Formulation Studies with Cyclodextrins for Novel Selenium NSAID Derivatives
Abstract
:1. Introduction
2. Results and Discussion
2.1. Formulation of Se-NSAID Derivatives with β-CDs and γ-CDs
2.2. 3D Models and Analysis of the β- and γ-CDs
2.3. 3D Models and Analysis of the Se-NSAID Derivatives
2.4. Docking Data
3. Materials and Methods
3.1. General Information
3.2. Water Solubility Studies by 1H-NMR
3.3. β- and γ-CDs Preparation and Analysis
3.4. Ligand Preparation and Analysis
3.5. Docking
3.6. Molecular Dynamics
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Santos, C.; Ribeiro, A.C.F.; Esteso, M.A. Drug delivery systems: Study of inclusion complex formation between methylxanthines and cyclodextrins and their thermodynamic and transport properties. Biomolecules 2019, 9, 196. [Google Scholar] [CrossRef] [PubMed]
- Papezhuk, M.V.; Volynkin, V.A.; Panyushkin, V.T. The structure and properties of functionalized cyclodextrins and complex compounds based on them. Russ. Chem. Bull. 2022, 71, 430–442. [Google Scholar] [CrossRef]
- Anjani, Q.K.; Domínguez-Robles, J.; Utomo, E.; Font, M.; Martínez-Ohárriz, M.C.; Permana, A.D.; Cárcamo-Martínez, A.; Larrañeta, E.; Donnelly, R.F. Inclusion complexes of Rifampicin with native and derivatized cyclodextrins: In silico modeling, formulation, and characterization. Pharmaceuticals 2022, 15, 20. [Google Scholar] [CrossRef] [PubMed]
- Loftsson, T.; Hreinsdóttir, D.; Másson, M. Evaluation of cyclodextrin solubilization of drugs. Int. J. Pharm. 2005, 302, 18–28. [Google Scholar] [CrossRef] [PubMed]
- Saokham, P.; Muankaew, C.; Jansook, P.; Loftsson, T. Solubility of cyclodextrins and drug/cyclodextrin complexes. Molecules 2018, 23, 1161. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.H.; Lee, S.E.; Pyo, Y.C.; Tran, P.; Park, J.S. Solubility enhancement and application of cyclodextrins in local drug delivery. J. Pharm. Investig. 2020, 50, 17–27. [Google Scholar] [CrossRef]
- Liu, Z.; Ye, L.; Xi, J.; Wang, J.; Feng, Z.G. Cyclodextrin polymers: Structure, synthesis, and use as drug carriers. Prog. Polym. Sci. 2021, 118, 101408. [Google Scholar] [CrossRef]
- Saokham, P.; Loftsson, T. γ-Cyclodextrin. Int. J. Pharm. 2017, 516, 278–292. [Google Scholar] [CrossRef]
- Wrobel, J.K.; Power, R.; Toborek, M. Biological activity of selenium: Revisited. IUBMB Life 2016, 68, 97–105. [Google Scholar] [CrossRef]
- Puspitasari, I.M.; Abdulah, R.; Yamazaki, C.; Kameo, S.; Nakano, T.; Koyama, H. Updates on clinical studies of selenium supplementation in radiotherapy. Radiat. Oncol. 2014, 9, 125. [Google Scholar] [CrossRef]
- Song, M.H.; Kumaran, M.N.; Gounder, M.; Gibbon, D.G.; Nieves-Neira, W.; Vaidya, A.; Hellmann, M.; Kane, M.P.; Buckley, B.; Shih, W.C.; et al. Phase I trial of selenium plus chemotherapy in gynecologic cancers. Gynecol. Oncol. 2018, 150, 478–486. [Google Scholar] [CrossRef]
- Radomska, D.; Czarnomysy, R.; Radomski, D.; Bielawski, K. Selenium compounds as novel potential anticancer agents. Int. J. Mol. Sci. 2021, 22, 1009. [Google Scholar] [CrossRef]
- Gandin, V.; Khalkar, P.; Braude, J.; Fernandes, A.P. Organic selenium compounds as potential chemotherapeutic agents for improved cancer treatment. Free Radic. Biol. Med. 2018, 127, 80–97. [Google Scholar] [CrossRef]
- Hou, W.; Xu, H.T. Incorporating selenium into heterocycles and natural products-From chemical properties to pharmacological activities. J. Med. Chem. 2022, 65, 4436–4456. [Google Scholar] [CrossRef]
- Tan, H.W.; Mo, H.Y.; Lau, A.T.Y.; Xu, Y.M. Selenium species: Current status and potentials in cancer prevention and therapy. Int. J. Mol. Sci. 2019, 20, 75. [Google Scholar] [CrossRef]
- Sanmartín, C.; Plano, D.; Sharma, A.K.; Palop, J.A. Selenium compounds, apoptosis and other types of cell death: An overview for cancer therapy. Int. J. Mol. Sci. 2012, 13, 9649–9672. [Google Scholar] [CrossRef]
- Rao, P.; Knaus, E.E. Evolution of nonsteroidal anti-inflammatory drugs (NSAIDs): Cyclooxygenase (COX) inhibition and beyond. J. Pharm. Pharm. Sci. 2008, 11, 81s–110s. [Google Scholar] [CrossRef]
- Kuo, C.N.; Pan, J.J.; Huang, Y.W.; Tsai, H.J.; Chang, W.C. Association between nonsteroidal anti-inflammatory drugs and colorectal cancer: A population-based case-control study. Cancer Epidemiol. Biomark. Prev. 2018, 27, 737–745. [Google Scholar] [CrossRef] [PubMed]
- Figueiredo, J.C.; Jacobs, E.J.; Newton, C.C.; Guinter, M.A.; Cance, W.G.; Campbell, P.T. Associations of aspirin and non-aspirin non-steroidal anti-Inflammatory drugs with colorectal cancer mortality after diagnosis. J. Natl. Cancer Inst. 2021, 113, 833–840. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Tao, L.; Wang, G.; Li, Z.; Yang, M.; He, W.; Zhong, X.; Zhang, Y.; Yang, J.; Cheung, S.; et al. Aspirin inhibits prostaglandins to prevents colon tumor formation via down-regulating Wnt production. Eur. J. Pharmacol. 2021, 906, 174173. [Google Scholar] [CrossRef] [PubMed]
- Kolawole, O.R.; Kashfi, K. NSAIDs and cancer resolution: New paradigms beyond cyclooxygenase. Int. J. Mol. Sci. 2022, 23, 1432. [Google Scholar] [CrossRef]
- Ramos-Inza, S.; Ruberte, A.C.; Sanmartín, C.; Sharma, A.K.; Plano, D. NSAIDs: Old acquaintance in the pipeline for cancer treatment and prevention-structural modulation, mechanisms of action, and bright future. J. Med. Chem. 2021, 64, 16380–16421. [Google Scholar] [CrossRef] [PubMed]
- Narożna, M.; Krajka-Kuźniak, V.; Bednarczyk-Cwynar, B.; Baer-Dubowska, W. Unlocking the potential: Novel NSAIDs hybrids unleash chemopreventive power toward liver cancer cells through Nrf2, NF-κB, and MAPK signaling pathways. Molecules 2023, 28, 5759. [Google Scholar] [CrossRef] [PubMed]
- Plano, D.; Karelia, D.N.; Pandey, M.K.; Spallholz, J.E.; Amin, S.; Sharma, A.K. Design, synthesis, and biological evaluation of novel selenium (Se-NSAID) molecules as anticancer agents. J. Med. Chem. 2016, 59, 1946–1959. [Google Scholar] [CrossRef] [PubMed]
- Karelia, D.N.; Kim, S.; K. Pandey, M.; Plano, D.; Amin, S.; Lu, J.; Sharma, A.K. Novel seleno-aspirinyl compound AS-10 induces apoptosis, G1 arrest of pancreatic ductal adenocarcinoma cells, inhibits their NF-κB signaling, and synergizes with gemcitabine cytotoxicity. Int. J. Mol. Sci. 2021, 22, 4966. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Nie, Y.; Zhong, M.; Li, S.; Li, X.; Guo, Y.; Liu, Z.; Gao, Y.; Ding, F.; Wen, D.; et al. New organoselenides (NSAIDs-Se derivatives) as potential anticancer agents: Synthesis, biological evaluation and in silico calculations. Eur. J. Med. Chem. 2021, 218, 113384. [Google Scholar] [CrossRef] [PubMed]
- Ma, P.P.; Luo, S.X.; Wang, J.; Xu, L.S.; Wang, Z.Z. β-cyclodextrin based colon targeted delivery systems of aspirin: Synthesis, and in vitro assessment. J. Control. Release 2015, 213, e150. [Google Scholar] [CrossRef] [PubMed]
- Miranda, G.M.; Santos, V.; Bessa, J.R.; Teles, Y.C.F.; Yahouédéhou, S.; Goncalves, M.S.; Ribeiro-Filho, J. Inclusion complexes of non-steroidal anti-inflammatory drugs with cyclodextrins: A systematic review. Biomolecules 2021, 11, 361. [Google Scholar] [CrossRef] [PubMed]
- Nogueira, C.W.; Barbosa, N.V.; Rocha, J.B.T. Toxicology and pharmacology of synthetic organoselenium compounds: An update. Arch. Toxicol. 2021, 95, 1179–1226. [Google Scholar] [CrossRef]
- Ruberte, A.C.; González-Gaitano, G.; Sharma, A.K.; Aydillo, C.; Encío, I.; Sanmartín, C.; Plano, D. New formulation of a methylseleno-aspirin analog with anticancer activity towards colon cancer. Int. J. Mol. Sci. 2020, 21, 9017. [Google Scholar] [CrossRef]
- Ramos-Inza, S.; Encío, I.; Raza, A.; Sharma, A.K.; Sanmartín, C.; Plano, D. Design, synthesis and anticancer evaluation of novel Se-NSAID hybrid molecules: Identification of a Se-indomethacin analog as a potential therapeutic for breast cancer. Eur. J. Med. Chem. 2022, 244, 114839. [Google Scholar] [CrossRef]
- Ramos-Inza, S.; Aliaga, C.; Encío, I.; Raza, A.; Sharma, A.K.; Aydillo, C.; Martínez-Sáez, N.; Sanmartín, C.; Plano, D. First generation of antioxidant precursors for bioisosteric Se-NSAIDs: Design, synthesis, and in vitro and in vivo anticancer evaluation. Antioxidants 2023, 12, 1666. [Google Scholar] [CrossRef]
- Groom, C.R.; Bruno, I.J.; Lightfoot, M.P.; Ward, S.C. The Cambridge Structural Database. Acta Crystallogr. B Struct. Sci. Cryst. Eng. Mater. 2016, 72, 171–179. [Google Scholar] [CrossRef]
- Chemical Computing Group ULC. Molecular Operating Environment (MOE); Chemical Computing Group: Montreal, QC, Canada, 2022. [Google Scholar]
- Labute, P. LowModeMD-Implicit low-mode velocity filtering applied to conformational search of macrocycles and protein loops. J. Chem. Inf. Model. 2010, 50, 792–800. [Google Scholar] [CrossRef]
- Caira, M.R.; de Vries, E.J.C.; Nassimbeni, L.R. Crystallization of two forms of a cyclodextrin inclusion complex containing a common organic guest. Chem. Commun. 2003, 2003, 2058–2059. [Google Scholar] [CrossRef]
- Harata, K. The structure of the cyclodextrin complex. XX. Crystal structure of uncomplexed hydrated γ-cyclodextrin. Bull. Chem. Soc. Jpn. 1987, 60, 2763–2767. [Google Scholar] [CrossRef]
- Stewart, J.J.P. Optimization of parameters for semiempirical methods. III Extension of PM3 to Be, Mg, Zn, Ga, Ge, As, Se, Cd, In, Sn, Sb, Te, Hg, Tl, Pb, and Bi. J. Comput. Chem. 1991, 12, 320–341. [Google Scholar] [CrossRef]
- Matsumoto, T.; Yamano, A.; Sato, T.; Ferrara, J.D.; White, F.J.; Meyer, M. “What is this?” A structure analysis tool for rapid and automated solution of small molecule structures. J. Chem. Crystallogr. 2021, 51, 438–450. [Google Scholar] [CrossRef]
- Ravikumar, K.; Rajan, S.S.; Pattabhi, V.; Gabe, E.J. Structure of naproxen, C14H14O3. Acta Crystallogr. Sect. C Cryst. Struct. Commun. 1985, 41, 280–282. [Google Scholar] [CrossRef]
- Kistenmacher, T.J.; Marsh, R.E. Crystal and molecular structure of an antiinflammatory agent, indomethacin, 1-(p-chlorobenzoyl)-5-methoxy-2-methylindole-3-acetic acid. J. Am. Chem. Soc. 1972, 94, 1340–1345. [Google Scholar] [CrossRef] [PubMed]
- Briard, P.; Rossi, J.C. Ketoprofene. Acta Crystallogr. Sect. C Cryst. Struct. Commun. 1990, 46, 1036–1038. [Google Scholar] [CrossRef]
- Freer, A.A.; Bunyan, J.M.; Shankland, N.; Sheen, D.B. Structure of (S)-(+)-ibuprofen. Acta Crystallogr. Sect. C Cryst. Struct. Commun. 1993, 49, 1378–1380. [Google Scholar] [CrossRef]
- Plano, D.; Lizarraga, E.; Font, M.; Palop, J.A.; Sanmartín, C. Thermal stability and decomposition of sulphur and selenium compounds. J. Therm. Anal. Calorim. 2009, 98, 559–566. [Google Scholar] [CrossRef]
- Garibyan, A.; Delyagina, E.; Agafonov, M.; Khodov, I.; Terekhova, I. Effect of pH, temperature and native cyclodextrins on aqueous solubility of baricitinib. J. Mol. Liq. 2022, 360, 119548. [Google Scholar] [CrossRef]
- Delyagina, E.; Garibyan, A.; Agafonov, M.; Terekhova, I. Regularities of encapsulation of tolfenamic acid and some other non-steroidal anti-inflammatory drugs in metal-organic framework based on γ-cyclodextrin. Pharmaceutics 2023, 15, 71. [Google Scholar] [CrossRef]
- Mustafa, W.W.; Khoder, M.; Abdelkader, H.; Singer, R.; Alany, R.G. Interactions of cyclodextrins and their hydroxyl derivatives with etodolac: Solubility and dissolution enhancement. Curr. Drug Deliv. 2024, 21, 126–139. [Google Scholar] [CrossRef]
- Bharti, S.K.; Roy, R. Quantitative 1H NMR spectroscopy. TrAC Trends Anal. Chem. 2012, 35, 5–26. [Google Scholar] [CrossRef]
Ref. | Water Solubility (M) | ||
---|---|---|---|
Compound | Compound + β-CD | Compound + γ-CD | |
I.3e | 9.70 × 10−6 | 9.92 × 10−4 | 2.73 × 10−4 |
I.4a | 2.24 × 10−5 | 5.65 × 10−5 | 5.24 × 10−5 |
I.4b | 1.20 × 10−5 | 1.57 × 10−4 | 4.39 × 10−5 |
I.4d | 2.00 × 10−5 | 4.53 × 10−5 | 3.37 × 10−5 |
I.4e | 5.72 × 10−6 | 4.55 × 10−5 | 4.21 × 10−5 |
II.1 | 8.43 × 10−6 | 1.01 × 10−4 | 1.51 × 10−5 |
II.2 | 1.32 × 10−7 | 7.96 × 10−6 | 7.60 × 10−6 |
II.3 | 6.05 × 10−7 | 2.19 × 10−7 | 6.14 × 10−6 |
II.4 | 5.57 × 10−6 | 2.70 × 10−5 | 1.77 × 10−5 |
II.5 | 2.12 × 10−5 | 5.42 × 10−3 | 7.50 × 10−3 |
Ref. | LogP | Vol a (Å3) | VSA b (Å2) |
---|---|---|---|
I.3e | 3.56 | 300.75 | 336.28 |
I.4a | 4.77 | 382.25 | 417.70 |
I.4b | 5.44 | 402.38 | 435.27 |
I.4d | 5.47 | 381.50 | 416.68 |
I.4e | 5.50 | 395.50 | 430.41 |
II.1 | 5.02 | 341.38 | 360.93 |
II.2 | 10.87 | 671.50 | 725.31 |
II.3 | 6.99 | 476.63 | 510.56 |
II.4 | 8.40 | 526.13 | 557.23 |
II.5 | 9.04 | 474.13 | 523.38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramos-Inza, S.; Morán-Serradilla, C.; Gaviria-Soteras, L.; Sharma, A.K.; Plano, D.; Sanmartín, C.; Font, M. Formulation Studies with Cyclodextrins for Novel Selenium NSAID Derivatives. Int. J. Mol. Sci. 2024, 25, 1532. https://doi.org/10.3390/ijms25031532
Ramos-Inza S, Morán-Serradilla C, Gaviria-Soteras L, Sharma AK, Plano D, Sanmartín C, Font M. Formulation Studies with Cyclodextrins for Novel Selenium NSAID Derivatives. International Journal of Molecular Sciences. 2024; 25(3):1532. https://doi.org/10.3390/ijms25031532
Chicago/Turabian StyleRamos-Inza, Sandra, Cristina Morán-Serradilla, Leire Gaviria-Soteras, Arun K. Sharma, Daniel Plano, Carmen Sanmartín, and María Font. 2024. "Formulation Studies with Cyclodextrins for Novel Selenium NSAID Derivatives" International Journal of Molecular Sciences 25, no. 3: 1532. https://doi.org/10.3390/ijms25031532
APA StyleRamos-Inza, S., Morán-Serradilla, C., Gaviria-Soteras, L., Sharma, A. K., Plano, D., Sanmartín, C., & Font, M. (2024). Formulation Studies with Cyclodextrins for Novel Selenium NSAID Derivatives. International Journal of Molecular Sciences, 25(3), 1532. https://doi.org/10.3390/ijms25031532