1 and Chop. Treatment with Kp10, in turn, reduced testicular apoptosis and the
production of peroxynitrite, while increased SOD1 and GPX 1

2 expression, and enzymatic activity
of CAT, but did not affect the lower expression of UPR mediators caused by hypothyroidism. This
study demonstrated that hypothyroidism causes oxidative stress and dysregulated the UPR pathway
in rat testes and that, although Kp10 does not influence the low expression of UPR mediators, it
improves the testicular redox status, configuring it as an important antioxidant factor in situations of
thyroid dysfunction.

Keywords: thyroid; male; oxidative stress; reticular stress; rat

1. Introduction

Fertility problems in men can affect up to half of couples trying to have children [1].
This primarily includes endocrine dysfunctions, such as hypothyroidism, which com-
promises the morphology of the gonads and sexual glands, because it reduces testicular
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mass [2–5] and the thickness of the epithelia of the seminiferous tubule [5–7], prostate and
seminal vesicle [5,7,8]. These effects are possibly the result of steroidogenic failure asso-
ciated with hypothyroidism, as these glands are highly responsive to testosterone [9,10].
Furthermore, it can result in degenerative and apoptotic changes in the seminiferous
epithelium (SE), drastically affecting sperm [5,11,12] and hormonal function [5,7].

The changes caused by hypothyroidism in the testicle are also associated with oxidative
stress (OS), caused by the high production of reactive oxygen species (ROS), such as
superoxide (O2

−), hydroxyl (OH+), peroxyl (RO2
−), hydroperoxyl (HO2

−) and hydrogen
peroxide (H2O2) [13,14], or the low production of antioxidant factors such as the enzymes
superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX) [13].

However, OS can also be associated with other forms of cellular stress, such as endo-
plasmic reticulum (ER) stress [15], which is characterized by the accumulation of poorly
folded proteins in the lumen of the ER [16]. This involves the activation of the unfolded
protein response (UPR) pathway [17], mainly by the dissociation of glucose regulatory
protein 78 (GRP78) [18,19] from the proteins inositol-requiring enzyme 1 (IRE1), PKR-like
ER kinase (PERK) and activating transcription factor 6 (ATF6), which are “ER sensors” [20].
When the cell does not return to its normal functions, an apoptotic pathway is established by
activation of the endoplasmic-reticulum-associated protein degradation (ERAD) pathway
and the homologous protein C/EBP (CHOP) [17,20].

Few studies have been conducted to evaluate ER stress in hypothyroidism; the activa-
tion of this process has only been demonstrated in the hypothalamus and maternal-fetal
interface of rats [21,22]. In males, ER stress was observed in other disease models such
as testicular varicocele [23] and hypercholesterolemia [24], and in models of cadmium-
induced cellular toxicity [25] and fluorine [26], but it is unknown whether hypothyroidism
causes ER stress in the testes.

Studies have been conducted to evaluate the potential of substances to reduce the
effects of OS and/or ER stress in the reproductive tract [27,28]. In this regard, kisspeptin,
which control the hypothalamic release of gonadotropin-releasing hormone (GnRH) [29,30]
and has local action in the testes [31,32], has been recognized for its antioxidant effects in
models of ovarian and uterine, [33] testicular, [34], cardiac [35] and brain disease in mice [36].
In addition, in vitro overexpression of kisspeptin in human granulosa cells increased
proliferation, inhibited apoptosis, suppressed ROS generation, reduced malondialdehyde
(MDA) levels, and increased levels of antioxidant factors [37]. These effects observed in
several studies justify the use of kisspeptin as a potent antioxidant factor in disease models.

We recently demonstrated that kisspeptin blocks OS and reduces the expression of ER
stress mediators in the placenta of hypothyroid rats [27]. Furthermore, in males, it reestab-
lished the height of the seminiferous epithelium, tubular diameter, testosterone production
and sperm quality of hypothyroid rats [5]. Therefore, the two main hypotheses of this study
are that hypothyroidism causes oxidative and ER stress, and that kisspeptin-10 (Kp10)
treatment blocks these cellular stresses in the adult rat testis. Our results demonstrated
that Kp10 improves testicular antioxidant defense because it increased the protein expres-
sion of SOD and GPX, reducing the percentage of tubules undergoing apoptosis but not
influencing the low expression of UPR mediators in the testis of rats with hypothyroidism.

2. Results
2.1. Confirmation of Hypothyroidism

Hypothyroidism was confirmed by reduced body mass gain and reduced levels of
free T4 (Table 1).

2.2. Immunolocalization of 8-OhdG and Quantification of LOOH, TBARS, ROS and Peroxynitrite

Immunolabeling of 8-hydroxyl–2′–deoxyguanosine (8-OhdG) was restricted to round
and/or elongated spermatids (red arrows) in stages VI or VII tubules (Figure 1A–C).
However, the percentage of labeled tubules did not differ between the groups (Figure 1D;
p > 0.05). The amount of testicular thiobarbituric acid-reactive substances (TBARS)
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(Figure 1E) and lipid hydroperoxides (LOOH) (Figure 1F) was higher in the hypothyroid
(Hypo) group, confirming the oxidative stress. The total ROS in testis was similar between
groups (Figure 1G; p > 0.05) and no differences in peroxynitrite were observed between the
control (Control) and Hypo group (Figure 1H; p > 0.05). However, when treated with Kp10
(Hypo + Kp10), the rats had lower amounts of peroxynitrite, even in relation to the Control
group (Figure 1H).

Table 1. Body mass and plasma concentration of free T4 in rats from the control, hypothyroid and
hypothyroid treated with kisspeptin-10 groups.

Parameter Control Hypothyroid Hypothyroid + Kp10

Initial body mass (g) 370.7 ± 6.20 371.7 ± 6.27 371.7 ± 7.68
Final body mass (g) 423.1 ± 5.87 345.0 ± 6.55 **** 333.5 ± 8.07 ****

Free T4 (ng/dL) 1.699 ± 0.097 0.029 ± 0.014 **** 0.041 ± 0.016 ****
Legends: **** p < 0.0001. (Mean ± SEM); n = 13–15 animals/group.

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 4 of 15 
 

 

 
Figure 1. Effects of hypothyroidism and Kp10 treatment in 8-OhdG staining and quantification of 
TBARS, LOOH, ROS and peroxynitrite in the rat testes. (A–C) Photomicrographs of 8-OhdG stain-
ing (red arrows) in the testes of rats from Control (A), Hypo (B) and Hypo + Kp10 (C) groups; He-
matoxylin; Bar = 50 µm. (D) Percentage of seminiferous tubules positive for 8-OhdG in the rat testes 
(n = 5–6). (E,F) Tissue concentration of TBARS (E), LOOH (F), ROS (G) and peroxynitrite (H) in the 
testes of rats from Control, Hypo and Hypo + Kp10 groups (n = 5–8). Legends: 8-OhdG = 8-hydroxyl–
2′–deoxyguanosine; TBARS = thiobarbituric acid-reactive substances; LOOH = Lipid Hydroperox-
ides; ROS = reactive oxygen species; * p < 0.05; **p < 0.01. 

2.3. Treatment with Kp10 Increases Protein Expression of SOD1 and GPX1/2 and Catalase 
Enzyme Activity in the Testes of Hypothyroid Rats 

The gene expression of Nrf2, important transcription factor involved in the expres-
sion of antioxidant enzymes under hypoxic conditions [38], showed similar mRNA levels 
between the control, hypothyroid and Kp10-treated animals (Figure 2K; p > 0.05). How-
ever, in the Hypo + Kp10 group, SE and interstitial cells showed more intense staining of 
SOD1 and GPX ½, respectively, when compared to the Control and Hypo groups (Figure 
2A–C,G–I), which was confirmed by analyzing the immunostaining area (Figure 2J). Alt-
hough no difference was observed in the enzymatic activity of SOD between the groups 
(Figure 2M; p > 0.05), the gene expression of Sod1, Sod2 and Gpx1 was reduced in the testes 
of rats with hypothyroidism (Figure 2L), while treatment with Kp10 did not alter this low 
expression (p > 0.05). 

Regarding CAT, no significant difference was observed in the immunostaining area 
and gene expression between groups (Figure 2D–F,J,L; p > 0.05). However, catalase en-
zyme activity was higher in the testes of Kp10-treated hypo rats (Figure 2M).  

Figure 1. Effects of hypothyroidism and Kp10 treatment in 8-OhdG staining and quantification
of TBARS, LOOH, ROS and peroxynitrite in the rat testes. (A–C) Photomicrographs of 8-OhdG
staining (red arrows) in the testes of rats from Control (A), Hypo (B) and Hypo + Kp10 (C) groups;
Hematoxylin; Bar = 50 µm. (D) Percentage of seminiferous tubules positive for 8-OhdG in the
rat testes (n = 5–6). (E,F) Tissue concentration of TBARS (E), LOOH (F), ROS (G) and perox-
ynitrite (H) in the testes of rats from Control, Hypo and Hypo + Kp10 groups (n = 5–8). Leg-
ends: 8-OhdG = 8-hydroxyl–2′–deoxyguanosine; TBARS = thiobarbituric acid-reactive substances;
LOOH = Lipid Hydroperoxides; ROS = reactive oxygen species; * p < 0.05; ** p < 0.01.



Int. J. Mol. Sci. 2024, 25, 1514 4 of 13

2.3. Treatment with Kp10 Increases Protein Expression of SOD1 and GPX1/2 and Catalase
Enzyme Activity in the Testes of Hypothyroid Rats

The gene expression of Nrf2, important transcription factor involved in the expression
of antioxidant enzymes under hypoxic conditions [38], showed similar mRNA levels be-
tween the control, hypothyroid and Kp10-treated animals (Figure 2K; p > 0.05). However, in
the Hypo + Kp10 group, SE and interstitial cells showed more intense staining of SOD1 and
GPX 1

2 , respectively, when compared to the Control and Hypo groups (Figure 2A–C,G–I),
which was confirmed by analyzing the immunostaining area (Figure 2J). Although no
difference was observed in the enzymatic activity of SOD between the groups (Figure 2M;
p > 0.05), the gene expression of Sod1, Sod2 and Gpx1 was reduced in the testes of rats with
hypothyroidism (Figure 2L), while treatment with Kp10 did not alter this low expression
(p > 0.05).
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Figure 2. Effects of hypothyroidism and Kp10 treatment on the expression of antioxidant mediators 
in rat testes. (A–I) Photomicrographs of SOD1 (A–C), CAT (D–F), GPX (G–I) staining in the testes 
of rats of the Control (A,D,G), Hypo (B,E,H) and Hypo + Kp10 (C,F,I) groups; hematoxylin; bar = 50 
µm; highlights show interstitial immunostaining of proteins. (J) Stained area of SOD1, CAT and 
GPX 1/2 in the rat testes (n = 5–6). (K) Relative gene expression of Nrf2 (n = 5–7). (L) Relative gene 
expression of Sod1, Sod2, Cat, and Gpx1 (n = 5–8). (M) Enzyme activity of SOD and CAT (n = 5–8). 
Legends: SOD 1 = superoxide dismutase 1; CAT = catalase; GPX ½ = glutathione peroxidase 1/2; Nrf2 
= gene encoding nuclear factor erythroid 2-related factor 2; Sod1 = gene encoding SOD1; Sod2 = gene 
encoding SOD 2; Cat = gene encoding CAT; Gpx1 = gene encoding GPX 1; * p < 0.05; ** p < 0.01. 

Figure 2. Effects of hypothyroidism and Kp10 treatment on the expression of antioxidant mediators in
rat testes. (A–I) Photomicrographs of SOD1 (A–C), CAT (D–F), GPX (G–I) staining in the testes of rats
of the Control (A,D,G), Hypo (B,E,H) and Hypo + Kp10 (C,F,I) groups; hematoxylin; bar = 50 µm;
highlights show interstitial immunostaining of proteins. (J) Stained area of SOD1, CAT and GPX
1/2 in the rat testes (n = 5–6). (K) Relative gene expression of Nrf2 (n = 5–7). (L) Relative gene
expression of Sod1, Sod2, Cat, and Gpx1 (n = 5–8). (M) Enzyme activity of SOD and CAT (n = 5–8).
Legends: SOD 1 = superoxide dismutase 1; CAT = catalase; GPX 1

2 = glutathione peroxidase 1/2;
Nrf2 = gene encoding nuclear factor erythroid 2-related factor 2; Sod1 = gene encoding SOD1;
Sod2 = gene encoding SOD 2; Cat = gene encoding CAT; Gpx1 = gene encoding GPX 1; * p < 0.05;
** p < 0.01.
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Regarding CAT, no significant difference was observed in the immunostaining area
and gene expression between groups (Figure 2D–F,J,L; p > 0.05). However, catalase enzyme
activity was higher in the testes of Kp10-treated hypo rats (Figure 2M).

2.4. Kp10 Treatment Does Not Alter Lower Testicular Gene Expression of UPR Mediators Caused
by Hypothyroidism in Rats

The GRP78 protein showed weak staining in the cytoplasm of SE cells and no sig-
nificant difference was observed in the number of stained tubules between the groups
(Figure 3A–C,H; p > 0.05). In contrast, no CHOP labeling was observed in the SE and in the
interstitium (Figure 3D). Interestingly, regarding gene expression, a significant reduction
was observed in the expression of Grp78 (Figure 3I), Atf6 (Figure 3J), Ho1 (Figure 3M) and
Chop (Figure 3N) in the Hypo group compared to the Control; treatment with Kp10 did not
alter this lower expression (p > 0.05). For genes Perk (Figure 3K) and sXbp1 (Figure 3L), no
difference was observed between the groups (p > 0.05).
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Figure 3. Effects of hypothyroidism and Kp10 treatment on the expression of UPR mediators and
ER stress in rat testes. (A–G) Photomicrographs of GRP78 (A–C) and CHOP (D) immunolabeling
in the testes of rats from Control (A), Hypo (B,D) and Hypo + Kp10 (C) groups; hematoxylin; bar
= 50 µm. (E–G) Photomicrographs of negative (E) and positive controls (hypothyroid rat placenta)
for GRP78 (F) and CHOP (G). (H) Percentage of seminiferous tubules positive for GRP78 in the
rat testes. (I–N) Relative gene expression of Grp78 (I), Atf6 (J), Perk (K), sXbp1 (L), Ho1 (M) and
Chop (N) in the rat testes (n = 5–8). Legends: GRP78 = Heat shock protein family A (Hsp70) member 5;
CHOP = homologous protein C/EBP; Grp78 = gene encoding GRP78; Chop = gene encoding CHOP;
Atf6 = gene encoding Activating transcription factor 6, Perk = gene encoding Eukaryotic translation
initiation factor 2 alpha kinase 3; sXbp1 = gene encoding X-box binding protein 1; Ho1 = gene
enconding Heme oxygenase 1; * p < 0.05, ** p < 0.01.
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2.5. Kp10 Treatment Reduces the Apoptotic Index in Testicular Cells

The number of apoptotic cells and the percentage of tubules presenting apoptotic
nuclei were significantly increased in rats from the Hypo group (Figure 4B,E,G–H). On the
other hand, animals treated with Kp10 showed a reduction in this percentage, matching
the Control (Figure 4G–H), accompanied by a significant increase in the expression of Bcl-2
mRNA, an important anti-apoptotic factor (Figure 4I) [39].
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Figure 4. Effects of hypothyroidism and Kp10 treatment on the apoptosis index in rat testes.
(A–F) Photomicrographs of TUNEL in the testes of rats from Control (A,D), Hypo (B,E) and Hypo
+ Kp10 (C,F) groups; arrows indicate apoptosis cells in seminiferous epithelium; asterisk indicate
TUNEL positive tubules; methyl green; bar = 200 µm (A–C) and 50 µm (D–F). (G) Total number of
TUNEL positive cells in the rat testes. (H) Percentage of TUNEL positive tubules in the rat testes
(n = 5–6). (I) Relative gene expression of Bcl-2 in rat testes (n = 5–7). Legends: Bcl-2 = gene encoding
Apoptosis regulator BCL-2; * p < 0.05; **** p < 0.0001.

3. Discussion

The kisspeptin/kiss1r system is known to regulate the release of GnRH and luteinizing
hormone (LH) in the hypothalamic-pituitary-gonadal (HPG) axis, but it is also known
for local functions in the testis (e.g., in testis formation, spermatogenesis and testicular
steroidogenesis [31,32]). In this study, we demonstrated that Kp10 improves testicular
antioxidant status and reduces apoptosis in adult male rats with hypothyroidism, although
it is not able to improve testicular dysregulation of mediators of UPR pathway.

OS is one of the main factors associated with reproductive dysfunction in males [28].
To verify oxidative damage in the testis of rats with hypothyroidism or treated with Kp10,
we initially evaluated the presence of 8-OhdG, a biomarker of DNA oxidation [40], along
with TBARS, LOOH, ROS and peroxynitrite concentration. The count of 8-OhdG-positive
tubules did not differ between groups, and staining was mainly in spermatids in tubules
at stages VII–VIII. This is similar to what was observed by Feng et al. [41] in a fluoride-
induced OS model, in which 8-OhdG labeling occurred in elongated spermatids. Although
hypothyroidism did not increase oxidative DNA damage, the observed increase in TBARS
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and LOOH concentrations confirms OS status. This is consistent with other studies that
have described an increase in lipid peroxidation in the testis of hypothyroid animals [42,43].

Kp10, despite not having significant effects on increasing TBARS and LOOH levels,
reduced peroxynitrite, an important reactive nitrogen species [44]. Interestingly, this
occurred in parallel with the increase in the activity of the CAT enzyme in this group.
Studies have already demonstrated that CAT can be inhibited by nitric oxide (NO) and
peroxynitrite [45,46], and that CAT itself is also capable of conducting the oxidation of NO
and the decomposition of peroxynitrite. A previous study with gastric carcinoma cells
demonstrated that inhibition of CAT allowed selective reactivation of the NO/peroxynitrite
pathway [47], thus revealing the role of this enzyme in the catabolism of this factor. Taken
together, our data suggest that the increase in CAT activity caused by Kp10 may have
favored the reduction of peroxynitrite in the testes and suggest the participation of this
peptide in the testicular regulation of the NO/peroxynitrite pathway.

In addition to CAT, we evaluated the expression and/or activity profile of other
enzymes, such as SOD and GPX. The genes Sod1, Sod2 and Gpx1 were reduced in tests
on rats with hypothyroidism, which is similar to previous studies conducted on this
species [42,43,48]. Although Kp10 did not change the low expression of these genes caused
by hypothyroidism, a significant increase in the immunostaining of SOD1 and GPX1/2
was observed after treatment, highlighting their antioxidant effects in tests on hypothyroid
rats. This corroborates the findings of previous studies in which the administration of Kp10
increased antioxidant defense at the maternal-fetal interface of hypothyroid rats [27], as
also observed in models of ovarian and uterine [33], testicular [34], cardiac [35] and brain
dysfunctions in mice [36]. The increase in antioxidant defense caused by Kp10 in the present
study may be involved in the improvement of testicular morphology and steroidogenesis
and sperm quality observed in hypothyroid rats after treatment with Kp10 [5].

In addition to OS, we evaluated the expression of several factors involved in the UPR
pathway and ER stress in the testes of rats with hypothyroidism. Except for the genes sXbp1
and Perk, all the other analyzed genes (Grp78, Atf6, Ho1, Chop) showed reduced expression
in hypothyroid animals, while treatment with Kp10 did not alter this low expression. This
shows that hypothyroidism does not activate the UPR pathway in the rat testis as occurs in
other experimental models, but deregulates it, which can be better understood as a “failure
in the endoplasmic reticulum stress response” [49]. This has also been observed in the
maternal-fetal interface of hypothyroid rats at 14 days of pregnancy [22] and in studies
involving obesity and aging [49], but is critical for the cell because the UPR pathway also
helps maintain its viability due to its involvement in protein synthesis [50].

The low GRP78 expression can alter several cellular functions given its activity in the
proper folding of polypeptides or degradation of poorly folded products, in the transport
of membrane or secretory proteins, and even in the intracellular homeostasis of calcium
ions (Ca2+) [51]. In fact, hypothyroidism in male rats is known to reduce the testicular
concentration of Ca2+ [43] and the activity of Ca2+—ATPase [48], which is an important
enzyme involved in intracellular Ca 2+ balance. Impaired calcium balance, in turn, can lead
to mitochondrial and testicular dysfunction [52,53]. In the same way, ATF6 is also a critical
factor associated with the development and homeostasis of various organs [54] and fails in
its expression has been associated with reduced fertility in male mice [55].

In addition to GRP78 and ATF6, the dysregulation of HO-1 observed in the testes of
hypothyroid rats may be critical for the function of this organ. HO-1 is well known for its
role in regulating OS [13,14]. However, human studies and experimental models of HO-1
deficiency have shown that this enzyme is involved in controlling several other bodily
functions [56], including anti-inflammatory properties [57], iron control [58], and in glucose
metabolism and mitochondrial respiration [59]. In the testes, the administration of hemin,
an HO-1inducer, improved testicular steroidogenesis, sperm quality, and the synthesis of
sex hormones and reduced DNA fragmentation [60].
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Although activation of the UPR pathway and ER stress were not observed in this
study, a significant increase in the testicular apoptosis in the hypothyroid rats was observed
in other previous studies involving thyroid hypofunction [43,61]. Surprisingly, animals
that received Kp10 showed a lower amount of apoptosis in testicular cells. To understand
its possible action in this pathway, the BCL-2 factor was evaluated. In fact, the reduction in
testicular apoptosis appears to be via BCL-2, which showed gene expression almost three
times higher in this group. Studies involving kisspeptin and apoptosis are inconsistent,
but some have already demonstrated roles in attenuating apoptosis in neurons [62] and
in granulosa cells in rat polycystic ovary model [37], which also showed an increase in
BCL-2 [37,62], considered an antiapoptotic factor [39].

4. Materials and Methods
4.1. Animals and Experimental Design

Two-month-old male Wistar rats were divided into three groups: Control (n = 15),
Hypo (n = 13) and Hypo + Kp10 (n = 14; 12 µg/Kg/day; Cat. Nb. 4243, Tocris Bioscience,
Bristol, UK). Hypothyroidism was induced by oral administration of 6-propyl-2-thiouracil
(PTU; 4 mg/kg/day; Sigma-Aldrich, St. Louis, MO, USA) diluted in 3 mL of distilled
water for 3 months, while the control group received the same volume of water as placebo.
Body mass was monitored throughout the experiment, and blood was collected for free T4
measurement. The experiments were conducted as previously described by Santos et al. [5]
(CEUA 03/19).

4.2. Immunohistochemistry (IHC)

The antibodies used were anti-8-OhdG (1:50; sc-393871), anti-SOD1 (1:5000, sc-101523),
anti-CAT (1:200, sc-271803), anti-GPX1/2 (1:500, sc-133160), anti-GRP78 (1:50, sc-13539)
and anti-CHOP (1:50, sc-71136), from Santa Cruz Biotechnology, CA, USA. The indirect
streptavidin-biotin-peroxidase method was used with the Dako detection system (EnVision
FLEX+, Mouse, High pH, (Link); Dako North America, Inc., CA, USA) following the proto-
col of Ilie et al. [63] and adaptations of Santos et al. [5]. The sections were counterstained
with Harris hematoxylin and the negative control was obtained by replacing the primary
antibody with TBS-T. The placenta of rats with hypothyroidism was used as a positive
control [22].

Descriptive and quantitative analyses of SOD1, CAT, GPX1/2, 8-OHdG and GRP78 im-
munolabeling were performed in the seminiferous tubules and interstitium. The immuno-
labeling area was defined using WCIF ImageJ software version 1.41 (Media Cybernetics
Manufacturing, Rockville, MD, USA) on random photomicrographs taken on 10–15 regions
of the testes under a Leica DM 2500 microscope using the Leica DFC 295 digital camera (Le-
ica Microsystems, Wetzlar, Germany). For analysis, color deconvolution and thresholding
of the images were performed. The data of each tissue were expressed as immunolabeling
area in pixels [64].

4.3. RNA Extraction and Real-Time Quantitative PCR (qPCR)

Total RNA extraction from the testes was performed using TRizol (Invitrogen, Life
Technologies, Carlsbad, CA, USA), and the cDNA was synthesized as previously de-
scribed [5]. Primers were designed based on the Rattus norvegicus mRNA sequence (Table 2)
and the relative gene expression was calculated using the 2−∆∆CT method [65], in which the
change in the expression of target genes in samples from the Hypo and Hypo + Kp10 groups
in relation to the Control group was obtained by the difference between ∆CT (CT = Cycle
Threshold) of the target genes by the ∆CT of the reference gene in base 2. For this study,
Gapdh was used as a normalizing gene.
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Table 2. List of primer pairs for RT-qPCR.

Gene Sequences (5′ → 3′) Accession No.

Superoxide dismutase 1 Sod1
GAAAGGACGGTGTGGCCAAT

NM_017050.1CTCGTGGACCACCATAGTACG

Superoxide dismutase 2 Sod2
CGGGGGCCATATCAATCACA

NM_017051.2GCCTCCAGCAACTCTCCTTT

Catalase Cat
CTGACTGACGCGATTGCCTA

NM_012520.2GTGGTCAGGACATCGGGTTT

Glutathione peroxidase 1 Gpx1 GCGCTACAGCGGATTTTTGA
NM_030826.4GAAGGCATACACGGTGGACT

Nuclear factor, erythroid 2-like 2 Nrf2 CCCATTGAGGGCTGTGATCT
NM_031789.2GCCTTCAGTGTGCTTCTGGTT

Heat shock protein family A (Hsp70)
member 5

Grp78 TGAAGGGGAGCGTCTGATTG
NM_013083.2TCATTCCAAGTGCGTCCGAT

Activating transcription factor 6, Atf6 CCAGCAGAAAACCCGCATTC
XM_017598829.1CAGAATTCCTGATGCTAGTGGTT

Eukaryotic translation initiation factor
2 alpha kinase 3 Perk

GGCTGGTGAGGGATGGTAAA
NM_031599.2TTGGCTGTGTAACTTGTGTCATCA

X-box binding protein 1 sXbp1 CTGAGTCCGCAGCAGGTG
NM_001271731.1AAGAGGCAACAGCGTCAGAA

Heme oxygenase 1 Ho1
ACAGCACTACGTAAAGCGTCTCCA

NM_012580.2CATGGCCTTCTGCGCAATCTTCTT

Apoptosis regulator BCL-2 Bcl-2
ACTTCTCTCGTCGCTACCGTC

NM_016993.2AAGAGTTCCTCCACCACCGT
Glyceraldehyde-3-Phosphate
dehydrogenase

Gapdh ACAGCCGCATCTTCTTGTGC
NM_017008.4GCCTCACCCCATTTGATGTT

4.4. Enzymatic Activity of Superoxide Dismutase (SOD) and Catalase (CAT)

The crude extract of the testes samples was obtained by homogenization with 50 nmoL
of potassium phosphate buffer (PPB) (pH 7.0), followed by sonication under 70% amplitude
with 8 pulses of 5 s and intervals of 10 s, totaling 40 s. Then, the samples were centrifuged
at 13,400× g rpm at 4 ◦C for 10 min to collect the supernatants. The protein concentration
was determined by the Bradford method [66], and enzymatic activities of SOD and catalase
were evaluated according to Marklund and Marklund [67] and Aebi [68], respectively.

4.5. Lipid Peroxidation

Lipid peroxidation was assessed using MDA concentrations in the thiobarbituric acid
reaction (TBARS) and through the levels of lipid hydroperoxides (LOOH). Quantification
of TBARS was performed as described by Oliveira et al. [69]. Briefly, 200 µL testicular
sample supernatant was incubated with 500 µL of thiobarbituric acid (TBA, 0.8%; pH 3.2),
500 µL of acetic acid buffer, 200 µL of sodium dodecyl sulfate (SDS; 8.1 %; Invitrogen Life
Technologies, Carlsbad, CA, USA), and 100 µL water. The Eppendorf’s were sealed and
incubated for 2 h on a hot plate at 95 ◦C. After that, they were cooled on ice and centrifuged
for 10 min at 1200× g rpm. Next, 1 mL was carefully transferred to a quartz cuvette and
the absorbance was measured in a spectrophotometer at 532 nm. A standard curve of
Malondialdehyde potassium salt enolate (Ref. SMB00976; Sigma-Aldrich, SP, Brazil) was
used at concentrations of 1, 1.5, 3, 6 and 9 nmol and the mean calibration factor (MCF) was
obtained. TBARS values were estimated by multiplying the absorbances obtained by MCF
and the results expressed as nmol of TBARS per mg of tissue.

Quantification of LOOH was performed as described by Borges et al. [70]. The su-
pernatant of testicular samples was homogenized in 90% methanol (Synth; SP, Brazil)
and centrifuged at 10,000× g for 30 min at 4 ◦C. The supernatant and reaction medium
composed of 90% methanol, xylenol orange (Ref. 398187; Sigma-Aldrich, SP, Brazil), 25 mM
sulfuric acid (H2SO4; Ref. A1060; Synth; SP, Brazil), 4 mM butylated hydroxytoluene (BHT;
Ref. 1082708; Sigma-Aldrich, SP, Brazil) and 250 mM FeSO4NH4 were incubated for 30 min
at 25 ◦C in microplates. Reading was performed at 560 nm and LOOH concentration
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determined based on an extinction coefficient of 4.3 mM cm−1 and is expressed as mmol
LOOH mg−1 of tissue.

4.6. Reactive Oxygen Species (ROS) and Peroxynitrite

ROS and peroxynitrite were measured in testicular samples as performed by Dos
Anjos Cordeiro [22]. Endogenous amounts of ROS and peroxynitrite were measured in
testes samples by fluorometric assay with specific probes for ROS (dichlorofluorescein
2′,7′-diacetate; DCFH-DA, Invitrogen, Life Technologies, Carlsbad, CA, USA) and perox-
ynitrite (dihydrorhodamine 123, Invitrogen, Life Technologies, Carlsbad, CA, USA) [71].
Fluorescence was measured with a fluorometer (Synergy 2 SL Luminescence Microplate
Reader; Biotek® Instruments, Inc.; Winooski, VT, USA) using excitation and emission
wavelengths of 485–525 nm, respectively. Data were expressed as arbitrary units (AU) of
fluorescence + SEM. These assays were performed in duplicate.

4.7. TUNEL Assay

Apoptotic cells in the testicular samples were evaluated using an apoptosis detection
kit (TdT-FragEL DNA Fragmentation Detection Kit, Calbiochem, San Diego, CA, USA)
according Silva et al. [72]. Positive cells or tubules were counted in 10 histological sections
per animal photographed randomly under a 10× objective lens (100× total magnification).
On average, 100 to 120 tubules were counted per animal.

4.8. Statistical Analysis

The data were represented by mean ± S.E.M or median with maximum and
minimum limits. Analysis of variance (ANOVA) was performed, followed by the
Student–Newman-Keuls test (SNK) or Kruskal–Wallis test using GraphPad Prism 8.0.2
software. The differences were considered significant if p < 0.05.

5. Conclusions

The findings of this study characterized the redox status and highlighted, for the first
time, the dysregulation of UPR mediators in the testes of adult rats associated with hypothy-
roidism. Although Kp10 treatment did not influence the low expression of UPR mediators,
it was sufficient to increase testicular antioxidant defenses in these animals and reduce
apoptosis in testicular cells. Therefore, we suggest that kisspeptin analogues are promising
antioxidants in the treatment of testicular dysfunction caused by thyroid hypofunction.
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