Human-Induced Pluripotent Stem Cells in Plastic and Reconstructive Surgery
Abstract
:1. Introduction
2. Methods
3. Applications of hiPSCs in Reconstructive Surgery
3.1. hiPSCs in Wound Healing Promotion
3.2. hiPSCs in Reconstructive Tissue Regeneration
3.2.1. Skin
3.2.2. Vasculature
3.2.3. Nerve
3.2.4. Skeletal Muscle
3.2.5. Cartilage
3.2.6. Bone
Tissue Type | Study | Model Organism | Type of iPSC | Major Findings |
---|---|---|---|---|
Skin | Bilousova et al., 2011 [58] | Mouse | iPSC-derived keratinocytes | iPSCs can be derived into functional keratinocytes with similar characteristics to primary keratinocytes. They show s the potential to produce epidermis, hair follicles, and sebaceous glands in vivo. |
Lee et al., 2022 [59] | In vitro | hiPSC-derived skin organoids | hiPSCs can be derived into skin organoids, which, after 60 days of incubation, produce hair follicles and, after 130 days, have stratified skin layers, pigmented hair follicles, and glands. | |
Vasculature | Kusuma et al., 2013 [61] | Mouse | hiPSC-derived early vascular cells | Early vascular cells are able to differentiate into endothelial cells and pericytes, which can self-organize into microvascular networks on a scaffold, and can survive and integrate into the host vasculature. |
Samuel et al., 2013 [66] | Mouse | hiPSC-derived endothelial cells | hiPSCs can generate endothelial cells, which then form blood vessels that can last 280 days in vivo. hiPSCs can also be used to derive endothelial cells and form blood vessels in vivo. | |
Nerve | Ikeda et al., 2014 [67] | Mouse | iPSC-derived neurospheres | Sciatic nerve gaps could be filled through peripheral nerve regeneration and are fastest with the use of iPSC-derived neurospheres with reconstruction. |
Kim et al., 2017 [70] | In vitro | hiPSC-derived Schwann cells | hiPSCs can be derived into Schwann cell precursors and can functionally secrete neurotrophic factors and myelination potential in vitro and in vivo. | |
Liu et al., 2012 [71] | Chicken embryo | hiPSC-derived neural crest cells | hiPSCs can be induced to produce neural crest stem cells, which exhibit similar characteristics to endogenous embryonic neural crest cells. This is also the first report of myelination by hiPSC-derived Schwann cells. | |
Huang et al., 2017 [72] | Rat | hiPSC-derived neural crest stem cells and Schwann cells | hiPSC-derived cells can be used to construct a nerve conduit and implanted into a rat sciatic nerve transection model, with significantly higher electrophysiological recovery at 1 month than the acellular group. | |
Malheiro et al., 2021 [73] | In vitro | hiPSC-derived nociceptors | hiPSCs can be differentiated into nociceptors and used for peripheral nerve modeling and tissue reinnervation strategies. | |
Skeletal Muscle | Osaki et al., 2018 [75] | In vitro | hiPSC-derived muscle cells and optogenetic motor neurons | iPSCs differentiated into functional muscle cells and optogenetic motor neurons can be engineered to respond to light stimulation to 3D model ALS. |
Cartilage | Nguyen et al., 2017 [76] | In vitro | hiPSC-derived | hiPSCs can be used in 3D bioprinting using a nanofibrillated cellulose bioink and irradiated human chondrocytes for cartilage regeneration. |
Nakamura et al., 2021 [77] | In vitro | hiPSC-derived chondrocytes | hiPSC-derived chondrocytes can be used to create cartilage constructs up to 6 cm2 using bio-3D printing. | |
Choi et al., 2023 [78] | Rat | hiPSC-derived chondrocytes | Decellularized hiPSC-derived chondrocytes demonstrate enhanced in vitro chondrogenesis when recellularized, and show the enhancement of osteochondral defects in rats. | |
Bone | Kang et al., 2016 [80] | Mouse | hiPSC-derived osteoblasts | hiPSCs contribute to the restoration of critical-sized bone defects by generating neobone tissue without the occurrence of teratoma formation. |
Qi et al., 2016 [82] | Rat | hiPSC-derived MSCs | Exosomes derived from hiPSC-MSCs exert a regenerative impact on cutaneous wound healing by promoting angiogenesis and osteogenesis. |
3.2.7. Vascularized Composite Allotransplantation
3.3. hiPSC in Pathology of the Skin
4. Discussion
4.1. Challenges and Limitations of hiPSC in Disease Modeling
4.2. Challenges and Limitations of hiPSC in Plastic Surgery
4.2.1. Tumorigenicity and Off-Target Induction
4.2.2. Immunogenicity
4.2.3. Pragmatism
5. Conclusions and Future Directions
Author Contributions
Funding
Conflicts of Interest
References
- King, T. Plastic Surgery. In Building a Clinical Practice; Springer Nature: Berlin, Germany, 2020; pp. 203–214. [Google Scholar]
- Kuzon, W.M. Plastic Surgery. J. Am. Coll. Surg. 1999, 188, 171–177. [Google Scholar] [CrossRef]
- Simman, R. Wound Closure and the Reconstructive Ladder in Plastic Surgery. J. Am. Coll. Certif. Wound Spec. 2009, 1, 6–11. [Google Scholar] [CrossRef]
- Hashimoto, I.; Abe, Y.; Ishida, S.; Kashiwagi, K.; Mineda, K.; Yamashita, Y.; Yamato, R.; Toda, A.; Fukunaga, Y.; Yoshimoto, S.; et al. Development of Skin Flaps for Reconstructive Surgery: Random Pattern Flap to Perforator Flap. J. Med. Investig. 2016, 63, 159–162. [Google Scholar] [CrossRef]
- Knox, K.R.; Datiashvili, R.O.; Granick, M.S. Surgical Wound Bed Preparation of Chronic and Acute Wounds. Clin. Plast. Surg. 2007, 34, 633–641. [Google Scholar] [CrossRef]
- Busch, L.F.; Alawi, S.A. Evaluation of Patients’ Preferences for Skin Grafting in Plastic-Surgical Defect Coverage. World J. Plast. Surg. 2020, 9, 259. [Google Scholar] [CrossRef]
- Desai, M.H.; Herndon, D.N.; Rutan, R.L.; Parker, J. An Unusual Donor Site, a Lifesaver in Extensive Burns. J. Burn Care Rehabil. 1988, 9, 637–639. [Google Scholar] [CrossRef] [PubMed]
- Asuku, M.; Yu, T.C.; Yan, Q.; Böing, E.; Hahn, H.; Hovland, S.; Donelan, M.B. Split-Thickness Skin Graft Donor-Site Morbidity: A Systematic Literature Review. Burns 2021, 47, 1525–1546. [Google Scholar] [CrossRef] [PubMed]
- Winocour, S.; Saksena, A.; Oh, C.; Wu, P.S.; Laungani, A.; Baltzer, H.; Saint-Cyr, M. A Systematic Review of Comparison of Autologous, Allogeneic, and Synthetic Augmentation Grafts in Nipple Reconstruction. Plast. Reconstr. Surg. 2016, 137, 14e–23e. [Google Scholar] [CrossRef] [PubMed]
- Nanchahal, J.; Ward, C.M. New Grafts for Old? A Review of Alternatives to Autologous Skin. Br. J. Plast. Surg. 1992, 45, 354–363. [Google Scholar] [CrossRef]
- Namgoong, S.; Jung, J.E.; Han, S.K.; Jeong, S.H.; Dhong, E.S. Potential of Tissue-Engineered and Artificial Dermis Grafts for Fingertip Reconstruction. Plast. Reconstr. Surg. 2020, 146, 1082–1095. [Google Scholar] [CrossRef] [PubMed]
- Salibian, A.A.; Widgerow, A.D.; Abrouk, M.; Evans, G.R. Stem Cells in Plastic Surgery: A Review of Current Clinical and Translational Applications. Arch. Plast. Surg. 2013, 40, 666–675. [Google Scholar] [CrossRef] [PubMed]
- Amabile, G.; Meissner, A. Induced Pluripotent Stem Cells: Current Progress and Potential for Regenerative Medicine. Trends Mol. Med. 2009, 15, 59–68. [Google Scholar] [CrossRef]
- Kolios, G.; Moodley, Y. Introduction to Stem Cells and Regenerative Medicine. Respiration 2013, 85, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Poliwoda, S.; Noor, N.; Downs, E.; Schaaf, A.; Cantwell, A.; Ganti, L.; Kaye, A.D.; Mosel, L.I.; Carroll, C.B.; Viswanath, O.; et al. Stem Cells: A Comprehensive Review of Origins and Emerging Clinical Roles in Medical Practice. Orthop. Rev. 2022, 14, 37498. [Google Scholar] [CrossRef]
- Takahashi, K.; Yamanaka, S. Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors. Cell 2006, 126, 663–676. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, K.; Tanabe, K.; Ohnuki, M.; Narita, M.; Ichisaka, T.; Tomoda, K.; Yamanaka, S. Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors. Cell 2007, 131, 861–872. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Vodyanik, M.A.; Smuga-Otto, K.; Antosiewicz-Bourget, J.; Frane, J.L.; Tian, S.; Nie, J.; Jonsdottir, G.A.; Ruotti, V.; Stewart, R.; et al. Induced Pluripotent Stem Cell Lines Derived from Human Somatic Cells. Science 2007, 318, 1917–1920. [Google Scholar] [CrossRef]
- Ben-David, U.; Benvenisty, N. The Tumorigenicity of Human Embryonic and Induced Pluripotent Stem Cells. Nat. Rev. Cancer 2011, 11, 268–277. [Google Scholar] [CrossRef]
- Swijnenburg, R.J.; Schrepfer, S.; Govaert, J.A.; Cao, F.; Ransohoff, K.; Sheikh, A.Y.; Haddad, M.; Connolly, A.J.; Davis, M.M.; Robbins, R.C.; et al. Immunosuppressive Therapy Mitigates Immunological Rejection of Human Embryonic Stem Cell Xenografts. Proc. Natl. Acad. Sci. USA 2008, 105, 12991–12996. [Google Scholar] [CrossRef]
- Shi, Y.; Inoue, H.; Wu, J.C.; Yamanaka, S. Induced Pluripotent Stem Cell Technology: A Decade of Progress. Nat. Rev. Drug Discov. 2017, 16, 115. [Google Scholar] [CrossRef]
- Wang, M.; Crisostomo, P.R.; Herring, C.; Meldrum, K.K.; Meldrum, D.R. Human Progenitor Cells from Bone Marrow or Adipose Tissue Produce VEGF, HGF, and IGF-I in Response to TNF by a P38 MAPK-Dependent Mechanism. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2006, 291, R880–R884. [Google Scholar] [CrossRef]
- Rehman, J.; Traktuev, D.; Li, J.; Merfeld-Clauss, S.; Temm-Grove, C.J.; Bovenkerk, J.E.; Pell, C.L.; Johnstone, B.H.; Considine, R.V.; March, K.L. Secretion of Angiogenic and Antiapoptotic Factors by Human Adipose Stromal Cells. Circulation 2004, 109, 1292–1298. [Google Scholar] [CrossRef]
- Rodríguez-Fuentes, D.E.; Fernández-Garza, L.E.; Samia-Meza, J.A.; Barrera-Barrera, S.A.; Caplan, A.I.; Barrera-Saldaña, H.A. Mesenchymal Stem Cells Current Clinical Applications: A Systematic Review. Arch. Med. Res. 2021, 52, 93–101. [Google Scholar] [CrossRef]
- Caplan, A.I.; Correa, D. PDGF in Bone Formation and Regeneration: New Insights into a Novel Mechanism Involving MSCs. J. Orthop. Res. 2011, 29, 1795–1803. [Google Scholar] [CrossRef]
- Caplan, A.I.; Correa, D. The MSC: An Injury Drugstore. Cell Stem Cell 2011, 9, 11–15. [Google Scholar] [CrossRef]
- Li, C.; Zhao, H.; Cheng, L.; Wang, B. Allogeneic vs. Autologous Mesenchymal Stem/Stromal Cells in Their Medication Practice. Cell Biosci. 2021, 11, 187. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, Y.; Chen, Y.; Yuan, L.; Liu, H.; Wang, J.; Liu, Q.; Zhang, Y. Adipose-Derived Stem Cells: Current Applications and Future Directions in the Regeneration of Multiple Tissues. Stem Cells Int. 2020, 2020, 8810813. [Google Scholar] [CrossRef] [PubMed]
- Medvedev, S.P.; Shevchenko, A.I.; Zakian, S.M. Induced Pluripotent Stem Cells: Problems and Advantages When Applying Them in Regenerative Medicine. Acta Naturae 2010, 2, 18. [Google Scholar] [CrossRef] [PubMed]
- Mastrolia, I.; Foppiani, E.M.; Murgia, A.; Candini, O.; Samarelli, A.V.; Grisendi, G.; Veronesi, E.; Horwitz, E.M.; Dominici, M. Challenges in Clinical Development of Mesenchymal Stromal/Stem Cells: Concise Review. Stem Cells Transl. Med. 2019, 8, 1135. [Google Scholar] [CrossRef]
- Caplan, A.I. Mesenchymal Stem Cells. J. Orthop. Res. 1991, 9, 641–650. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Oikonomopoulos, A.; Sayed, N.; Wu, J.C. Modeling Human Diseases with Induced Pluripotent Stem Cells: From 2D to 3D and Beyond. Development 2018, 145, dev156166. [Google Scholar] [CrossRef] [PubMed]
- Gorecka, J.; Kostiuk, V.; Fereydooni, A.; Gonzalez, L.; Luo, J.; Dash, B.; Isaji, T.; Ono, S.; Liu, S.; Lee, S.R.; et al. The Potential and Limitations of Induced Pluripotent Stem Cells to Achieve Wound Healing. Stem Cell Res. Ther. 2019, 10, 87. [Google Scholar] [CrossRef]
- Gorecka, J.; Gao, X.; Fereydooni, A.; Dash, B.C.; Luo, J.; Lee, S.R.; Taniguchi, R.; Hsia, H.C.; Qyang, Y.; Dardik, A. Induced Pluripotent Stem Cell-Derived Smooth Muscle Cells Increase Angiogenesis and Accelerate Diabetic Wound Healing. Regen. Med. 2020, 15, 1277–1293. [Google Scholar] [CrossRef]
- Dash, B.C.; Korutla, L.; Vallabhajosyula, P.; Hsia, H.C. Unlocking the Potential of Induced Pluripotent Stem Cells for Wound Healing: The Next Frontier of Regenerative Medicine. Adv. Wound Care 2022, 11, 622–638. [Google Scholar] [CrossRef] [PubMed]
- Lin, G.; Chen, Y. Jonathan Imparting Regenerative Capacity to Limbs by Progenitor Cell Transplantation. Dev. Cell 2013, 24, 41–51. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, H.; Lin, G. Generation of iPSC-Derived Limb Progenitor-like Cells for Stimulating Phalange Regeneration in the Adult Mouse. Cell Discov. 2017, 3, 17046. [Google Scholar] [CrossRef] [PubMed]
- Burd, A.; Huang, L. An Update Review of Stem Cell Applications in Burns and Wound Care. Indian J. Plast. Surgery 2012, 45, 229. [Google Scholar] [CrossRef]
- Arno, A.; Smith, A.H.; Blit, P.H.; Al Shehab, M.; Gauglitz, G.G.; Jeschke, M.G. Stem Cell Therapy: A New Treatment for Burns? Pharmaceuticals 2011, 4, 1355–1380. [Google Scholar] [CrossRef]
- Fu, S.; Ding, J.; Liu, D.; Huang, H.; Li, M.; Liu, Y.; Tu, L.; Liu, D. Generation of Human-Induced Pluripotent Stem Cells from Burn Patient-Derived Skin Fibroblasts Using a Non-Integrative Method. Int. J. Mol. Med. 2018, 41, 87. [Google Scholar] [CrossRef]
- Bakhshandeh, B.; Jahanafrooz, Z.; Allahdadi, S.; Daryani, S.; Dehghani, Z.; Sadeghi, M.; Pedram, M.S.; Dehghan, M.M. Transcriptomic and in Vivo Approaches Introduced Human iPSC-Derived Microvesicles for Skin Rejuvenation. Sci. Rep. 2023, 13, 9963. [Google Scholar] [CrossRef]
- Mittal, K.; Schrenk-Siemens, K. Lessons from iPSC Research: Insights on Peripheral Nerve Disease. Neurosci. Lett. 2020, 738, 135358. [Google Scholar] [CrossRef]
- Higuchi, A.; Ling, Q.D.; Ko, Y.A.; Chang, Y.; Umezawa, A. Biomaterials for the Feeder-Free Culture of Human Embryonic Stem Cells and Induced Pluripotent Stem Cells. Chem. Rev. 2011, 111, 3021–3035. [Google Scholar] [CrossRef] [PubMed]
- Tong, Z.; Solanki, A.; Hamilos, A.; Levy, O.; Wen, K.; Yin, X.; Karp, J.M. Application of Biomaterials to Advance Induced Pluripotent Stem Cell Research and Therapy. EMBO J. 2015, 34, 987. [Google Scholar] [CrossRef]
- Prakash, N.; Kim, J.; Jeon, J.; Kim, S.; Arai, Y.; Bello, A.B.; Park, H.; Lee, S.H. Progress and Emerging Techniques for Biomaterial-Based Derivation of Mesenchymal Stem Cells (MSCs) from Pluripotent Stem Cells (PSCs). Biomater. Res. 2023, 27, 31. [Google Scholar] [CrossRef]
- Bertucci, T.B.; Dai, G. Biomaterial Engineering for Controlling Pluripotent Stem Cell Fate. Stem Cells Int. 2018, 2018, 9068203. [Google Scholar] [CrossRef] [PubMed]
- Haubner, F.; Muschter, D.; Pohl, F.; Schreml, S.; Prantl, L.; Gassner, H.G. A Co-Culture Model of Fibroblasts and Adipose Tissue-Derived Stem Cells Reveals New Insights into Impaired Wound Healing After Radiotherapy. Int. J. Mol. Sci. 2015, 16, 5935. [Google Scholar] [CrossRef]
- Kim, Y.; Park, N.; Rim, Y.A.; Nam, Y.; Jung, H.; Lee, K.; Ju, J.H. Establishment of a Complex Skin Structure via Layered Co-Culture of Keratinocytes and Fibroblasts Derived from Induced Pluripotent Stem Cells. Stem Cell Res. Ther. 2018, 9, 217. [Google Scholar] [CrossRef] [PubMed]
- Wallace, H.A.; Basehore, B.M.; Zito, P.M. Wound Healing Phases; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Broughton, G.I.; Janis, J.E.; Attinger, C.E. The Basic Science of Wound Healing. Plast. Reconstr. Surg. 2006, 117, 12S–34S. [Google Scholar] [CrossRef]
- Janis, J. Essentials of Plastic Surgery, 3rd ed.; Thieme Medical Publishers: New York, NY, USA, 2022. [Google Scholar]
- Nirenjen, S.; Narayanan, J.; Tamilanban, T.; Subramaniyan, V.; Chitra, V.; Fuloria, N.K.; Wong, L.S.; Ramachawolran, G.; Sekar, M.; Gupta, G.; et al. Exploring the Contribution of Pro-Inflammatory Cytokines to Impaired Wound Healing in Diabetes. Front. Immunol. 2023, 14, 1216321. [Google Scholar] [CrossRef]
- Lu, M.; Peng, L.; Ming, X.; Wang, X.; Cui, A.; Li, Y.; Wang, X.; Meng, D.; Sun, N.; Xiang, M.; et al. Enhanced Wound Healing Promotion by Immune Response-Free Monkey Autologous iPSCs and Exosomes vs. Their Allogeneic Counterparts. EBioMedicine 2019, 42, 443–457. [Google Scholar] [CrossRef]
- Lu, Y.; Zhou, Y.; Ju, R.; Chen, J. Human-Animal Chimeras for Autologous Organ Transplantation: Technological Advances and Future Perspectives. Ann. Transl. Med. 2019, 7, 576. [Google Scholar] [CrossRef]
- Shen, Y.I.; Cho, H.; Papa, A.E.; Burke, J.A.; Chan, X.Y.; Duh, E.J.; Gerecht, S. Engineered Human Vascularized Constructs Accelerate Diabetic Wound Healing. Biomaterials 2016, 102, 107–119. [Google Scholar] [CrossRef] [PubMed]
- Clayton, Z.E.; Tan, R.P.; Miravet, M.M.; Lennartsson, K.; Cooke, J.P.; Bursill, C.A.; Wise, S.G.; Patel, S. Induced Pluripotent Stem Cell-Derived Endothelial Cells Promote Angiogenesis and Accelerate Wound Closure in a Murine Excisional Wound Healing Model. Biosci. Rep. 2018, 38, 20180563. [Google Scholar] [CrossRef] [PubMed]
- Siemionow, M.Z.; Zor, F. Vascularized Composite Allotransplantation. Plast. Surg.-Princ. Pract. 2021, 131–145. [Google Scholar] [CrossRef]
- Bilousova, G.; Chen, J.; Roop, D.R. Differentiation of Mouse Induced Pluripotent Stem Cells into a Multipotent Keratinocyte Lineage. J. Investig. Dermatol. 2011, 131, 857–864. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; van der Valk, W.H.; Serdy, S.A.; Deakin, C.; Kim, J.; Le, A.P.; Koehler, K.R. Generation and Characterization of Hair-Bearing Skin Organoids from Human Pluripotent Stem Cells. Nat. Protoc. 2022, 17, 1266–1305. [Google Scholar] [CrossRef] [PubMed]
- Gabriel, A.; Sandoval, W.; Gim, K.Y.; Huang, J.T.; Koehler, K.R. Applications of Human Pluripotent Stem Cell-Derived Skin Organoids in Dermatology. J. Investig. Dermatol. 2023, 143, 1872–1876. [Google Scholar] [CrossRef]
- Kusuma, S.; Shen, Y.-I.; Hanjaya-Putra, D.; Mali, P.; Cheng, L.; Gerecht, S. Self-Organized Vascular Networks from Human Pluripotent Stem Cells in a Synthetic Matrix. Proc. Natl. Acad. Sci. USA 2013, 110, 12601–12606. [Google Scholar] [CrossRef] [PubMed]
- Rosa, S.; Praça, C.; Pitrez, P.R.; Gouveia, P.J.; Aranguren, X.L.; Ricotti, L.; Ferreira, L.S. Functional Characterization of iPSC-Derived Arterial- and Venous-like Endothelial Cells. Sci. Rep. 2019, 9, 3826. [Google Scholar] [CrossRef]
- Lin, Y.; Gil, C.-H.; Yoder, M.C. Differentiation, Evaluation, and Application of Human Induced Pluripotent Stem Cell–Derived Endothelial Cells. Arterioscler. Thromb. Vasc. Biol. 2017, 37, 2014–2025. [Google Scholar] [CrossRef]
- Olmer, R.; Engels, L.; Usman, A.; Menke, S.; Malik, M.N.H.; Pessler, F.; Göhring, G.; Bornhorst, D.; Bolten, S.; Abdelilah-Seyfried, S.; et al. Differentiation of Human Pluripotent Stem Cells into Functional Endothelial Cells in Scalable Suspension Culture. Stem Cell Rep. 2018, 10, 1657–1672. [Google Scholar] [CrossRef] [PubMed]
- Halaidych, O.V.; Freund, C.; van den Hil, F.; Salvatori, D.C.F.; Riminucci, M.; Mummery, C.L.; Orlova, V.V. Inflammatory Responses and Barrier Function of Endothelial Cells Derived from Human Induced Pluripotent Stem Cells. Stem Cell Rep. 2018, 10, 1642–1656. [Google Scholar] [CrossRef]
- Samuel, R.; Daheron, L.; Liao, S.; Vardam, T.; Kamoun, W.S.; Batista, A.; Buecker, C.; Schäfer, R.; Han, X.; Au, P.; et al. Generation of Functionally Competent and Durable Engineered Blood Vessels from Human Induced Pluripotent Stem Cells. Proc. Natl. Acad. Sci. USA 2013, 110, 12774–12779. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, M.; Uemura, T.; Takamatsu, K.; Okada, M.; Kazuki, K.; Tabata, Y.; Ikada, Y.; Nakamura, H. Acceleration of Peripheral Nerve Regeneration Using Nerve Conduits in Combination with Induced Pluripotent Stem Cell Technology and a Basic Fibroblast Growth Factor Drug Delivery System. J. Biomed. Mater. Res. Part A 2014, 102, 1370–1378. [Google Scholar] [CrossRef] [PubMed]
- Uemura, T.; Takamatsu, K.; Ikeda, M.; Okada, M.; Kazuki, K.; Ikada, Y.; Nakamura, H. A Tissue-Engineered Bioabsorbable Nerve Conduit Created by Three-Dimensional Culture of Induced Pluripotent Stem Cell-Derived Neurospheres. Bio-Med. Mater. Eng. 2011, 21, 333–339. [Google Scholar] [CrossRef]
- Huang, Z.; Powell, R.; Phillips, J.B.; Haastert-Talini, K. Perspective on Schwann Cells Derived from Induced Pluripotent Stem Cells in Peripheral Nerve Tissue Engineering. Cells 2020, 9, 2497. [Google Scholar] [CrossRef]
- Kim, H.-S.; Lee, J.; Lee, D.Y.; Kim, Y.-D.; Kim, J.Y.; Lim, H.J.; Lim, S.; Cho, Y.S. Schwann Cell Precursors from Human Pluripotent Stem Cells as a Potential Therapeutic Target for Myelin Repair. Stem Cell Rep. 2017, 8, 1714–1726. [Google Scholar] [CrossRef]
- Liu, Q.; Spusta, S.C.; Mi, R.; Lassiter, R.N.; Stark, M.R.; Höke, A.; Rao, M.S.; Zeng, X. Human Neural Crest Stem Cells Derived from Human ESCs and Induced Pluripotent Stem Cells: Induction, Maintenance, and Differentiation into Functional Schwann Cells. Stem Cells Transl. Med. 2012, 1, 266–278. [Google Scholar] [CrossRef]
- Huang, C.-W.; Huang, W.-C.; Qiu, X.; Fernandes Ferreira da Silva, F.; Wang, A.; Patel, S.; Nesti, L.J.; Poo, M.-M.; Li, S. The Differentiation Stage of Transplanted Stem Cells Modulates Nerve Regeneration. Sci. Rep. 2017, 7, 17401. [Google Scholar] [CrossRef]
- Malheiro, A.; Harichandan, A.; Bernardi, J.; Seijas-Gamardo, A.; Konings, G.F.; Volders, P.G.; Romano, A.; Mota, C.; Wieringa, P.; Moroni, L. 3D Culture Platform of Human iPSCs-Derived Nociceptors for Peripheral Nerve Modeling and Tissue Innervation. Biofabrication 2021, 14, 014105. [Google Scholar] [CrossRef]
- Powell, R.; Phillips, J.B. Engineered Tissues Made from Human iPSC-Derived Schwann Cells for Investigating Peripheral Nerve Regeneration In Vitro. Methods Mol. Biol. 2021, 2269, 245–254. [Google Scholar]
- Osaki, T.; Uzel, S.G.M.; Kamm, R.D. Microphysiological 3D Model of Amyotrophic Lateral Sclerosis (ALS) from Human iPS-Derived Muscle Cells and Optogenetic Motor Neurons. Sci. Adv. 2018, 4, eaat5847. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, D.; Hägg, D.A.; Forsman, A.; Ekholm, J.; Nimkingratana, P.; Brantsing, C.; Kalogeropoulos, T.; Zaunz, S.; Concaro, S.; Brittberg, M.; et al. Cartilage Tissue Engineering by the 3D Bioprinting of iPS Cells in a Nanocellulose/Alginate Bioink. Sci. Rep. 2017, 7, 658. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, A.; Murata, D.; Fujimoto, R.; Tamaki, S.; Nagata, S.; Ikeya, M.; Toguchida, J.; Nakayama, K. Bio-3D Printing iPSC-Derived Human Chondrocytes for Articular Cartilage Regeneration. Biofabrication 2021, 13, 044103. [Google Scholar] [CrossRef]
- Choi, S.H.; Lee, K.; Han, H.; Mo, H.; Jung, H.; Ryu, Y.; Nam, Y.; Rim, Y.A.; Ju, J.H. Prochondrogenic Effect of Decellularized Extracellular Matrix Secreted from Human Induced Pluripotent Stem Cell-Derived Chondrocytes. Acta Biomater. 2023, 167, 234–248. [Google Scholar] [CrossRef]
- Hayes, A.J.; Farrugia, B.L.; Biose, I.J.; Bix, G.J.; Melrose, J. Perlecan, A Multi-Functional, Cell-Instructive, Matrix-Stabilizing Proteoglycan With Roles in Tissue Development Has Relevance to Connective Tissue Repair and Regeneration. Front. Cell Dev. Biol. 2022, 10, 856261. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.; Shih, Y.-R.V.; Nakasaki, M.; Kabra, H.; Varghese, S. Small Molecule–Driven Direct Conversion of Human Pluripotent Stem Cells into Functional Osteoblasts. Sci. Adv. 2016, 2, e1600691. [Google Scholar] [CrossRef] [PubMed]
- Jungbluth, P.; Spitzhorn, L.-S.; Grassmann, J.; Tanner, S.; Latz, D.; Rahman, M.S.; Bohndorf, M.; Wruck, W.; Sager, M.; Grotheer, V.; et al. Human iPSC-Derived iMSCs Improve Bone Regeneration in Mini-Pigs. Bone Res. 2019, 7, 32. [Google Scholar] [CrossRef] [PubMed]
- Qi, X.; Zhang, J.; Yuan, H.; Xu, Z.; Li, Q.; Niu, X.; Hu, B.; Wang, Y.; Li, X. Exosomes Secreted by Human-Induced Pluripotent Stem Cell-Derived Mesenchymal Stem Cells Repair Critical-Sized Bone Defects through Enhanced Angiogenesis and Osteogenesis in Osteoporotic Rats. Int. J. Biol. Sci. 2016, 12, 836–849. [Google Scholar] [CrossRef]
- Hadzimustafic, N.; D’Elia, A.; Duru, C. Siba Haykal Advances in Ischemia Reperfusion Injury Prevention in Free Flaps and Vascularized Composite Allotransplantation. In Reperfusion Injuries—Advances in Understanding, Prevention, and Treatment; Jerez, Z.M., Peterson, R., Eds.; IntechOpen: Rijeka, Croatia, 2023; Chapter 9; ISBN 978-0-85014-154-2. [Google Scholar]
- Mori, S.; Sakakura, E.; Tsunekawa, Y.; Hagiwara, M.; Suzuki, T.; Eiraku, M. Self-Organized Formation of Developing Appendages from Murine Pluripotent Stem Cells. Nat. Commun. 2019, 10, 3802. [Google Scholar] [CrossRef]
- Yamada, D.; Nakamura, M.; Takao, T.; Takihira, S.; Yoshida, A.; Kawai, S.; Miura, A.; Ming, L.; Yoshitomi, H.; Gozu, M.; et al. Induction and Expansion of Human PRRX1+ Limb-Bud-like Mesenchymal Cells from Pluripotent Stem Cells. Nat. Biomed. Eng. 2021, 5, 926–940. [Google Scholar] [CrossRef]
- Gao, H.; Liu, Y.; Shi, Z.; Zhang, H.; Wang, M.; Chen, H.; Li, Y.; Ji, S.; Xiang, J.; Pi, W.; et al. A Volar Skin Excisional Wound Model for in Situ Evaluation of Multiple-Appendage Regeneration and Innervation. Burn. Trauma 2023, 11, 27. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Zhao, J.; Yan, Y.; Zhang, L.; Du, L.; Liu, X.; Cao, M.; Wang, C.; Tang, Y.; Li, H. Differential Distribution and Genetic Determination of Eccrine Sweat Glands and Hair Follicles in the Volar Skin of C57BL/6 Mice and SD Rats. BMC Vet. Res. 2022, 18, 316. [Google Scholar] [CrossRef]
- Ramovs, V.; Janssen, H.; Fuentes, I.; Pitaval, A.; Rachidi, W.; Chuva de Sousa Lopes, S.M.; Freund, C.; Gidrol, X.; Mummery, C.L.; Raymond, K. Characterization of the Epidermal-Dermal Junction in hiPSC-Derived Skin Organoids. Stem Cell Rep. 2022, 17, 1279. [Google Scholar] [CrossRef]
- Ma, J.; Li, W.; Cao, R.; Gao, D.; Zhang, Q.; Li, X.; Li, B.; Lv, L.; Li, M.; Jiang, J.; et al. Application of an iPSC-Derived Organoid Model for Localized Scleroderma Therapy. Adv. Sci. 2022, 9, e2106075. [Google Scholar] [CrossRef]
- Castro-Pérez, E.; Rodríguez, C.I.; Mikheil, D.; Siddique, S.; Mccarthy, A.; Newton, M.A.; Setaluri, V. Stem Cell Reports Article Melanoma Progression Inhibits Pluripotency and Differentiation of Melanoma-Derived iPSCs Produces Cells with Neural-like Mixed Dysplastic Phenotype. Stem Cell Rep. 2019, 13, 177–192. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Liu, W.; Wang, Z.; Zeng, B.; Peng, G.; Niu, H.; Chen, L.; Liu, C.; Hu, Q.; Zhang, Y.; et al. Mesenchymal Stem Cells Derived from iPSCs Expressing Interleukin-24 Inhibit the Growth of Melanoma in the Tumor-Bearing Mouse Model. Cancer Cell Int. 2020, 20, 33. [Google Scholar] [CrossRef] [PubMed]
- Marin Navarro, A.; Susanto, E.; Falk, A.; Wilhelm, M. Modeling Cancer Using Patient-Derived Induced Pluripotent Stem Cells to Understand Development of Childhood Malignancies. Cell Death Discov. 2018, 4, 7. [Google Scholar] [CrossRef]
- Ikemoto, Y.; Takayama, Y.; Fujii, K.; Masuda, M.; Kato, C.; Hatsuse, H.; Fujitani, K.; Nagao, K.; Kameyama, K.; Ikehara, H. Somatic Mosaicism Containing Double Mutations in PTCH1 Revealed by Generation of Induced Pluripotent Stem Cells from Nevoid Basal Cell Carcinoma Syndrome. J. Med. Genet. 2017, 54, 579–584. [Google Scholar] [CrossRef]
- Koh, S.P.; Brasch, H.D.; de Jongh, J.; Itinteang, T.; Tan, S.T. Cancer Stem Cell Subpopulations in Moderately Differentiated Head and Neck Cutaneous Squamous Cell Carcinoma. Heliyon 2019, 5, e02257. [Google Scholar] [CrossRef]
- Verusingam, N.D.; Yeap, S.K.; Ky, H.; Paterson, I.C.; Khoo, S.P.; Cheong, S.K.; Ong, A.H.; Kamarul, T. Susceptibility of Human Oral Squamous Cell Carcinoma (OSCC) H103 and H376 Cell Lines to Retroviral OSKM Mediated Reprogramming. PeerJ 2017, 5, e3174. [Google Scholar] [CrossRef]
- Rami, A.; Łaczmański, Ł.; Jacków-Nowicka, J.; Jacków, J. Reprogramming and Differentiation of Cutaneous Squamous Cell Carcinoma Cells in Recessive Dystrophic Epidermolysis Bullosa. Int. J. Mol. Sci. 2021, 22, 245. [Google Scholar] [CrossRef]
- Doss, M.X.; Sachinidis, A. Current Challenges of iPSC-Based Disease Modeling and Therapeutic Implications. Cells 2019, 8, 403. [Google Scholar] [CrossRef]
- Kong, A.M.; Yap, K.K.; Lim, S.Y.; Marre, D.; Pébay, A.; Gerrand, Y.; Lees, J.G.; Palmer, J.A.; Morrison, W.A.; Mitchell, G.M. Bio-Engineering a Tissue Flap Utilizing a Porous Scaffold Incorporating a Human Induced Pluripotent Stem Cell-Derived Endothelial Cell Capillary Network Connected to a Vascular Pedicle. Acta Biomater. 2019, 94, 281–294. [Google Scholar] [CrossRef] [PubMed]
- Okita, K.; Ichisaka, T.; Yamanaka, S. Generation of Germline-Competent Induced Pluripotent Stem Cells. Nature 2007, 448, 313–317. [Google Scholar] [CrossRef] [PubMed]
- Wernig, M.; Meissner, A.; Cassady, J.P.; Jaenisch, R. C-Myc Is Dispensable for Direct Reprogramming of Mouse Fibroblasts. Cell Stem Cell 2008, 2, 10–12. [Google Scholar] [CrossRef] [PubMed]
- Nakagawa, M.; Koyanagi, M.; Tanabe, K.; Takahashi, K.; Ichisaka, T.; Aoi, T.; Okita, K.; Mochiduki, Y.; Takizawa, N.; Yamanaka, S. Generation of Induced Pluripotent Stem Cells without Myc from Mouse and Human Fibroblasts. Nat. Biotechnol. 2008, 26, 101–106. [Google Scholar] [CrossRef] [PubMed]
- Nakagawa, M.; Takizawa, N.; Narita, M.; Ichisaka, T.; Yamanaka, S. Promotion of Direct Reprogramming by Transformation-Deficient Myc. Proc. Natl. Acad. Sci. USA 2010, 107, 14152–14157. [Google Scholar] [CrossRef] [PubMed]
- Menendez, S.; Camus, S.; Belmonte, J.C.I. P53: Guardian of Reprogramming. Cell Cycle 2010, 9, 3887–3891. [Google Scholar] [CrossRef] [PubMed]
- Stadtfeld, M.; Nagaya, M.; Utikal, J.; Weir, G.; Hochedlinger, K. Induced Pluripotent Stem Cells Generated Without Viral Integration. Science 2008, 322, 945–949. [Google Scholar] [CrossRef]
- Warren, L.; Manos, P.D.; Ahfeldt, T.; Loh, Y.-H.; Li, H.; Lau, F.; Ebina, W.; Mandal, P.K.; Smith, Z.D.; Meissner, A.; et al. Highly Efficient Reprogramming to Pluripotency and Directed Differentiation of Human Cells with Synthetic Modified mRNA. Cell Stem Cell 2010, 7, 618–630. [Google Scholar] [CrossRef]
- Woltjen, K.; Michael, I.P.; Mohseni, P.; Desai, R.; Mileikovsky, M.; Hämäläinen, R.; Cowling, R.; Wang, W.; Liu, P.; Gertsenstein, M.; et al. piggyBac Transposition Reprograms Fibroblasts to Induced Pluripotent Stem Cells. Nature 2009, 458, 766–770. [Google Scholar] [CrossRef]
- Zhou, H.; Wu, S.; Joo, J.Y.; Zhu, S.; Han, D.W.; Lin, T.; Trauger, S.; Bien, G.; Yao, S.; Zhu, Y. Generation of Induced Pluripotent Stem Cells Using Recombinant Proteins. Cell Stem Cell 2009, 4, 381–384. [Google Scholar] [CrossRef]
- Kaji, K.; Norrby, K.; Paca, A.; Mileikovsky, M.; Mohseni, P.; Woltjen, K. Virus-Free Induction of Pluripotency and Subsequent Excision of Reprogramming Factors. Nature 2009, 458, 771–775. [Google Scholar] [CrossRef]
- Okita, K.; Nakagawa, M.; Hyenjong, H.; Ichisaka, T.; Yamanaka, S. Generation of Mouse Induced Pluripotent Stem Cells Without Viral Vectors. Science 2008, 322, 949–953. [Google Scholar] [CrossRef]
- Kim, D.; Kim, C.-H.; Moon, J.-I.; Chung, Y.-G.; Chang, M.-Y.; Han, B.-S.; Ko, S.; Yang, E.; Cha, K.Y.; Lanza, R.; et al. Generation of Human Induced Pluripotent Stem Cells by Direct Delivery of Reprogramming Proteins. Cell Stem Cell 2009, 4, 472–476. [Google Scholar] [CrossRef]
- Soldner, F.; Hockemeyer, D.; Beard, C.; Gao, Q.; Bell, G.W.; Cook, E.G.; Hargus, G.; Blak, A.; Cooper, O.; Mitalipova, M.; et al. Parkinson’s Disease Patient-Derived Induced Pluripotent Stem Cells Free of Viral Reprogramming Factors. Cell 2009, 136, 964–977. [Google Scholar] [CrossRef]
- Yu, J.; Hu, K.; Smuga-Otto, K.; Tian, S.; Stewart, R.; Slukvin, I.I.; Thomson, J.A. Human Induced Pluripotent Stem Cells Free of Vector and Transgene Sequences. Science 2009, 324, 797–801. [Google Scholar] [CrossRef] [PubMed]
- Brookhouser, N.; Raman, S.; Potts, C.; Brafman, D.A. May I Cut in? Gene Editing Approaches in Human Induced Pluripotent Stem Cells. Cells 2017, 6, 5. [Google Scholar] [CrossRef] [PubMed]
- Hu, Q.; Friedrich, A.M.; Johnson, L.V.; Clegg, D.O. Memory in Induced Pluripotent Stem Cells: Reprogrammed Human Retinal-Pigmented Epithelial Cells Show Tendency for Spontaneous Redifferentiation. Stem Cells 2010, 28, 1981–1991. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, Z.; Wilson, K.D.; Wu, Y.; Hu, S.; Quertermous, T.; Wu, J.C. Persistent Donor Cell Gene Expression among Human Induced Pluripotent Stem Cells Contributes to Differences with Human Embryonic Stem Cells. PLoS ONE 2010, 5, e8975. [Google Scholar] [CrossRef] [PubMed]
- Giorgetti, A.; Montserrat, N.; Aasen, T.; Gonzalez, F.; Rodríguez-Pizà, I.; Vassena, R.; Raya, A.; Boué, S.; Barrero, M.J.; Corbella, B.A.; et al. Generation of Induced Pluripotent Stem Cells from Human Cord Blood Using OCT4 and SOX2. Cell Stem Cell 2009, 5, 353–357. [Google Scholar] [CrossRef] [PubMed]
- Choo, A.B.; Tan, H.L.; Ang, S.N.; Fong, W.J.; Chin, A.; Lo, J.; Zheng, L.; Hentze, H.; Philp, R.J.; Oh, S.K.W.; et al. Selection Against Undifferentiated Human Embryonic Stem Cells by a Cytotoxic Antibody Recognizing Podocalyxin-Like Protein-1. Stem Cells 2008, 26, 1454–1463. [Google Scholar] [CrossRef] [PubMed]
- Fong, C.Y.; Peh, G.S.L.; Gauthaman, K.; Bongso, A. Separation of SSEA-4 and TRA-1–60 Labelled Undifferentiated Human Embryonic Stem Cells from A Heterogeneous Cell Population Using Magnetic-Activated Cell Sorting (MACS) and Fluorescence-Activated Cell Sorting (FACS). Stem Cell Rev. Rep. 2009, 5, 72–80. [Google Scholar] [CrossRef] [PubMed]
- Schuldiner, M.; Itskovitz-Eldor, J.; Benvenisty, N. Selective Ablation of Human Embryonic Stem Cells Expressing a “Suicide” Gene. Stem Cells 2003, 21, 257–265. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; Zhang, Z.-N.; Rong, Z.; Xu, Y. Immunogenicity of Induced Pluripotent Stem Cells. Nature 2011, 474, 212–215. [Google Scholar] [CrossRef] [PubMed]
- Fairchild, P.J. The Challenge of Immunogenicity in the Quest for Induced Pluripotency. Nat. Rev. Immunol. 2010, 10, 868–875. [Google Scholar] [CrossRef]
- Kadereit, S.; Trounson, A. In Vitro Immunogenicity of Undifferentiated Pluripotent Stem Cells (PSC) and Derived Lineages. Semin. Immunopathol. 2011, 33, 551–562. [Google Scholar] [CrossRef]
- Tang, C.; Drukker, M. Potential Barriers to Therapeutics Utilizing Pluripotent Cell Derivatives: Intrinsic Immunogenicity of in Vitro Maintained and Matured Populations. Semin. Immunopathol. 2011, 33, 563–572. [Google Scholar] [CrossRef]
- Deuse, T.; Hu, X.; Agbor-Enoh, S.; Koch, M.; Spitzer, M.H.; Gravina, A.; Alawi, M.; Marishta, A.; Peters, B.; Kosaloglu-Yalcin, Z.; et al. De Novo Mutations in Mitochondrial DNA of iPSCs Produce Immunogenic Neoepitopes in Mice and Humans. Nat. Biotechnol. 2019, 37, 1137–1144. [Google Scholar] [CrossRef]
- Ji, J.; Ng, S.H.; Sharma, V.; Neculai, D.; Hussein, S.; Sam, M.; Trinh, Q.; Church, G.M.; Mcpherson, J.D.; Nagy, A.; et al. Elevated Coding Mutation Rate During the Reprogramming of Human Somatic Cells into Induced Pluripotent Stem Cells. Stem Cells 2012, 30, 435–440. [Google Scholar] [CrossRef]
- Brown, W.M.; George, M.; Wilson, A.C. Rapid Evolution of Animal Mitochondrial DNA. Proc. Natl. Acad. Sci. USA 1979, 76, 1967–1971. [Google Scholar] [CrossRef]
- Zastawny, T.H.; Dabrowska, M.; Jaskolski, T.; Klimarczyk, M.; Kulinski, L.; Koszela, A.; Szczesniewicz, M.; Sliwinska, M.; Witkowski, P.; Olinski, R. Comparison of Oxidative Base Damage in Mitochondrial and Nuclear DNA. Free Radic. Biol. Med. 1998, 24, 722–725. [Google Scholar] [CrossRef] [PubMed]
- Yakes, F.M.; Van Houten, B. Mitochondrial DNA Damage Is More Extensive and Persists Longer than Nuclear DNA Damage in Human Cells Following Oxidative Stress. Proc. Natl. Acad. Sci. USA 1997, 94, 514–519. [Google Scholar] [CrossRef] [PubMed]
- Deuse, T.; Wang, D.; Stubbendorff, M.; Itagaki, R.; Grabosch, A.; Laura; Alawi, M.; Grünewald, A.; Hu, X.; Hua, X.; et al. SCNT-Derived ESCs with Mismatched Mitochondria Trigger an Immune Response in Allogeneic Hosts. Cell Stem Cell 2015, 16, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Araki, R.; Uda, M.; Hoki, Y.; Sunayama, M.; Nakamura, M.; Ando, S.; Sugiura, M.; Ideno, H.; Shimada, A.; Nifuji, A.; et al. Negligible Immunogenicity of Terminally Differentiated Cells Derived from Induced Pluripotent or Embryonic Stem Cells. Nature 2013, 494, 100–104. [Google Scholar] [CrossRef] [PubMed]
- Guha, P.; Morgan, J.W.; Mostoslavsky, G.; Rodrigues, N.P.; Boyd, A.S. Lack of Immune Response to Differentiated Cells Derived from Syngeneic Induced Pluripotent Stem Cells. Cell Stem Cell 2013, 12, 407–412. [Google Scholar] [CrossRef] [PubMed]
- Morizane, A.; Doi, D.; Kikuchi, T.; Okita, K.; Hotta, A.; Kawasaki, T.; Hayashi, T.; Onoe, H.; Shiina, T.; Yamanaka, S. Direct Comparison of Autologous and Allogeneic Transplantation of iPSC-Derived Neural Cells in the Brain of a Nonhuman Primate. Stem Cell Rep. 2013, 1, 283–292. [Google Scholar] [CrossRef] [PubMed]
- Scheiner, Z.S.; Talib, S.; Feigal, E.G. The Potential for Immunogenicity of Autologous Induced Pluripotent Stem Cell-Derived Therapies. J. Biol. Chem. 2014, 289, 4571–4577. [Google Scholar] [CrossRef] [PubMed]
- Taura, D.; Noguchi, M.; Sone, M.; Hosoda, K.; Mori, E.; Okada, Y.; Takahashi, K.; Homma, K.; Oyamada, N.; Inuzuka, M. Adipogenic Differentiation of Human Induced Pluripotent Stem Cells: Comparison with That of Human Embryonic Stem Cells. FEBS Lett. 2009, 583, 1029–1033. [Google Scholar] [CrossRef]
- Sah, S.K.; Kanaujiya, J.K.; Chen, I.-P.; Reichenberger, E.J. Generation of Keratinocytes from Human Induced Pluripotent Stem Cells under Defined Culture Conditions. Cell. Reprogr. 2021, 23, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Rong, Z.; Wang, M.; Hu, Z.; Stradner, M.; Zhu, S.; Kong, H.; Yi, H.; Goldrath, A.; Yang, Y.-G.; Xu, Y.; et al. An Effective Approach to Prevent Immune Rejection of Human ESC-Derived Allografts. Cell Stem Cell 2014, 14, 121–130. [Google Scholar] [CrossRef] [PubMed]
Skin Pathology | Study | Model Organism | Type of iPSC | Major Findings |
---|---|---|---|---|
Epidermolysis Bullosa (EB) | Ramovs et al., 2022 [88] | In vitro | hiPSC-derived skin organoids | EDJ of skin organoid lacked collagen VII; gene mutations in COL7A1 producing collagen VII are common in EB. |
Scleroderma | Ma et al., 2022 [89] | Mouse | hiPSC-derived epithelial and mesenchymal (EM) organoids | EM organoids can regenerate integral components of skin including sweat glands and blood vessels in the scleroderma skin model. |
Basal Cell Carcinoma (BCC) | Ikemoto et al., 2017 [93] | In vitro | NBCCS-iPSCs | Examining the genetic makeup of iPSC clones helped in identifying mosaicism. |
Squamous Cell Carcinoma (SCC) | Verusingam et al., 2017 [95] | In vitro | hiPSCs | Reprogrammed two cell OSCC cell lines (H103 and H376) into iPS-like cells; better maintenance of morphology and pluripotent expressions observed in Rep-H103 cells. |
Rami et al., 2021 [96] | Mouse | RDEB-cSCC-iPSCs | Reprogrammed and re-differentiated RDEB-cSCCs-iPSCs into keratinocytes showed reduced proliferative capacities in vitro and in vivo. | |
Melanoma | Castro-Pérez et al., 2019 [90] | Mouse | melanoma-derived iPSCs | Oncogenic BRAF inhibits melanocyte reprogramming. Melanoma-derived induced pluripotent stem cells (iPSCs) exhibit neural cell-like dysplasia and heightened resistance to MAPK inhibitors. |
Wu et al., 2020 [91] | Mouse | iPSC-derived MSCs | Interleukin-24 (IL-24) integrated into hiPSCs can inhibit melanoma growth. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hadzimustafic, N.; D’Elia, A.; Shamoun, V.; Haykal, S. Human-Induced Pluripotent Stem Cells in Plastic and Reconstructive Surgery. Int. J. Mol. Sci. 2024, 25, 1863. https://doi.org/10.3390/ijms25031863
Hadzimustafic N, D’Elia A, Shamoun V, Haykal S. Human-Induced Pluripotent Stem Cells in Plastic and Reconstructive Surgery. International Journal of Molecular Sciences. 2024; 25(3):1863. https://doi.org/10.3390/ijms25031863
Chicago/Turabian StyleHadzimustafic, Nina, Andrew D’Elia, Valentina Shamoun, and Siba Haykal. 2024. "Human-Induced Pluripotent Stem Cells in Plastic and Reconstructive Surgery" International Journal of Molecular Sciences 25, no. 3: 1863. https://doi.org/10.3390/ijms25031863
APA StyleHadzimustafic, N., D’Elia, A., Shamoun, V., & Haykal, S. (2024). Human-Induced Pluripotent Stem Cells in Plastic and Reconstructive Surgery. International Journal of Molecular Sciences, 25(3), 1863. https://doi.org/10.3390/ijms25031863