Extracts of Sideritis scardica and Clinopodium vulgare Alleviate Cognitive Impairments in Scopolamine-Induced Rat Dementia
Abstract
:1. Introduction
2. Results
2.1. Total Polyphenol and Flavonoid Content and Antioxidant Activity of Plant Extracts
2.2. Effects of Plant Extracts on Rewarded Spontaneous Alternation Behavior in T-Maze Test
2.3. Effects of Plant Extracts on Recognition Memory in NOR Test
2.4. Effects of Plant Extracts on Oxidative Stress Parameters in the Frontal Cortex and Hippocampus of Healthy and Scopolamine-Treated Rats
2.4.1. Effects on MDA Level
2.4.2. Effects on GSH Level
2.5. Effect of Plant Extracts on AChE Activity in the Frontal Cortex and Hippocampus of Healthy and Scopolamine-Treated Rats
2.6. Effect of Plant Extracts on the Content of Biogenic Amines in the Frontal Cortex and Hippocampus of Healthy and Scopolamine-Treated Rats
2.7. Effect of Plant Extracts on the Expression Levels of BDNF and pCREB in the Frontal Cortex and Hippocampus of Healthy and Scopolamine-Treated Rats
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Preparation of Freeze-Dried Extracts
4.3. Total Polyphenol and Total Flavonoid Content
4.4. Antioxidant Activity Assays
4.5. Animals
4.6. Experimental Design
- The control, S. scardica, C. vulgare and S. scardica + C. vulgare groups received intraperitoneal (i.p.) saline injection (0.9% NaCl, 0.5 mL/100 g b.w.).
- The Sco, Sco + S. scardica, Sco + C. vulgare and Sco + S. scardica + C. vulgare groups were injected with Sco hydrobromide at a dose of 2 mg/kg, i.p.
- The control and Sco groups received distilled water (dH20) orally (0.5 mL/100 g b.w.).
- The S. scardica, C. vulgare, S. scardica + C. vulgare, Sco + S. scardica, Sco + C. vulgare and Sco + S. scardica + C. vulgare groups received plant extracts orally (0.5 mL/100 g b.w.).
4.7. Behavioral Assessment
4.7.1. T-Maze Test
4.7.2. Novel Object Recognition (NOR) Test
4.8. Brain Dissection Technique
4.9. Analytical Assessment
4.9.1. Oxidative Stress Parameters Determination
Lipid Peroxidation and Total Glutathione Determination
4.9.2. Protein Content Determination
4.9.3. AChE Activity Assay Determination
4.9.4. Monoamines Content Determination
4.9.5. Determination of BDNF and pCREB Concentrations
4.10. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, X.Y.; Wang, X.J.; Shi, L.; Liu, Y.H.; Wang, L.; Li, K.; Bu, Q.; Cen, X.B.; Yu, X.Q. Rational design of quinoxalinone-based redemitting probes for high-affinity and long-term visualizing amyloid-b in vivo. Anal. Chem. 2022, 94, 7665–7673. [Google Scholar] [CrossRef]
- Schaeffer, E.L.; Figueiro, M.; Gattaz, W.F. Insights into Alzheimer disease pathogenesis from studies in transgenic animal models. Clinics 2011, 66, 45–54. [Google Scholar] [CrossRef]
- Mufson, E.; Counts, S.; Perez, S.; Ginsberg, S. Cholinergic system during the progression of Alzheimer’s disease: Therapeutic implications. Expert Rev. Neurother. 2008, 8, 1703–1718. [Google Scholar] [CrossRef]
- Ferreira-Vieira, T.H.; Guimaraes, I.M.; Silva, F.R.; Ribeiro, F.M. Alzheimer’s disease: Targeting the cholinergic system. Curr. Neuropharmacol. 2016, 14, 101–115. [Google Scholar] [CrossRef]
- Ostrovskaya, R.U.; Belnik, A.P.; Storozheva, Z.I. Noopept efficiency in experimental Alzheimer disease (cognitive deficiency caused by b-amyloid 25-35 injection into Meynert basal nuclei of rats). Bull. Exp. Biol. Med. 2008, 146, 77–80. [Google Scholar] [CrossRef] [PubMed]
- Giacobini, E. The cholinergic system in Alzheimer disease. Prog. Brain Res. 1990, 84, 321–332. [Google Scholar] [PubMed]
- Coyle, J.; Price, D.; DeLong, M. Alzheimer’s disease: A disorder of cortical cholinergic innervation. Science 1983, 219, 1184–1190. [Google Scholar] [CrossRef] [PubMed]
- Hasselmo, M.E. The role of acetylcholine in learning and memory. Curr. Opin. Neurobiol. 2006, 16, 710–715. [Google Scholar] [CrossRef] [PubMed]
- Davies, P.; Maloney, A. Selective loss of central cholinergic neurons in Alzheimer’s disease. Lancet 1976, 308, P1403. [Google Scholar] [CrossRef] [PubMed]
- García-Ayllón, M.; Riba-Llena, I.; Serra-Basante, C.; Alom, J.; Boopathy, R.; Sáez-Valero, J. Altered levels of acetylcholinesterase in Alzheimer plasma. PLoS ONE 2010, 5, e8701. [Google Scholar] [CrossRef] [PubMed]
- Melo, J.; Agostinho, P.; Oliveira, C. Involvement of oxidative stress in the enhancement of acetylcholinesterase activity induced by amyloid beta-peptide. Neurosci. Res. 2003, 45, 117–127. [Google Scholar] [CrossRef]
- Jakob-Roetne, R.; Jacobsen, H. Alzheimer’s disease: From pathology to therapeutic approaches. Angew. Chem. Int. Ed. Engl. 2009, 48, 3030–3059. [Google Scholar] [CrossRef]
- Um, M.Y.; Lim, D.W.; Son, H.J.; Cho, S.; Lee, C. Phlorotannin-rich fraction from Ishige foliacea brown seaweed prevents the scopolamine-induced memory impairment via regulation of ERK-CREB-BDNF pathway. J. Funct. Foods 2018, 40, 110–116. [Google Scholar] [CrossRef]
- Saura, C.A.; Valero, J. The role of CREB signaling in Alzheimer’s disease and other cognitive disorders. Rev. Neurosci. 2011, 22, 153–169. [Google Scholar] [CrossRef]
- Bekinschtein, P.; Cammarota, M.; Izquierdo, I.; Medina, J.H. BDNF andmemory formation and storage. Neuroscientist 2008, 14, 147–156. [Google Scholar] [CrossRef]
- Yamada, K.; Nabeshima, T. Brain-derived neurotrophic factor/TrkB signaling in memory processes. J. Pharmacol. Sci. 2003, 91, 267–270. [Google Scholar] [CrossRef]
- Autry, A.; Monteggia, L. Brain-derived neurotrophic factor and neuropsychiatric disorders. Pharmacol. Rev. 2012, 64, 238–258. [Google Scholar] [CrossRef]
- Alonso, M.; Bekinschtein, P.; Cammarota, M.; Vianna, M.R.; Izquierdo, I.; Medina, J.H. Endogenous BDNF is required for long-term memory formation in the rat parietal cortex. Learn. Mem. 2005, 12, 504–510. [Google Scholar] [CrossRef]
- Li, Q.; Zhao, H.F.; Zhang, Z.F.; Liu, Z.G.; Pei, X.R.; Wang, J.B.; Li, Y. Long-term administration of green tea catechins prevents age-related spatial learning and memory decline in C57BL/6 J mice by regulating hippocampal cyclic amp-response element binding protein signaling cascade. Neuroscience 2009, 159, 1208–1215. [Google Scholar] [CrossRef]
- Burns, J.M.; Galvin, J.E.; Roe, C.M.; Morris, J.C.; McKeel, D.W. The pathology of the substantia nigra in Alzheimer disease with extrapyramidal signs. Neurology 2005, 64, 1397–1403. [Google Scholar] [CrossRef]
- Gibb, W.R.; Mountjoy, C.Q.; Mann, D.M.; Lees, A.J. The substantia nigra and ventral tegmental area in Alzheimer’s disease and Down’s syndrome. J. Neurol. Neurosurg. Psychiatry 1989, 52, 193–200. [Google Scholar] [CrossRef] [PubMed]
- Storga, D.; Vrecko, K.; Birkmayer, J.G.; Reibnegger, G. Monoaminergic neurotransmitters, their precursors and metabolites in brains of Alzheimer patients. Neurosci. Lett. 1996, 203, 29–32. [Google Scholar] [CrossRef]
- Bondareff, W.; Mountjoy, C.Q.; Roth, M. Loss of neurons of origin of the adrenergic projection to cerebral cortex (nucleus locus ceruleus) in senile dementia. Neurology 1982, 32, 164–168. [Google Scholar] [CrossRef] [PubMed]
- Iversen, L.L.; Rossor, M.N.; Reynolds, G.P.; Hills, R.; Roth, M.; Mountjoy, C.Q.; Foote, S.L.; Morrison, J.H.; Bloom, F.E. Loss of pigmented dopamine-β-hydrohylase positive cells from locus coeruleus in senile dementia of Alzheimer’s type. Neurosci. Lett. 1983, 39, 95–100. [Google Scholar] [CrossRef]
- Zweig, R.M.; Ross, C.A.; Hedreen, J.C.; Steele, C.; Cardillo, J.E.; Whitehouse, P.J.; Folstein, M.F.; Price, D.L. Neuropathology of aminergic nuclei in Alzheimer’s disease. Prog. Clin. Biol. Res. 1989, 317, 353–365. [Google Scholar] [CrossRef]
- Palmer, A.M.; Stratmann, G.C.; Procter, A.W.; Bowen, D.M. Possible neurotransmitter basis of behavioral changes in Alzheimer’s disease. Ann. Neurol. 1988, 23, 616–620. [Google Scholar] [CrossRef]
- D’Amato, R.J.; Zweig, R.M.; Whitehouse, P.J.; Wenk, G.L.; Singer, H.S.; Mayeux, R.; Price, D.L.; Snyder, S.H. Aminergic systems in Alzheimer’s disease and Parkinson’s disease. Ann. Neurol. 1987, 22, 229–236. [Google Scholar] [CrossRef]
- Bowen, D.M.; Allen, S.J.; Benton, J.S.; Goodhardt, M.J.; Haan, E.A.; Palmer, A.M.; Sims, N.R.; Smith, C.C.; Spillane, J.A.; Esiri, M.M.; et al. Biochemical assessment of serotonergic and cholinergic dysfunction and cerebral atrophy in Alzheimer’s disease. J. Neurochem. 1983, 41, 266–272. [Google Scholar] [CrossRef]
- Cross, A.J.; Crow, T.J.; Johnson, J.A.; Joseph, M.H.; Perry, E.K.; Perry, R.H.; Blessed, G.; Tomlinson, B.E. Monoamine metabolism in senile dementia of Alzheimer type. J. Neurol. Sci. 1983, 60, 383–392. [Google Scholar] [CrossRef]
- Volicer, L.; Langlais, P.J.; Matson, W.R.; Mark, K.A.; Gamache, P.H. Serotoninergic system in dementia of the Alzheimer type. Abnormal forms of 5-hydroxytryptophan and serotonin in cerebrospinal fluid. Arch. Neurol. 1985, 42, 1158–1161. [Google Scholar] [CrossRef]
- Sparks, D.L. Aging and Alzheimer’s disease. Altered cortical serotonergic binding. Arch Neurol. 1989, 46, 138–140. [Google Scholar] [CrossRef] [PubMed]
- Bowen, D.M.; White, P.; Spillane, J.A.; Goodhardt, M.J.; Curzon, G.; Iwangoff, P.; Meier-Ruge, W.; Davison, A.N. Accelerated ageing or selective neuronal loss as an important cause of dementia? Lancet 1979, 1, 11–14. [Google Scholar]
- Lyketsos, C.G.; Sheppard, J.M.; Steele, C.D.; Kopunek, S.; Steinberg, M.; Baker, A.S.; Brandt, J.; Rabins, P.V. Randomized, placebo-controlled, double-blind clinical trial of sertraline in the treatment of depression complicating Alzheimer’s disease: Initial results from the depression in Alzheimer’s disease study. Am. J. Psychiatry 2000, 157, 1686–1689. [Google Scholar] [CrossRef]
- Geda, Y.E.; Schneider, L.S.; Gitlin, L.N.; Miller, D.S.; Smith, G.S.; Bell, J.; Evans, J.; Lee, M.; Porsteinsson, A.; Lanctot, K.L.; et al. Neuropsychiatric syndromes professional interest area of ISTAART. Neuropsychiatric symptoms in Alzheimer’s disease: Past progress and anticipation of the future. Alzheimers Dement. 2013, 9, 602–608. [Google Scholar] [CrossRef]
- Rossato, J.I.; Bevilaqua, L.R.M.; Izquierdo, I.; Medina, J.H.; Cammarota, M. Dopamine controls persistence of long-term memory storage. Science 2009, 325, 1017–1020. [Google Scholar] [CrossRef]
- McNamara, C.G.; Tejero-Cantero, A.; Trouche, S.; Campo-Urriza, N.; Dupret, D. Dopaminergic neurons promote hippocampal reactivation and spatial memory persistence. Nat. Neurosci. 2014, 17, 1658–1660. [Google Scholar] [CrossRef]
- Broussard, J.I.; Yang, K.; Levine, A.T.; Tsetsenis, T.; Jenson, D.; Cao, F.; Garcia, I.; Arenkiel, B.R.; Zhou, F.M.; De Biasi, M.; et al. Dopamine regulates aversive contextual learning and associated in vivo synaptic plasticity in the hippocampus. Cell Rep. 2016, 14, 1930–1939. [Google Scholar] [CrossRef]
- Mravec, B.; Lejavova, K.; Cubinkova, V. Locus (coeruleus) minoris resistentiae in pathogenesis of Alzheimer’s disease. Curr. Alzheimer Res. 2014, 11, 992–1001. [Google Scholar] [CrossRef]
- van Dyck, C.; Swanson, C.; Aisen, P.; Bateman, R.; Chen, C.; Gee, M.; Kanekiyo, M.; Li, D.; Reyderman, L.; Cohen, S.; et al. Lecanemab in early Alzheimer’s disease. N. Engl. J. Med. 2023, 388, 9–21. [Google Scholar] [CrossRef]
- Hong, S.M.; Soe, K.H.; Lee, T.H.; Kim, I.S.; Lee, Y.M.; Lim, B.O. Cognitive improving effects by highbush blueberry (Vaccinium crymbosum L.) vinegar on scopolamine-induced amnesia mice model. J. Agric. Food Chem. 2018, 66, 99–107. [Google Scholar] [CrossRef]
- Rountree, S.D.; Chan, W.; Pavlik, V.N.; Darby, E.J.; Siddiqui, S.; Doody, R.S. Persistent treatment with cholinesterase inhibitors and/or memantine slows clinical progression of Alzheimer disease. Alzheimers Res. Ther. 2009, 1, 1–7. [Google Scholar] [CrossRef]
- Tunalier, Z.; Kosar, M.; Ozturk, N.; Baser, K.H.C.; Duman, H.; Kirimer, N. Antioxidant properties and phenolic composition of Sideritis species. Chem. Nat. Compd. 2004, 40, 206–210. [Google Scholar] [CrossRef]
- Danesi, F.; Saha, S.; Kroon, P.A.; Glibetic, M.; Konić-Ristić, A.; D’Antuono, L.F.; Bordoni, A. Bioactive-rich Sideritis scardica tea (mountain tea) is as potent as Camellia sinensis tea at inducing cellular antioxidant defences and preventing oxidative stress. J. Sci. Food Agric. 2013, 93, 3558–3564. [Google Scholar] [CrossRef]
- Karapandzova, M.; Qazimi, B.; Stefkov, G.; Bačeva, K.; Stafilov, T.; Panovska, T.K.; Kulevanova, S. Chemical characterization, mineral content and radical scavenging activity of Sideritis scardica and S. raeseri from R. Macedonia and R. Albania. Nat. Prod. Commun. 2013, 8, 639–644. [Google Scholar] [CrossRef]
- Tadic, V.M.; Jeremic, I.; Dobric, S.; Isakovic, A.; Markovic, I.; Trajkovic, V.; Bojovic, D.; Arsic, I. Anti-inflammatory, gastroprotective, and cytotoxic effects of Sideritis scardica extracts. Planta Med. 2012, 78, 415–427. [Google Scholar] [CrossRef]
- Jeremic, I.; Tadic, V.; Isakovic, A.; Trajkovic, V.; Markovic, I.; Redzic, Z.; Isakovic, A. The mechanisms of in vitro cytotoxicity of mountain tea, Sideritis scardica, against the C6 glioma cell line. Planta Med. 2013, 79, 1516–1524. [Google Scholar] [CrossRef]
- Demirelma, H.; Gelinci, E. Determination of the cytotoxic effect of human colon cancer and phenolic substance of the endemic species Sideritis ozturkii Aytac & Aksoy. Appl. Ecol. Environ. Res. 2019, 17, 7407–7419. [Google Scholar]
- Tomou, E.M.; Chatziathanasiadou, M.V.; Chatzopoulou, P.; Tzakos, A.G.; Skaltsa, H. NMR-based chemical profiling, isolation and evaluation of the cytotoxic potential of the diterpenoid siderol from cultivated Sideritis euboea heldr. Molecules 2020, 25, 2382. [Google Scholar] [CrossRef]
- Hofrichter, J.; Krohn, M.; Schumacher, T.; Lange, C.; Feistel, B.; Walbroel, B.; Pahnke, J. Sideritis spp. extracts enhance memory and learning in Alzheimer’s β-amyloidosis mouse models and aged C57Bl/6 mice. J. Alzheimers Dis. 2016, 53, 967–980. [Google Scholar] [CrossRef] [PubMed]
- Behrendt, I.; Schneider, I.; Schuchardt, J.P.; Bitterlich, N.; Hahn, A. Effect of an herbal extract of Sideritis scardica and B-vitamins on cognitive performance under stress: A pilot study. Int. J. Phytomed. 2016, 8, 95–103. [Google Scholar]
- Koh, P.O. Ferulic acid modulates nitric oxide synthase expression in focal cerebral ischemia. Lab. Anim. Res. 2012, 28, 273–278. [Google Scholar] [CrossRef]
- Dimpfel, W.; Schombert, L.; Biller, A. Psychophysiological effects of Sideritis and Bacopa extract and three combinations thereof—A quantitative EEG study in subjects suffering from mild cognitive impairment (MCI). Adv. Alzheimer Dis. 2016, 5, 1–22. [Google Scholar] [CrossRef]
- Lazarova, M.; Tancheva, L.; Tasheva, K.; Denev, P.; Uzunova, D.; Stefanova, M.; Tsvetanova, E.; Georgieva, A.; Kalfin, R. Effects of Sideritis scardica extract on scopolamine-induced learning and memory impairment in mice. J. Alzheimers Dis. 2023, 92, 1289–1302. [Google Scholar] [CrossRef]
- Knörle, R. Extracts of Sideritis scardica as triple monoamine reuptake inhibitors. J. Neural. Transm. 2012, 119, 1477–1482. [Google Scholar] [CrossRef]
- Dimpfel, W. Pharmacological classification of herbal extracts by means of comparison to spectral EEG signatures induced by synthetic drugs in the freely moving rat. J. Ethnopharmacol. 2013, 149, 583–589. [Google Scholar] [CrossRef]
- Saltos, M.; Puente, B.; Malafronte, N.; Braca, A. Phenolic compounds from Clinopodium tomentosum (kunth) govaerts (Lamiaceae). J. Braz. Chem. Soc. 2014, 25, 2121–2124. [Google Scholar]
- Miyase, T.; Matsushima, Y. Saikosaponin homologues from Clinopodium spp. the structures of clinoposaponins XII-XX. Chem. Pharm. Bull. 1997, 45, 1493–1497. [Google Scholar] [CrossRef]
- Obreshkova, D.; Naidenova, E.; Angelov, I. Phenolcarxylic acids in Clinopodium vulgare L. Compt. Rend. Acad. Bulg. Sci. 2001, 54, 57–58. [Google Scholar]
- Murata, T.; Sasaki, K.; Sato, K.; Yoshizaki, F.; Yamada, H.; Mutoh, H.; Umehara, K.; Miyase, T.; Warashina, T.; Aoshima, H.; et al. Matrix metalloproteinase-2 inhibitors from Clinopodium chinense var. parviflorum. J. Nat. Prod. 2009, 72, 1379–1384. [Google Scholar] [CrossRef]
- Aoshima, H.; Miyase, T.; Warashina, T. Caffeic acid oligomers with hyaluronidase inhibitory activity from Clinopodium gracile. Chem. Pharm. Bull. 2012, 60, 499–507. [Google Scholar] [CrossRef]
- Armirova, K.M.; Dimitrova, P.; Marchev, A.S.; Aneva, I.Y.; Georgiev, M.I. Clinopodium vulgare L. (wild basil) extract and its active constituents modulate cyclooxygenase-2 expression in neutrophils. Food Chem. Toxicol. 2019, 124, 1–9. [Google Scholar] [CrossRef]
- Bektašević, M.; Politeo, O.; Roje, M.; Jurin, M. Polyphenol composition, anticholinesterase and antioxidant potential of the extracts of Clinopodium vulgare L. Chem. Biodivers. 2022, 19, e202101002. [Google Scholar] [CrossRef]
- Tasheva, K.; Georgieva, A.; Denev, P.; Dimitrova, L.; Dimitrova, M.; Misheva, S.; Petkova-Kirova, P.; Lazarova, M.; Petrova, M. Antioxidant and antitumor potential of micropropagated Balkan endemic Sideritis scardica Griseb. Plants 2023, 12, 3924. [Google Scholar] [CrossRef]
- Lee, J.S.; Kim, H.G.; Han, J.M.; Kim, D.W.; Yi, M.H.; Son, S.W.; Kim, Y.A.; Lee, J.S.; Choi, M.K.; Son, C.G. Ethanol extract of Astragali radix and Salviae miltiorrhizae Radix, Myelophil, exerts anti-amnesic effect in a mouse model of scopolamine-induced memory deficits. J. Ethnopharmacol. 2014, 153, 782–792. [Google Scholar] [CrossRef]
- Ahmed, T.; Gilani, A.H. Inhibitory effect of curcuminoids on acetylcholinesterase activity and attenuation of scopolamineinduced amnesia may explain medicinal use of turmeric in Alzheimer’s disease. Pharmacol. Biochem. Behav. 2009, 91, 554–559. [Google Scholar] [CrossRef]
- Bubser, M.; Byun, N.; Wood, M.R.; Jones, C.K. Muscarinic receptor pharmacology and circuitry for the modulation of cognition. Handb. Exp. Pharmacol. 2012, 208, 121–166. [Google Scholar]
- Tancheva, L.; Lazarova, M.; Velkova, L.; Dolashki, A.; Uzunova, D.; Minchev, B.; Petkova-Kirova, P.; Hassanova, Y.; Gavrilova, P.; Tasheva, K.; et al. Beneficial effects of snail Helix aspersa extract in an experimental model of Alzheimer’s type dementia. J. Alzheimers Dis. 2022, 88, 155–175. [Google Scholar] [CrossRef]
- Lazarova, M.; Tancheva, L.; Alexandrova, A.; Tsvetanova, E.; Georgieva, A.; Stefanova, M.; Tsekova, D.; Vezenkov, L.; Kalfin, R.; Uzunova, D.; et al. Effects of new galantamine derivatives in a scopolamine model of dementia in mice. J. Alzheimers Dis. 2021, 84, 671–690. [Google Scholar] [CrossRef]
- Johnson, C.R.; Olton, D.S.; Gage, F.H., III; Jenko, P.G. Damage to hippocampus and hippocampal connections: Effects on DRL and on spontaneous alternation. J. Comp. Physiol. Psychol. 1977, 91, 508–522. [Google Scholar] [CrossRef]
- Gerlai, R. Behavioral tests of hippocampal function: Simple paradigms complex problems. Behav. Brain Res. 2001, 125, 269–277. [Google Scholar] [CrossRef]
- Lalonde, R. The neurobiological basis of spontaneous alternation. Neurosci. Biobehav. Rev. 2002, 26, 91–104. [Google Scholar] [CrossRef]
- Tu, S.; Wong, S.; Hodges, J.R.; Irish, M.; Piguet, O.; Hornberger, M. Lost in spatial translation—A novel tool to objectively assess spatial disorientation in Alzheimer’s disease and frontotemporal dementia. Cortex 2015, 67, 83–94. [Google Scholar] [CrossRef]
- Ennaceur, A.; Delacour, J. A new one-trial test for neurobiological studies of memory in rats. 1: Behavioral data. Behav. Brain Res. 1988, 31, 47–59. [Google Scholar] [CrossRef]
- Staykov, H.; Lazarova, M.; Hassanova, Y.; Stefanova, M.; Tancheva, L.; Nikolov, R. Neuromodulatory mechanisms of a memory loss-preventive effect of alpha-lipoic acid in an experimental rat model of dementia. J. Mol. Neurosci. 2022, 72, 1018–1025. [Google Scholar] [CrossRef]
- He, W.; Wang, C.; Chen, Y.; He, Y.; Cai, Z. Berberine attenuates cognitive impairment and ameliorates tau hyperphosphorylation by limiting the self-perpetuating pathogenic cycle between NFjB signaling, oxidative stress and neuroinflammation. Pharmacol. Rep. 2017, 69, 1341–1348. [Google Scholar] [CrossRef]
- Markesbery, W. Oxidative stress hypothesis in Alzheimer’s disease. Free. Radic. Biol. Med. 1997, 23, 134–147. [Google Scholar] [CrossRef]
- Lovell, M.; Ehmann, W.; Butler, S.; Markesberg, W. Elevated thiobarbituric acid reactive substances and antioxidant enzyme activity in the brain in Alzheimer’s disease. Neurology 1995, 45, 1594–1601. [Google Scholar] [CrossRef]
- Gandhi, S.; Abramov, A.Y. Mechanism of oxidative stress in neurodegeneration. Oxid. Med. Cell. Longev. 2012, 2012, 428010. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Zhao, B. Oxidative stress and the pathogenesis of Alzheimer’s disease. Oxid. Med. Cell. Longev. 2013, 2013, 316523. [Google Scholar] [CrossRef]
- Radi, E.; Formichi, P.; Battisti, C.; Federico, A. Apoptosis and oxidative stress in neurodegenerative diseases. J. Alzheimers Dis. 2014, 42, S125–S152. [Google Scholar] [CrossRef]
- Stamer, K.; Vogel, R.; Thies, E.; Mandelkow, E.; Mandelkow, E.M. Tau blocks traffic of organelles, neurofilaments, and APP vesicles in neurons and enhances oxidative stress. J. Cell Biol. 2002, 15, 1051–1063. [Google Scholar] [CrossRef] [PubMed]
- Uttara, B.; Singh, A.V.; Zamboni, P.; Mahajan, R.T. Oxidative stress and neurodegenerative diseases: A review of upstream and downstream antioxidant therapeutic options. Curr. Neuropharmacol. 2009, 7, 65–74. [Google Scholar] [CrossRef] [PubMed]
- Miguel-Chávez, R.S. Phenolic Compounds—Biological Activity, 1st ed.; InTech Open Ltd.: London, UK, 2017; pp. 59–74. [Google Scholar]
- Foti, M. Antioxidant properties of phenols. J. Pharm. Pharmacol. 2007, 59, 1673–1685. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Sun, M.; Cui, X.; Li, C. Protective effects of flavonoids against Alzheimer’s disease: Pathological hypothesis, potential targets, and structure-activity relationship. Int. J. Mol. Sci. 2022, 23, 10020. [Google Scholar] [CrossRef] [PubMed]
- Noui, A.; Boudiar, T.; Boulebd, H.; Gali, L.; Contreras, M.D.M.; Segura-Carretero, A.; Nieto, G.; Akkal, S. HPLC–DAD–ESI/MS profiles of bioactive compounds, antioxidant and anticholinesterase activities of Ephedra alata subsp. alenda growing in Algeria. Nat. Prod. Res. 2022, 36, 5910–5915. [Google Scholar] [CrossRef] [PubMed]
- Caruso, G.; Godos, J.; Privitera, A.; Lanza, G.; Castellano, S.; Chillemi, A.; Bruni, O.; Ferri, R.; Caraci, F.; Grosso, G. Phenolic acids and prevention of cognitive decline: Polyphenols with a neuroprotective role in cognitive disorders and Alzheimer’s disease. Nutrients 2022, 14, 819. [Google Scholar] [CrossRef] [PubMed]
- Appel, S.H. A unifying hypothesis for the cause of amyotrophic lateral sclerosis, parkinsonism, and Alzhiemer’s disease. Ann. Neurol. 1981, 10, 499–505. [Google Scholar] [CrossRef]
- Bartus, R.T.; Dean, R.L., III; Beer, B.; Lippa, A.S. The cholinergic hypothesis of geriatric memory dysfunction. Science 1982, 217, 408–414. [Google Scholar] [CrossRef]
- D’Amelio, M.; Rossini, P. Brain excitability and connectivity of neuronal assemblies in Alzheimer’s disease: From animal models to human fndings. Prog. Neurobiol. 2012, 99, 42–60. [Google Scholar] [CrossRef]
- Roy, D.; Arons, A.; Mitchell, T.; Pignatelli, M.; Ryan, T.; Tonegawa, S. Memory retrieval by activating engram cells in mouse models of early Alzheimer’s disease. Nature 2016, 531, 508–512. [Google Scholar] [CrossRef]
- Schef, S.; Price, D.; Schmitt, F.; Mufson, E. Hippocampal synaptic loss in early Alzheimer’s disease and mild cognitive impairment. Neurobiol. Aging 2006, 27, 1372–1384. [Google Scholar] [CrossRef]
- Bekar, L.K.; Wei, H.S.; Nedergaard, M. The locus coeruleus-norepinephrine network optimizes coupling of cerebral blood volume with oxygen demand. J. Cereb. Blood. Flow. Metab. 2012, 32, 2135–2145. [Google Scholar] [CrossRef]
- Wightman, E.; Jackson, P.; Khan, J.; Forster, J.; Heiner, F.; Feistel, B.; Suarez, C.; Pischel, I.; Kennedy, D. The acute and chronic cognitive and cerebral blood flow effects of a Sideritis scardica (Greek Mountain Tea) extract: A double blind, randomized, placebo controlled, parallel groups study in healthy humans. Nutrients 2018, 10, 955. [Google Scholar] [CrossRef]
- Lonze, B.E.; Ginty, D.D. Function and regulation of CREB family transcription factors in the nervous system. Neuron 2002, 35, 605–623. [Google Scholar] [CrossRef]
- Altar, C.A.; Cai, N.; Bliven, T.; Juhasz, M.; Conner, J.M.; Acheson, A.L.; Lindsay, R.M.; Wiegand, S.J. Anterograde transport of brainderived neurotrophic factor and its role in the brain. Nature 1997, 389, 856–860. [Google Scholar] [CrossRef]
- Bozon, B.; Kelly, A.; Josselyn, S.A.; Silva, A.J.; Davis, S.; Laroche, S. MAPK, CREB and zif268 are all required for the consolidation of recognition memory. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2003, 358, 805–814. [Google Scholar] [CrossRef]
- Chen, Z.; Huang, C.; Ding, W. Z-guggulsterone improves the scopolamine-induced memory impairments through enhancement of the BDNF signal in C57BL/6 J mice. Neurochem. Res. 2016, 41, 3322–3332. [Google Scholar] [CrossRef] [PubMed]
- Petreska, J.; Stefkov, G.; Kulevanova, S.; Alipieva, K.; Bankova, V.; Stefova, M. Phenolic compounds of mountain tea from the Balkans: LC/DAD/ESI/MSn profile and content. Nat. Prod. Commun. 2011, 6, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Chen, S.; Guo, H.; Jiang, H.; Liu, H.; Fu, H.; Wang, D. Forsythoside a mitigates Alzheimer’s-like pathology by inhibiting ferroptosis-mediated neuroinflammation via Nrf2/GPX4 axis activation. Int. J. Biol. Sci. 2022, 18, 2075–2090. [Google Scholar] [CrossRef] [PubMed]
- Petreska Stanoeva, J.; Stefova, M. Assay of urinary excretion of polyphenols after ingestion of a cup of mountain tea (Sideritis scardica) measured by HPLC-DAD-ESI-MS/MS. J. Agr. Food Chem. 2013, 61, 10488–10497. [Google Scholar] [CrossRef] [PubMed]
- Petrova, M.; Dimitrova, L.; Dimitrova, M.; Denev, P.; Teneva, D.; Georgieva, A.; Petkova-Kirova, P.; Lazarova, M.; Tasheva, K. Antitumor and antioxidant activities of in vitro cultivated and wild-growing Clinopodium vulgare L. plants. Plants 2023, 12, 1591. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Chang, C.C.; Yang, M.H.; Wen, H.M.; Chern, J.C. Estimation of total flavonoid content in propolis by two complementary colometric methods. J. Food Drug Anal. 2002, 10, 3. [Google Scholar] [CrossRef]
- Ou, B.; Hampsch-Woodill, M.; Prior, R.L. Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe. J. Agric. Food Chem. 2001, 49, 4619–4626. [Google Scholar] [CrossRef] [PubMed]
- Ou, B.; Hampsch-Woodill, M.; Flanagan, J.; Deemer, E.K.; Prior, R.L.; Huang, D. Novel Fluorometric Assay for Hydroxyl Radical Prevention Capacity Using Fluorescein as the Probe. J. Agric. Food Chem. 2002, 50, 2772–2777. [Google Scholar] [CrossRef] [PubMed]
- Denev, P.; Ciz, M.; Ambrozova, G.; Lojek, A.; Yanakieva, I.; Kratchanova, M. Solid-phase extraction of berries’ anthocyanins and evaluation of their antioxidative properties. Food Chem. 2010, 123, 1055–1061. [Google Scholar] [CrossRef]
- Lee, B.; Sur, B.; Shim, I.; Lee, H.; Hahm, D. Phellodendron amurense and its major alkaloid compound, berberine ameliorates scopolamine-induced neuronal impairment and memory dysfunction in rats. Korean J. Physiol. Pharmacol. 2012, 16, 79–89. [Google Scholar] [CrossRef]
- Upadhyay, P.; Shukla, R.; Kavindra Tiwari, K.N.; Dubey, G.P.; Mishra, S.K. Neuroprotective effect of Reinwardtia indica against scopolamine induced memory-impairment in rat by attenuating oxidative stress. Metab. Brain Dis. 2020, 35, 709–725. [Google Scholar] [CrossRef] [PubMed]
- Shivakumar, S.; Ilango, K.; Agrawal, A.; Dubey, G.P. Efect of hippophae rhamnoides on cognitive enhancement via neurochemical modulation in scopolamine induced Sprague Dawely rats. Int. J. Pharm. Sci. Res. 2014, 6, 4153–4158. [Google Scholar]
- Tsvetanova, E.; Alexandrova, A.; Georgieva, A.; Tancheva, L.; Lazarova, M.; Dolashka, P.; Velkova, L.; Dolashki, A.; Atanasov, V.; Kalfn, R. Efect of mucus extract of Helix aspersa on scopolamineinduced cognitive impairment and oxidative stress in rat’s brain. Bulg. Chem. Commun. 2020, 52, 107–111. [Google Scholar]
- Jeremic, I.; Petricevic, S.; Tadic, V.; Petrovic, D.; Tosic, J.; Stanojevic, Z.; Petronijevic, M.; Vidicevic, S.; Trajkovic, V.; Isakovic, A. Effects of Sideritis scardica extract on glucose tolerance, triglyceride levels and markers of oxidative stress in ovariectomized rats. Planta Med. 2019, 85, 465–472. [Google Scholar] [CrossRef] [PubMed]
- Nasar-Eddin, G.; Simeonova, R.; Zheleva-Dimitrova, D.; Gevrenova, R.; Savov, I.; Bardarov, K.; Danchev, N. Beneficial effects of Clinopodium vulgare water extract on spontaneously hypertensive rats. Bul. Chem. Comm. 2019, 51, 156–160. [Google Scholar]
- Hussein, A.; Bezu, M.; Korz, V. Evaluating Working Memory on a T-maze in Male Rats. Bio. Protoc. 2018, 8, e2930. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Yang, L.; Tucker, D.; Dong, Y.; Zhu, L.; Duan, R.; Liu, T.C.; Zhang, Q. Beneficial effects of exercise pretreatment in a sporadic Alzheimer’s rat model. Med. Sci. Sports Exerc. 2018, 50, 945–956. [Google Scholar] [CrossRef]
- Lowry, O.W.; Rosenbrough, N.J.; Farr, A.L.; Randal, R.J. Protein measurement with folin phenol reagent. J. Biol. Chem. 1951, 193, 256–275. [Google Scholar] [CrossRef]
- Ellman, G.L.; Courtney, K.D.; Andres, V., Jr.; Feather-Stone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961, 7, 88–95. [Google Scholar] [CrossRef]
- Jacobowitz, D.M.; Richardson, J.S. Method for the rapid determination of norepinephrine, dopamine and serotonin in the same brain region. Pharmacol. Biochem. Behav. 1978, 8, 515–519. [Google Scholar] [CrossRef]
Extract | Total Polyphenols (mg GAE/100 g DW) | Total Flavonoids (mg RE/100 g DW) | ORAC (µmol TE/g DW) | HORAC (µmol GAE/g DW) |
---|---|---|---|---|
S. scardica * | 12,096 ± 1208 a | 1903 ± 229 c | 2595 ± 34 a | 718 ± 4 a |
C. vulgare | 22,402 ± 812 c | 3689 ± 190 c | 6119 ± 195 c | 1538 ± 89 c |
Combination | 15,064 ± 307 b | 2755 ± 102 b | 4698 ± 107 b | 1118 ± 95 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lazarova, M.; Tsvetanova, E.; Georgieva, A.; Stefanova, M.; Uzunova, D.; Denev, P.; Vassileva, V.; Tasheva, K. Extracts of Sideritis scardica and Clinopodium vulgare Alleviate Cognitive Impairments in Scopolamine-Induced Rat Dementia. Int. J. Mol. Sci. 2024, 25, 1840. https://doi.org/10.3390/ijms25031840
Lazarova M, Tsvetanova E, Georgieva A, Stefanova M, Uzunova D, Denev P, Vassileva V, Tasheva K. Extracts of Sideritis scardica and Clinopodium vulgare Alleviate Cognitive Impairments in Scopolamine-Induced Rat Dementia. International Journal of Molecular Sciences. 2024; 25(3):1840. https://doi.org/10.3390/ijms25031840
Chicago/Turabian StyleLazarova, Maria, Elina Tsvetanova, Almira Georgieva, Miroslava Stefanova, Diamara Uzunova, Petko Denev, Valya Vassileva, and Krasimira Tasheva. 2024. "Extracts of Sideritis scardica and Clinopodium vulgare Alleviate Cognitive Impairments in Scopolamine-Induced Rat Dementia" International Journal of Molecular Sciences 25, no. 3: 1840. https://doi.org/10.3390/ijms25031840
APA StyleLazarova, M., Tsvetanova, E., Georgieva, A., Stefanova, M., Uzunova, D., Denev, P., Vassileva, V., & Tasheva, K. (2024). Extracts of Sideritis scardica and Clinopodium vulgare Alleviate Cognitive Impairments in Scopolamine-Induced Rat Dementia. International Journal of Molecular Sciences, 25(3), 1840. https://doi.org/10.3390/ijms25031840