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Abstract: Miscarriages affect 50–70% of all conceptions and 15–20% of clinically recognized preg-
nancies. Recurrent pregnancy loss (RPL, ≥2 miscarriages) affects 1–5% of recognized pregnancies.
Nevertheless, our knowledge about the etiologies and pathophysiology of RPL is incomplete, and
thus, reliable diagnostic/preventive tools are not yet available. Here, we aimed to define the diag-
nostic value of three placental proteins for RPL: human chorionic gonadotropin free beta-subunit
(free-β-hCG), pregnancy-associated plasma protein-A (PAPP-A), and placental growth factor (PlGF).
Blood samples were collected from women with RPL (n = 14) and controls undergoing elective
termination of pregnancy (n = 30) at the time of surgery. Maternal serum protein concentrations
were measured by BRAHMS KRYPTOR Analyzer. Daily multiple of median (dMoM) values were
calculated for gestational age-specific normalization. To obtain classifiers, logistic regression analysis
was performed, and ROC curves were calculated. There were differences in changes of maternal
serum protein concentrations with advancing healthy gestation. Between 6 and 13 weeks, women with
RPL had lower concentrations and dMoMs of free β-hCG, PAPP-A, and PlGF than controls. PAPP-A
dMoM had the best discriminative properties (AUC = 0.880). Between 9 and 13 weeks, discriminative
properties of all protein dMoMs were excellent (free β-hCG: AUC = 0.975; PAPP-A: AUC = 0.998;
PlGF: AUC = 0.924). In conclusion, free-β-hCG and PAPP-A are valuable biomarkers for RPL, espe-
cially between 9 and 13 weeks. Their decreased concentrations indicate the deterioration of placental
functions, while lower PlGF levels indicate problems with placental angiogenesis after 9 weeks.

Keywords: bioinformatics; habitual abortion; liquid biopsy; non-invasive monitoring; placental
protein; prenatal diagnostics; recurrent miscarriage; spontaneous abortion
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1. Introduction

Miscarriage is defined as the loss of pregnancy before the 20th week of gestation [1,2],
affecting 50–70% of all gestations and 15–20% of clinically recognized pregnancies [3–15].
Moreover, the risk of miscarriage is directly related to the number of previous miscar-
riages [14–16]. As a consequence, recurrent pregnancy loss (RPL), which is defined by
the WHO as the loss of three or more consecutive pregnancies before 20th weeks of gesta-
tion [6,10,17–19], affects 1–5% of pregnancies [6,10,19–21]. As the risk of miscarriage in a
subsequent pregnancy is 30% after two pregnancy losses and 33% after three losses [21], the
American Society for Reproductive Medicine redefined RPL as two or more failed clinical
pregnancies [19,22]. Altogether, RPL has critical importance and enormous demographical,
social, psychological, and economic impact [23,24], especially in most developed countries,
where a continuous decline in reproductive rates has been observed since the 1960s.

Additional risk factors of RPL include maternal age [10]; genetic- [6,17,25–30],
endocrine- [6,17,31–35], anatomic- [6,28,36–38], immunologic- [6,39–45], and hemostatic
disorders [6,46–49]; as well as antiphospholipid syndrome [6,17,50–52]. However, about
half of the cases of RPL have no evident causes and molecular background [6,13,19,22,53].
In light of the syndromic nature of RPL, along with the lack of comprehensive molecular
pathophysiology, early and reliable prediction and prevention of RPL are still some of the
largest challenges in reproductive medicine.

Currently, the detection of early pregnancy failures includes an ultrasound scan and
the determination of maternal blood concentrations of different biomarkers measured either
alone or in combinations. However, there is still no unified protocol or agreement on the pre-
diction of RPL. The diagnostic or predictive value of biomarkers related to the underlying
primary clinical disease leading to RPL, like immunological, thrombophilia, or endocrine
markers [4,53], are limited, and they are not specific to RPL. Protein biomarker studies for
RPL have been performed either on non-pregnant women for risk assessment [34,54–60] or
on pregnant women to predict the outcome of the current pregnancy [43,61–74]. However,
the results of these studies are conflicting and most often not comparable, mainly because
of heterogeneous or inadequate definitions and patient groups, as well as differences in
methodologies [75,76].

Altogether, a reliable method to predict RPL with high confidence in the early stage
of pregnancy to enable preventive therapies remains elusive. Therefore, investigations
on known as well as new and more effective biomarkers are warranted in well-designed
studies that apply strict clinical definitions, homogeneous patient groups, and good-quality
samples. Standardized sample collection and sample treatment, as well as data evaluation,
are also very important to identify better biomarker candidates and to define the exact
classifier and predictive values of biomarker proteins. Since placental functions are severely
disturbed in miscarriages [77–83], here, our aim was to determine the changes in con-
centrations of three known placental biomarker proteins: the free beta-subunit of human
chorionic gonadotropin (free β-hCG), pregnancy-associated plasma protein-A (PAPP-A),
and placental growth factor (PlGF), and their combinations in women with RPL. Our study
utilized samples collected under strict biobanking protocols from homogenous patient
groups; immunoassays were performed according to international clinical standards, data
were normalized to large population standards, and reliable analytical and bioinformatics
methods were used.

2. Results
2.1. The Expression Patterns of hCG, PlGF, and PAPPA Proteins

The genes encoding the hCG, PAPP-A, and PlGF proteins are predominantly expressed
in the placenta, based on mRNA expression data for 84 tissue types in the GeneAtlas U133A
data set [84–86] (Figure 1 and Supplementary Figure S1). The mRNA expression levels
of the CGB3, PGF, and PAPPA in placental tissue are 252×, 47×, and 1746× fold larger
than the medians of their expression in 83 other tissue types, respectively. The Pearson
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correlation coefficients between the tissue-wise expression levels of the three genes in all
combinations are >0.9.
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Table 1. Demographic and clinical data of the study groups. 

Groups RPL Control 
Number of cases a 14 30 

Maternal age (years) a 37.2 ± 4.5 ** 30.1 ± 7.0 
Gestational age at surgery (weeks) a 9.1 ± 1.9 8.6 ± 1.8 

Gravidity b 3 (2–4) * 2 (1–3) 
Parity b 1 (0–1) 0 (0–1) 

Number of previous miscarriages b,c 1 (1–1.8) *** 0 (0–0) 

Figure 1. (A) The three-dimensional structures of β-hCG (PDB: 1hcn), PAPP-A (PDB: 7ufg), and
PlGF (PDB: 1fzv) from the Protein Data Bank. (B) Comparison of the mRNA expression levels of
β-hCG (CGB3 gene), PAPP-A (PAPPA gene), and PlGF (PGF gene) in the placenta vs. 83 non-placental
tissues from the GeneAtlas U133A data set. The error bars represent the 95% confidence interval of
the mean. Human chorionic gonadotropin free beta-subunit, free β-hCG; placental growth factor,
PlGF; pregnancy-associated plasma protein A, PAPP-A; placental tissue, P; mean of 83 non-placental
tissue, NP.

2.2. Demographic and Clinical Data

Demographic and clinical characteristics of the study groups are displayed in Table 1.
Maternal age and gravidity were higher in RPL than in controls. Women had from one to
three previous pregnancy losses in the RPL group.

Table 1. Demographic and clinical data of the study groups.

Groups RPL Control

Number of cases a 14 30
Maternal age (years) a 37.2 ± 4.5 ** 30.1 ± 7.0

Gestational age at surgery (weeks) a 9.1 ± 1.9 8.6 ± 1.8
Gravidity b 3 (2–4) * 2 (1–3)

Parity b 1 (0–1) 0 (0–1)
Number of previous miscarriages b,c 1 (1–1.8) *** 0 (0–0)

RPL: recurrent pregnancy loss; a values are presented as mean (standard deviation (SD)); b values are presented
as medians (interquartile range (IQR)); c data were available for 29 cases in the control group; *** p < 0.001;
** p < 0.01; * p < 0.05 compared to gestational age-matched controls.



Int. J. Mol. Sci. 2024, 25, 1865 4 of 23

2.3. Gestational Age-Specific Distribution of Data

Samples were collected between 42 and 91 gestational days in the RPL group and
between 35 and 83 gestational days in the control group. Inside of the specified ranges, the
distribution of data points is depicted in Figure 2. The daily median reference values of free
β-hCG and PAPP-A were available for 49–97 gestational days based on 222,475 patients,
and of PlGF, for 56–98 days based on 38,002 patients [87,88]. These daily medians were
applied as reference values during gestational age-specific normalization when calculating
dMoM values.
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15.70 IU/L, control: 52.75 IU/L, p = 0.0380) and dMoM (RPL: 0.32, control: 0.91, p = 0.0186, 
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tion of PAPP-A (RPL: 0.08 IU/L, control: 0.17 IU/L, p = 0.0646) was not different, while 
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Figure 2. Maternal serum concentrations of free β-hCG, PAPP-A, and PlGF proteins compared to
daily median curves. Maternal serum concentrations of free β-hCG (A), PAPP-A (B), and PlGF (C)
proteins in the RPL group (n = 14) and the control group (n = 30) were plotted against consensus
gestational days. Daily median reference concentrations (green), used for gestational age-specific
normalization, were calculated based on Wright et al. [87] for free β-hCG and PAPP-A (n = 222,475),
and based on Tsiakkas et al. [88] for PlGF (n = 38,002). The reference values were obtained from
Thermo Fisher Scientific. Human chorionic gonadotropin free beta-subunit, free β-hCG; placental
growth factor, PlGF; pregnancy-associated plasma protein A, PAPP-A; recurrent pregnancy loss, RPL.
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Gestational age-specific normalization was performed because the concentration of
each protein varies with gestational age [89]. Daily medians for PAPP-A and PlGF concen-
trations monotonically increased in the gestational age range for which daily median data
were available, while the concentration of free β-hCG first increased and then decreased in
the investigated gestational age range, having a maximum value at the 61st day of gestation.
The previously published equations [87,88] describing the log10 daily median values for
PAPP-A, free β-hCG, and PlGF concentrations as a function of gestational age are:

log10 PAPP − A = 0.1950 + 2.844 × 10−2 × (GA − 77)− 3.522 × 10−4 × (GA − 77)2

+1.244 × 10−5 × (GA − 77)3,

log10 free β−hCG = −3.240 − 5.097 × 10−2 × (GA − 77)− 4.480 × 10−4 × (GA − 77)2

+3.152 × log10(GA − 40)

and

log10 PlGF = 1.319 + 0.01506 × (GA − 77)− 1.363 × 10−5×(GA − 77)2

−2.336 × 10−7×(GA − 77)3

Reference values (daily median curves) are shown as green lines in Figure 2 and are listed
in Supplementary Table S1, respectively.

2.4. Maternal Serum Concentrations of Free β-hCG, PAPP-A, and PlGF in RPL and controls

The mean maternal serum concentration of all proteins was lower in RPL compared
to controls (free β-hCG RPL: 10.96 IU/L, control: 56.91 IU/L, p = 2.91 × 10−4; PAPP-A
RPL: 0.12 IU/L, control: 0.74 IU/L, p = 5.27 × 10−3; PlGF RPL: 16.07 pg/mL, control:
24.32 pg/mL, p = 0.0106). After gestational age-specific normalization, PAPP-A and PlGF
but not free β-hCG dMoMs had more significant differences between the groups than
concentrations (free β-hCG RPL: 0.18, control: 1.13, p = 4.61 × 10−4, Figure 3A; PAPP-A RPL:
0.39, control: 1.66, p = 9.13 × 10−5, Figure 3D; PlGF RPL: 1.01, control: 1.52, p = 5.27 × 10−3,
Figure 3G).

Since the concentrations of these proteins change during normal pregnancy, we hy-
pothesized that these gestational age-dependent changes also occur in RPL. Therefore,
we analyzed the data in two gestational age ranges, between 6 and 9 and between 9 and
13 weeks.

Between 6 and 9 weeks, the mean maternal serum concentration of free β-hCG (RPL:
15.70 IU/L, control: 52.75 IU/L, p = 0.0380) and dMoM (RPL: 0.32, control: 0.91, p = 0.0186,
Figure 3B) were lower in RPL compared to controls. The mean maternal serum concentra-
tion of PAPP-A (RPL: 0.08 IU/L, control: 0.17 IU/L, p = 0.0646) was not different, while
PAPP-A dMoM (RPL: 0.41, control: 1.77, p = 5.45 × 10−3, Figure 3E) was lower in RPL
compared to controls. The mean maternal serum concentration of PlGF (RPL: 16.42 pg/mL,
control: 22.12 pg/mL, p = 0.244) and dMoM (RPL: 1.41, control: 1.85, p = 0.0584, Figure 3H)
were not different in RPL compared to controls.

Between 9 and 13 weeks, the mean maternal serum concentration of all proteins
was lower in RPL compared to controls (free β-hCG RPL: 2.17 IU/L, control: 79.04 IU/L,
p = 9.37 × 10−4; PAPP-A RPL: 0.63 IU/L, control: 1.81 IU/L, p = 3.60 × 10−3; PlGF RPL:
12.20 pg/mL, control: 27.61 pg/mL, p = 6.59 × 10−3). Also, dMoM values of all proteins
were lower in RPL compared to controls (free β-hCG RPL: 0.05, control: 1.2, p = 9.37 × 10−4,
Figure 3C; PAPP-A RPL: 0.26, control: 1.39, p = 9.37 × 10−4, Figure 3F; PlGF RPL: 0.6,
control: 1.28, p = 2.61 × 10−3, Figure 3I).
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Figure 3. Box plots for free β-hCG, PAPP-A, and PlGF dMoMs in the study groups. Box plots
represent dMoM values of free β-hCG protein in the RPL (n = 13) and control (n = 25) groups in the
whole gestational range (A), between 6 and 9 weeks of gestation (RPL: n = 8, control: n = 13) (B), and
between 9 and 13 weeks of gestation (RPL: n = 5, control: n = 12) (C), PAPP-A protein in the RPL
(n = 13) and control (n = 25) groups in the whole gestational range (D), between 6 and 9 weeks of
gestation (RPL: n = 8, control: n = 13) (E), and between 9 and 13 weeks of gestation (RPL: n = 5, control:
n = 12) (F), PlGF protein in the RPL (n = 12) and control (n = 20) groups in the whole gestational range
(G), between 6 and 9 weeks of gestation (RPL: n = 7, control: n = 8) (H), and between 9 and 13 weeks
of gestation (RPL: n = 5, control: n = 12) (I). Significance levels denoted as follows: ns: p > 0.05,
*: p < 0.05, **: p < 0.01, ***: p < 0.001. Daily multiple of median, dMoM; human chorionic gonadotropin
free beta-subunit, free β-hCG; placental growth factor, PlGF; pregnancy-associated plasma protein A,
PAPP-A; recurrent pregnancy loss, RPL.

2.5. Discriminative Properties of Biomarker Proteins

Tables 2–5 contain area under the curve (AUC), as well as sensitivities (true-positive
rates), at 5% and 10% false-positive rate (FPR) values averaged over 50 runs of five-fold
cross-validation, characterizing the discriminative value of proteins or their combinations.
AUC, as well as sensitivities at 5% and 10% FPR values, were calculated both for serum
concentrations and dMoM values.
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Table 2. Discriminative values of placental biomarker proteins.

Concentration dMoM

free β-hCG PAPP-A PlGF free β-hCG PAPP-A PlGF

AUC 0.788 0.632 0.626 0.820 0.880 0.644
TPR % (5% FPR) 42.86 7.57 1.00 47.54 38.92 8.67

LR+ (5% FPR) 8.57 1.51 0.20 9.51 7.78 1.73
LR− (5% FPR) 0.60 0.97 1.04 0.55 0.64 0.96

TPR % (10% FPR) 64.14 13.57 14.71 70.31 82.62 28.50
LR+ (10% FPR) 6.41 1.36 1.47 7.03 8.26 2.85
LR− (10% FPR) 0.40 0.96 0.95 0.33 0.19 0.79

dMoM: daily multiple of median values; AUC: area under the curve (receiver operating characteristic (ROC)
curve); TPR: true-positive rate/sensitivity; FPR: false-positive rate; LR+: positive likelihood ratio; LR−: negative
likelihood ratio.

Table 3. Discriminative values of placental biomarker proteins in the gestational age range of 6–9 weeks.

Concentration dMoM

free β-hCG PAPP-A PlGF free β-hCG PAPP-A PlGF

AUC 0.619 0.463 0.279 0.667 0.789 0.368
TPR % (5% FPR) 10.00 4.89 0.00 11.50 14.00 3.71

LR+ (5% FPR) 2.00 0.98 0.00 2.30 2.80 0.74
LR− (5% FPR) 0.95 1.00 1.05 0.93 0.91 1.01

TPR % (10% FPR) 17.11 8.44 0.22 30.50 26.50 3.71
LR+ (10% FPR) 1.71 0.84 0.02 3.05 2.65 0.37
LR− (10% FPR) 0.92 1.02 1.11 0.78 0.82 1.07

dMoM: daily multiple of median values; AUC: area under the curve (receiver operating characteristic (ROC)
curve); TPR: true-positive rate/sensitivity; FPR: false-positive rate; LR+: positive likelihood ratio; LR−: negative
likelihood ratio.

Table 4. Discriminative values of placental biomarker proteins in the gestational age range of 9–13 weeks.

Concentration dMoM

free β-hCG PAPP-A PlGF free β-hCG PAPP-A PlGF

AUC 0.999 0.635 0.778 0.975 0.998 0.924
TPR % (5% FPR) 99.60 14.40 26.00 70.40 98.00 24.40

LR+ (5% FPR) 19.92 2.88 5.20 14.08 19.60 4.88
LR− (5% FPR) 0.00 0.90 0.78 0.31 0.02 0.80

TPR % (10% FPR) 100.00 32.40 59.20 100.00 100.00 100.00
LR+ (10% FPR) 10.00 3.24 5.92 10.00 10.00 10.00
LR− (10% FPR) 0.00 0.75 0.45 0.00 0.00 0.00

dMoM: daily multiple of median values; AUC: area under the curve (receiver operating characteristic (ROC)
curve); TPR: true-positive rate/sensitivity; FPR: false-positive rate; LR+: positive likelihood ratio; LR−: negative
likelihood ratio.

When looking at the whole gestational age range at the single protein level (Table 2),
the discriminative value of PAPP-A dMoM (AUC = 0.880, Figure 4D) was the highest, and
the value of free β-hCG dMoM was relatively high as well (AUC = 0.820, Figure 4A). At
the protein combination level, the discriminative values of PAPP-A dMoMs (AUC = 0.865,
0.867, 0.846, Figure 5, Table 5) were the highest. Overall, the classifier property of PAPP-A
dMoM as a single protein was better than any of its combinations. In this regard, PlGF
dMoM as a single protein was much less valuable (AUC = 0.644, Figure 4G), and PlGF
reduced the overall discriminative value in all combinations of dMoMs (Table 5).
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Table 5. Discriminative values of placental biomarker protein combinations for the 6–13 gestational
week period.

free β-hCG, PAPP-A free β-hCG, PlGF PAPP-A, PlGF free β-hCG,
PAPP-A, PlGF

concentration

AUC 0.806 0.784 0.695 0.793
TPR % (5% FPR) 44.14 56.71 14.71 45.86

LR+ (5% FPR) 8.83 11.34 2.94 9.17
LR− (5% FPR) 0.59 0.46 0.90 0.57

TPR % (10% FPR) 61.29 65.00 21.43 55.86
LR+ (10% FPR) 6.13 6.50 2.14 5.59
LR− (10% FPR) 0.43 0.39 0.87 0.49

dMoM

AUC 0.867 0.786 0.865 0.846
TPR % (5% FPR) 54.00 56.50 46.33 43.67

LR+ (5% FPR) 10.80 11.30 9.27 8.73
LR− (5% FPR) 0.48 0.46 0.56 0.59

TPR % (10% FPR) 76.92 63.00 80.00 75.33
LR+ (10% FPR) 7.69 6.30 8.00 7.53
LR− (10% FPR) 0.26 0.41 0.22 0.27

dMoM: daily multiple of median values; AUC: area under the curve (receiver operating characteristic (ROC)
curve); TPR: true-positive rate/sensitivity; FPR: false-positive rate; LR+: positive likelihood ratio; LR−: negative
likelihood ratio.

Between 6 and 9 weeks, the classifier properties of all proteins were poorer than
for the whole gestational age range (Table 3). Briefly, PAPP-A dMoM was also the best
(AUC = 0.789, Figure 4E), free β-hCG had modest discriminative values (AUC = 0.667,
Figure 4B), while PlGF was a poor classifier (AUC = 0.368, Figure 4H).

Between 9 and 13 weeks, the classifier properties (Table 4) of all dMoMs were excellent
(free β-hCG: AUC = 0.975, Figure 4C; PAPP-A: AUC = 0.998, Figure 4F; PlGF: AUC = 0.924,
Figure 4I). In accordance, we also found that the likelihood ratios were diagnostically
relevant in this interval, especially in the case of dMoMs at 10% FPR (positive likelihood
ratio: 10.0, negative likelihood ratio: 0.00, respectively).

Table 6 shows all models trained on intensities or dMoM values of proteins and their
various combinations.

Table 6. Discriminative models are built using different proteins and protein combinations.

Independent Variables ln pRPL
1−pRPL

log2[freeβ − hCG] −0.894 − 1.432 × log2[freeβ − hCG]

log2[PAPP − A] −0.865 − 0.781 × log2[PAPP − A]

log2[PlGF] −0.607 − 0.468 × log2[PlGF]
log2[freeβ − hCG], log2[PAPP − A] −0.946 − 1.283 × log2[freeβ − hCG]− 0.377 × log2[PAPP − A]

log2[freeβ − hCG], log2[PlGF] −0.646 − 1.414 × log2[freeβ − hCG]− 0.0826 × log2[PlGF]
log2[PAPP − A], log2[PlGF] −0.672 − 0.795 × log2[PAPP − A]− 0.111 × log2[PlGF]

log2[freeβ − hCG], log2[PAPP − A], log2[PlGF] −0.695 − 1.287 × log2[freeβ − hCG]− 0.542 × log2[PAPP − A] + 0.134 ×
log2[PlGF]

log2
(
dMoMfreeβ−hCG

)
−0.740 − 1.552 × log2

(
dMoMfreeβ−hCG

)
log2(dMoMPAPP−A) −0.842 − 1.782 × log2(dMoMPAPP−A)

log2(dMoMPlGF) −0.379 − 0.720 × log2(dMoMPlGF)

log2
(
dMoMfreeβ−hCG

)
, log2(dMoMPAPP−A) −0.783 − 0.867 × log2(dMoMfreeβ−hCG)− 1.260 × log2(dMoMPAPP−A)

log2(dMoMfreeβ−hCG), log2(dMoMPlGF) −0.319 − 1.314 × log2(dMoMfreeβ−hCG)− 0.292 × log2(dMoMPlGF)

log2(dMoMPAPP−A), log2(dMoMPlGF) −0.381 − 1.697 × log2(dMoMPAPP−A)− 0.075 × log2(dMoMPlGF)

log2(dMoMfreeβ−hCG), log2(dMoMPAPP−A), log2(dMoMPlGF)
−0.283 − 0.763 × log2(dMoMfreeβ−hCG)− 1.338 × log2(dMoMPAPP−A) +

0.0215 × log2(dMoMPlGF)
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Figure 4. Receiver operating characteristic curves of free β-hCG, PAPP-A, and PlGF proteins in
the classification of recurrent pregnancy loss. ROC curves were calculated using logistic regression
analysis for log2 dMoM values of free β-hCG (A–C), PAPP-A (D–F), and PlGF (G–I) across the
entire gestational age range (A,D,G), between 6 and 9 gestational weeks (B,E,H), and between 9
and 13 gestational weeks (C,F,I). The average ROC curves were obtained by averaging sensitivities
at different false-positive rate values. Areas between the average TPR ± 1 standard deviation
are also shown. Area under the curve, AUC; base two logarithm of daily multiple of medians,
log2 dMoM; human chorionic gonadotropin free beta-subunit, free β-hCG; Placental growth factor,
PlGF; pregnancy-associated plasma protein A, PAPP-A; receiver operating characteristic curve, ROC;
true-positive rate, TPR.
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Figure 5. Receiver operating characteristic curves of protein combinations in the classification
of recurrent pregnancy loss. ROC curves were calculated using logistic regression analysis for
log2 dMoM values of different biomarker protein combinations in the whole gestational age range:
free β-hCG and PAPP-A (A), free β-hCG and PlGF (B), PAPP-A and PlGF (C), as well as free β-hCG,
PAPP-A, and PlGF (D). The average ROC curves were obtained by averaging sensitivities at different
false-positive rate values. Areas between the average TPR ± 1 standard deviation are also shown.
Area under the curve, AUC; base two logarithm of daily multiple of medians, log2 dMoM; human
chorionic gonadotropin free beta-subunit, free β-hCG; placental growth factor, PlGF; pregnancy-
associated plasma protein A, PAPP-A; receiver operating characteristic curve, ROC; true-positive
rate, TPR.

3. Discussion
3.1. Principal Findings of the Study

(1) We corroborated earlier findings that serum concentration of free β-hCG declines
after an initial increase, while the concentration of PAPP-A and PlGF monotonically in-
creases with gestational age in the first trimester. (2) Maternal serum concentrations and
gestational age-specific dMoMs of all three proteins were lower in RPL compared to con-
trols. (3) The highest discriminative value was found for PAPP-A dMoM, both as a single
analyte and in combination with other proteins within the entire gestational age range.
(4) Serum concentrations and dMoMs of free β-hCG, PAPP-A, and PlGF had a larger dif-
ference between cases and controls between 9 and 13 weeks of gestation. (5) Within this
period, all three proteins had excellent classifier properties for RPL.

3.2. Placenta-Specific Proteins

The placenta has a key role in maintaining pregnancy and supporting the developing
fetus in many ways, for example, by providing nutrition, gas, and waste exchange, as well
as hormonal and immunological regulation [90–93]. The failure of placental functions has
a central role in the pathogenesis of many pregnancy complications such as preeclamp-
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sia [77,86,94–100], miscarriage [77–83], and RPL [83,101–103]. Therefore, the non-invasive
monitoring of placental functions is of major importance in the early detection and predic-
tion of these diseases. Since the early attempts of pioneers in this field in the 1960s and
1970s [104], placental functions have been evaluated by measuring placental proteins in ma-
ternal circulation. By the meticulous work of Dr. Hans Bohn and his peers, several dozens
of high-abundance proteins were purified from the placenta, and antisera were raised
against them, which enabled the construction of immunoassays for their measurement in
circulation [104]. Of importance, due to recent technological developments, proteomics
technologies have enabled the parallel investigation of thousands of proteins in the placenta
and their entering into maternal blood. Indeed, the Human Protein Atlas shows that 64%
(n = 13,003) of all human proteins (n = 20,162) are expressed in the placenta [105], and a
lot of them are secreted into the maternal circulation as hormones, growth factors, and
immune and other proteins that play a major role in the resetting of the maternal metabolic
and immune homeostasis [104,106–112].

Many of these proteins are specific for the placenta, and thus, they are of paramount
importance for the specific monitoring of placental functions in the maternal blood, similar
to liquid biopsy of tumors [113–116]. A set of placenta-specific proteins was recently defined
as proteins encoded by predominantly placenta-expressed genes by Than et al. [86] and Szi-
lagyi et al. [85]. Our previous results confirmed that the impairment of placental functions
is usually associated with the altered expression of placenta-specific proteins [104,117–125].
Therefore, assaying maternal blood for these placenta-specific proteins may provide infor-
mation about the actual condition of the placenta in pregnancy complications (Figure 6).
Of these 164 placenta-specific proteins, here, we examined free β-hCG, PAPP-A, and PlGF
since these have already been used in clinical practice for the screening of preeclampsia
and fetal trisomies [126–138].
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3.3. Biomarker Proteins in Miscarriage and RPL

HCG is composed of two subunits (α and β) from which β-hCG is placenta-specific.
HCG has a central role in the establishment and maintenance of pregnancy by many means,
including the stimulation of progesterone production by the corpus luteum [139]. This
is the earliest detectable marker of pregnancy [140], and the most often studied protein
in the context of the prediction of miscarriage according to the systematic review and
meta-analysis by Pillai et al. [141]. However, Pillai et al. also showed that β-hCG has
poor sensitivity but high specificity for miscarriage [141]. Of interest, maternal serum
concentrations of hCG or β-hCG were found to be reduced in RPL [61–65,67,68].

PAPP-A is also a placenta-specific protein, which has metalloproteinase activity and
cleaves insulin-like growth factor-binding protein (IGFBP-4 and IGFBP-5), resulting in
the release of bound IGF [142–146]. Pillai et al. reported that PAPP-A has high specificity
but poor sensitivity for the prediction of miscarriage [141]. Interestingly, PAPP-A mRNA
and protein expression are reduced in decidual cells in RPL [147]. However, contradicting
results have been published for maternal blood, as slightly increased maternal serum
PAPP-A levels were measured with ELISA in the first trimester in RPL [67], while the
proteomic discovery study of maternal serum did not find PAPP-A among differentially
expressed proteins in RPL [61].

PlGF is a member of the vascular endothelial growth factor family (VEGF), and by
stimulating cell proliferation and migration, it plays an important role in angiogenesis
as well as endothelial and tumor cell growth [142,148]. PlGF is also a predominantly
placenta-expressed protein, but it is also expressed in the thyroid gland, uterine cervix,
uterine, fallopian tube, and other tissues [105,149,150]. At the maternal–fetal interface,
PlGF regulates decidual vascularization and angiogenesis in early human pregnancy [151],
a process that is altered in different types of miscarriages [152]. However, Plaisier et al.
found no significant differences in PlGF expression in the decidua in miscarriage [153].
Of note, maternal serum PlGF concentration was decreased in miscarriages or threatened
abortions [154–157]; however, in the proteomic discovery study of Cui et al., PlGF was not
among the differentially expressed proteins in RPL [61]. This is consistent with conflicting
results of vascular endothelial growth factor expression in recurrent miscarriage [158].

3.4. Concentration Changes of Biomarker Proteins in RPL

Due to the failing function of the placenta in miscarriages, we expected to detect a
decrease in placental protein concentrations in RPL. It was thus not surprising that we
found decreased serum concentrations of free β-hCG, PAPP-A, and PlGF when assessing
the 6–13 gestational week range. It is known that the concentration of individual placental
proteins changes with gestational age in the maternal circulation; therefore, their serum con-
centration values should be compared to gestational age-matched normal values [159–164].
To achieve more accurate comparisons, here, we also performed the normalization of
concentration values to population-based standard medians obtained from large patient
populations. After the normalization and generation of dMoM values, we observed more
significant differences between the groups for PAPP-A and PlGF dMoMs than for their
concentrations. In the case of free β-hCG, the effect of normalization made the differences
less, but still significant, between the groups. This is certainly due to the wide variation
of individual hCG levels in the maternal serum and therefore difficulties in normaliza-
tion. For example, total hCG values vary by 704-fold in the 5th week of gestation (from
1.86 to 1308 ng/mL) and by 11-fold between the 11th and 13th week of gestation (from
1440 to 15,318 ng/mL [165]. In addition, there are also large differences in hCG levels
according to glycosylation status and various isoforms where low hyperglycosylated hCG
concentrations are associated with pregnancy failure [166,167].

Since there is a rapid placental development in the first trimester which can be divided
into different stages based on various parameters, including placental vascularization [168],
trophoblast invasion [169], and others, we took this into account in our further analyses to
achieve more accurate gestational age-specific assessments. Importantly, the establishment
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of placental circulation is limited by the end of the second month to protect the developing
embryo and placenta from excessive oxygen exposure during organogenesis, and then
placental circulation develops starting from the third month, coinciding with the establish-
ment of the arterial inflow into the intervillous space, typically occurring between 8 and
10 weeks [168,170].

Since these changes must significantly affect the production and transport of these
three placental proteins into the maternal circulation, we assessed these proteins in two
gestational age sub-ranges, between 6 and 9 weeks and between 9 and 13 weeks. We
found that differences in the first range were smaller, while in the second range, they were
larger for all biomarker proteins. This is in accord with the lower production and transport
of these proteins into the maternal circulation even in normal healthy pregnancies at
6–9 weeks of gestation when placental circulation is not yet established, which leads to
smaller differences between cases and controls in this gestational age range.

Nevertheless, it is striking that dMoMs of free β-hCG and PAPP-A were lower already
in early RPL cases, while the difference in PlGF dMoM was found only in late first trimester
RPL cases. Therefore, the decreased levels of free β-hCG and PAPP-A in early RPL cases
may indicate the deterioration of their fundamental placental functions in early RPL,
while decreased PlGF level in late RPL cases may indicate that PlGF functions, including
angiogenesis, are affected only in pregnancies failing after the second month when placental
angiogenesis starts [168]. This phenomenon was also seen in cases of fetal death and
stillbirth [171,172], possibly associated with placental bed disorders [173–175]. Our data
suggest that the pathologic pathways in RPL include the failure of placental functions
already in early RPL and the failure of angiogenesis in late RPL.

The biomarker classifier properties of these three proteins, characterized by their
AUC and sensitivity (TPR) values, were closely associated with the extent of changes in
their serum concentrations and dMoMs in RPL. For the entire gestational age period, the
discriminative power of free β-hCG and PAPP-A, alone or in combination, was found to
be much better than that of PlGF. Of interest, the best discriminatory values were found
for PAPP-A, which was a novel result compared to data in the literature [61,67]. For
the 6–9-week range, the classifier properties of PAPP-A were good and modest of free
β-hCG, while for the 9–13-week range, all proteins had excellent biomarker properties. The
clinical relevance of these investigated proteins between 9 and 13 weeks of gestation is
also underscored by their positive and negative likelihood ratios, which exceeded 10 for
positive test results and were below 0.2 for negative results, respectively.

3.5. Strengths and Limitations of the Study

The strengths of the study are: (1) strict clinical definitions and homogenous pa-
tient groups; (2) standardized sample collection protocol based on international criteria;
(3) sample storage in a biobank that meets industrial standards; (4) sensitive, reliable, and
robust immunoassay analysis using adjusted ELISA methodology; (5) data normalized to
large population standards; and (6) reliable analytical methods.

The limitations of the study are: (1) the relatively modest number of cases in the RPL
group; (2) the use of international standards for gestational age-specific mean placental pro-
tein concentrations due to the current non-availability of similar standards in Hungary, and
(3) the collection of blood samples at the time of surgery when pregnancies already failed.

Since all proteins had lower serum concentrations in RPL than in controls while
blood samples were collected after the embryos died in utero, the question may arise that
there is a bias due to embryonic death, which may lead to lower concentrations of these
analytes. However, several lines of evidence have previously shown that: (1) placentas
are still viable, and placental parenchyma is unperturbed shortly after miscarriage or fetal
demise due to persistent maternal perfusion [176]; (2) the placenta and trophoblasts can
even persist without a fetus in molar pregnancies or choriocarcinoma, for which elevated
hCG level is a good biomarker [177,178]; (3) the placental proteome contains two-times
more upregulated than downregulated proteins in RPL [101]; and (4) pregnancies ending
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in miscarriage have smaller trophoblast volumes and reduced trophoblast growth than
normal pregnancies [179].

Therefore, our results may rather point to the failed trophoblastic and placental
development and functions in RPL than the effect of embryonic death, suggesting that
similar changes may be seen in the levels of these biomarkers before embryonic death
occurs. In this regard, it would be essential to evaluate the predictive properties of these
biomarkers on blood samples collected before pregnancies failed; however, this was not
possible in our current study. Therefore, future, prospective studies of RPL patients would
need to investigate whether placental biomarkers also have predictive power for RPL
before pregnancies fail.

3.6. Implications and Future Directions

There are several research and clinical implications of our study, which stem from its
strengths and limitations. Clinical implications: While β -hCG has long been recognized as a
marker for miscarriage [180], our findings suggest that PAPP-A may be better biomarker for
recurrent pregnancy loss. Moreover, our study highlights that the combination of biomark-
ers may enhance the sensitivity and specificity of diagnostic methods over the utilization
of individual biomarkers. As a broader clinical implication, our study underscores the
significance of assessing placenta-specific proteins as potential diagnostic markers for RPL.

Research implications: Here, we investigated—in a targeted fashion—already known
placental biomarker proteins which did not allow the exploration of potentially even better
biomarkers or their combinations. Therefore, the incorporation of non-targeted, high-
dimensional proteomics methods is encouraged for the analysis of molecular pathways
of recurrent pregnancy loss and their potentially novel biomarkers. Indeed, there has
been an increasing amount of data showing the involvement of immune pathways in the
etiology of RPL [181,182]. In addition, larger case-control and cohort studies are needed to:
(1) validate these biomarkers as diagnostic or predictive tools in recurrent pregnancy loss;
(2) explore their value in different stages of pregnancy (i.e., between 6 and 9 weeks or
between 9 and 13 weeks); (3) investigate the generalizability of these findings in different
patient populations that various ethnic backgrounds.

4. Materials and Methods
4.1. Study Groups, Clinical Definitions, and Sample Collection

Blood samples were collected from subjects enrolled in two study groups: (1) women
who had recurrent pregnancy loss (RPL, n = 14), and (2) as a control group, women who
underwent elective termination of pregnancy at their request for non-medical reasons
(n = 30). Samples were collected at the Maternity Private Clinic of Obstetrics and Gynecol-
ogy (Budapest, Hungary) at the time of surgery.

Gestational age was determined by ultrasound scans and samples were collected
within the 6–13 weeks gestational age range. Exclusion criteria for both groups included
twin pregnancies or pregnancies with congenital or chromosomal abnormalities. All
women in our cohort were included in the RPL group (n = 14) if they had two or more failed
clinical pregnancies according to the definition of the American Society for Reproductive
Medicine [22]. RPL cases were recruited from patients with a nonviable intrauterine
pregnancy detected by ultrasound (gestational sac containing an embryo or fetus without
fetal heart activity within the first 12 6/7 weeks of gestation according to the American
College of Obstetricians and Gynecologists Practice Bulletin [183]). Previously failed first
trimester pregnancies were complete/incomplete spontaneous or missed abortions. At
least two controls were matched to each case (n = 30) within one week of gestation for
comparability. Table 1 contains clinical and demographic information for the study groups.

Blood samples were immediately processed after sample collection. Serum was
collected following blood centrifugation for 10 min at 4 ◦C, aliquoted, and stored at −80 ◦C.
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4.2. Immunoassays

Free β-hCG, PAPP-A, and PlGF concentrations in the maternal serum were measured
using a BRAHMS plus KRYPTOR Analyzer (Thermo Fisher Scientific, Waltham, MA,
USA). The measurement principle was based on the TRACE™ (Time-Resolved Amplified
Cryptate Emission) technology, which uses the transfer of non-radioactive energy from a
donor (cage structure with a europium ion in the center (cryptate)) to an acceptor which
is part of a chemically modified photo-receptive algal protein (XL665). Both cryptate and
XL665 were conjugated to monoclonal antibodies targeted to different epitopes on the
analytes to be measured. The proximity of the donor and acceptor, when they are part
of an immunocomplex, and the spectral overlap between donor emission and acceptor
absorption spectra intensify the fluorescent signal of the donor and extend the life span of
the acceptor signal, permitting the measurement of temporally delayed fluorescence.

The sensitivity of the assays for free β-hCG, PAPP-A, and PlGF was 0.16 IU/L,
0.004 IU/L, and 3.6 pg/mL, respectively. The intra (inter)-assay relative standard de-
viation for free β-hCG, PAPP-A, and PlGF was ≤4% (≤5%), ≤2% (≤4%), and ≤5%
(≤7%), respectively.

4.3. Data Analysis

The daily multiple of median (dMoM) values of free β-hCG, PAPP-A, and PlGF were
calculated. Gestational age-specific data normalization was carried out using the daily
median curves generated from data kindly provided by Thermo Fisher Scientific, which
were obtained using their KRYPTOR system from 222,475 patients for free β-hCG and
PAPP-A, and 38,002 patients for PlGF. According to Thermo Fisher Scientific data, our
daily free β-hCG and PAPP-A dMoM values were calculated for the gestational age range
of 49–97 days (7–14 weeks) [87], while daily PlGF dMoM values were calculated for the
gestational age range of 56–98 days (8–14 weeks) [88]. Only data within these ranges were
used for the statistical calculations (free β-hCG and PAPP-A, nRPL = 13, nControl = 25; PlGF,
nRPL = 12, nControl = 20). Since we did not have data for maternal weights, 69 kg was used
in the equations as a general maternal weight [88].

To obtain classifiers based on free β-hCG, PAPP-A, and PlGF dMoM values, logistic
regression models were trained using log2-transformed dMoM data, and the discriminative
values of particular proteins and their combinations were investigated. Log2-transformed
dMoM values were normalized for zero mean and unit standard deviation. A series of
five-fold cross-validation procedures was performed with 50 random five-fold splits.

We also split samples into two subgroups, those with gestational age <9 and ≥9 weeks,
respectively, resulting in the following per-protein sample sizes: for free β-hCG and
PAPP-A, nRPL = 8 (5), nControl = 13 (12) for gestational ages <9 (≥9) weeks; for PlGF,
nRPL = 7 (5), nControl = 8 (12) for gestational ages <9 (≥9) weeks, respectively. The same
evaluation procedure was performed on the classifier trained on the whole data set and on
two separate classifiers trained on the two subgroups (gestational age <9 and ≥9 weeks).

ROC curves were calculated for each protein separately as well as for all types of their
combinations. The average ROC curve and the AUC values were determined from the
50 runs of cross-validation. Following clinical standards, we calculated the sensitivities
(true-positive rates, TPRs), positive likelihood ratios, and negative likelihood ratios at 5%
and 10% false-positive rates (FPRs) [184].

5. Conclusions

Our results show that free β-hCG and PAPP-A are good biomarkers for early RPL
cases, and their discriminative power is even better for late RPL cases, while PlGF is a good
marker for late RPL. The decreased maternal concentrations of these proteins indicate the
deterioration of placental functions in RPL along with decreased placental angiogenesis in
late RPL. In the future, larger prospective studies are needed for the investigation of whether
these placental proteins also have predictive power for RPL before pregnancies fail.
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Supplementary Materials: The supporting information can be downloaded at: https://www.mdpi.
com/article/10.3390/ijms25031865/s1. Supplementary Figure S1: Tissue-specific mRNA expres-
sion levels for the CGB3, PGF, and PAPPA genes (probes 205387_s_at, 209652_s_at, and 201981_at,
respectively) from the GeneAtlas U133A data set. The data were downloaded from the BioGPS portal
(https://biogps.org, accessed 14 December 2023). Error bars represent 95% confidence intervals.
Supplementary Table S1: Daily median values of PAPP-A, β-hCG, and PlGF.
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