Bone Marrow Adipose Tissue Is Not Required for Reconstitution of the Immune System Following Irradiation in Male Mice
Abstract
:1. Introduction
2. Results
2.1. Immune Cell Reconstitution
2.2. Body Composition and Blood Glucose Levels
2.3. Bone Microarchitecture
2.4. Static and Dynamic Histomorphometry
3. Discussion
4. Materials and Methods
4.1. Animals
4.2. Experimental Protocol
4.3. Densitometry
4.4. Micro-Computed Tomography
4.5. Histomorphometry
4.6. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Justesen, J.; Stenderup, K.; Ebbesen, E.N.; Mosekilde, L.; Steiniche, T.; Kassem, M. Adipocyte tissue volume in bone marrow is increased with aging and in patients with osteoporosis. Biogerontology 2001, 2, 165–171. [Google Scholar] [CrossRef]
- Menagh, P.J.; Turner, R.T.; Jump, D.B.; Wong, C.P.; Lowry, M.B.; Yakar, S.; Rosen, C.J.; Iwaniec, U.T. Growth hormone regulates the balance between bone formation and bone marrow adiposity. J. Bone Miner Res. 2010, 25, 757–768. [Google Scholar] [CrossRef] [PubMed]
- Lecka-Czernik, B. Marrow fat metabolism is linked to the systemic energy metabolism. Bone 2012, 50, 534–539. [Google Scholar] [CrossRef] [PubMed]
- Craft, C.S.; Scheller, E.L. Evolution of the Marrow Adipose Tissue Microenvironment. Calcif. Tissue Int. 2017, 100, 461–475. [Google Scholar] [CrossRef] [PubMed]
- Scheller, E.L.; Burr, A.A.; MacDougald, O.A.; Cawthorn, W.P. Inside out: Bone marrow adipose tissue as a source of circulating adiponectin. Adipocyte 2016, 5, 251–269. [Google Scholar] [CrossRef] [PubMed]
- Suchacki, K.J.; Cawthorn, W.P.; Rosen, C.J. Bone marrow adipose tissue: Formation, function and regulation. Curr. Opin. Pharmacol. 2016, 28, 50–56. [Google Scholar] [CrossRef]
- Sulston, R.J.; Cawthorn, W.P. Bone marrow adipose tissue as an endocrine organ: Close to the bone? Horm. Mol. Biol. Clin. Investig. 2016, 28, 21–38. [Google Scholar] [CrossRef]
- Lecka-Czernik, B.; Stechschulte, L.A. Bone and fat: A relationship of different shades. Arch. Biochem. Biophys. 2014, 561, 124–129. [Google Scholar] [CrossRef]
- Ghali, O.; Al Rassy, N.; Hardouin, P.; Chauveau, C. Increased Bone Marrow Adiposity in a Context of Energy Deficit: The Tip of the Iceberg? Front. Endocrinol. 2016, 7, 125. [Google Scholar] [CrossRef]
- Hamrick, M.W.; McGee-Lawrence, M.E.; Frechette, D.M. Fatty Infiltration of Skeletal Muscle: Mechanisms and Comparisons with Bone Marrow Adiposity. Front. Endocrinol. 2016, 7, 69. [Google Scholar] [CrossRef]
- Morris, E.V.; Edwards, C.M. Bone Marrow Adipose Tissue: A New Player in Cancer Metastasis to Bone. Front. Endocrinol. 2016, 7, 90. [Google Scholar] [CrossRef]
- Kim, T.Y.; Schafer, A.L. Diabetes and Bone Marrow Adiposity. Curr. Osteoporos. Rep. 2016, 14, 337–344. [Google Scholar] [CrossRef]
- Pagnotti, G.M.; Styner, M. Exercise Regulation of Marrow Adipose Tissue. Front. Endocrinol. 2016, 7, 94. [Google Scholar] [CrossRef]
- Turner, R.T.; Martin, S.A.; Iwaniec, U.T. Metabolic Coupling Between Bone Marrow Adipose Tissue and Hematopoiesis. Curr. Osteoporos. Rep. 2018, 16, 95–104. [Google Scholar] [CrossRef]
- Hartsock, R.J.; Smith, E.B.; Petty, C.S. Normal Variations with Aging of the Amount of Hematopoietic Tissue in Bone Marrow from the Anterior Iliac Crest. A Study Made from 177 Cases of Sudden Death Examined by Necropsy. Am. J. Clin. Pathol. 1965, 43, 326–331. [Google Scholar] [CrossRef]
- Muschler, G.F.; Nitto, H.; Boehm, C.A.; Easley, K.A. Age- and gender-related changes in the cellularity of human bone marrow and the prevalence of osteoblastic progenitors. J. Orthop. Res. 2001, 19, 117–125. [Google Scholar] [CrossRef]
- Huang, J.S.; Mulkern, R.V.; Grinspoon, S. Reduced intravertebral bone marrow fat in HIV-infected men. AIDS 2002, 16, 1265–1269. [Google Scholar] [CrossRef] [PubMed]
- Osgood, E.; Muddassir, S.; Jaju, M.; Moser, R.; Farid, F.; Mewada, N. Starvation marrow—Gelatinous transformation of bone marrow. J. Community Hosp. Intern. Med. Perspect. 2014, 4, 24811. [Google Scholar] [CrossRef] [PubMed]
- Saucillo, D.C.; Gerriets, V.A.; Sheng, J.; Rathmell, J.C.; Maciver, N.J. Leptin metabolically licenses T cells for activation to link nutrition and immunity. J. Immunol. 2014, 192, 136–144. [Google Scholar] [CrossRef] [PubMed]
- Miettinen, M.; Lasota, J. KIT (CD117): A review on expression in normal and neoplastic tissues, and mutations and their clinicopathologic correlation. Appl. Immunohistochem. Mol. Morphol. 2005, 13, 205–220. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Bowers, E.; Zhu, J.; Yu, H.; Hardij, J.; Bagchi, D.P.; Mori, H.; Lewis, K.T.; Granger, K.; Schill, R.L.; et al. Lipolysis of bone marrow adipocytes is required to fuel bone and the marrow niche during energy deficits. eLife 2022, 11, e78496. [Google Scholar] [CrossRef]
- Martin, R.B.; Zissimos, S.L. Relationships between marrow fat and bone turnover in ovariectomized and intact rats. Bone 1991, 12, 123–131. [Google Scholar] [CrossRef] [PubMed]
- Morita, Y.; Iwamoto, I.; Mizuma, N.; Kuwahata, T.; Matsuo, T.; Yoshinaga, M.; Douchi, T. Precedence of the shift of body-fat distribution over the change in body composition after menopause. J. Obstet. Gynaecol. Res. 2006, 32, 513–516. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.Y.; Kim, S.H.; Oh, S.; Sul, O.J.; Lee, H.Y.; Kim, H.J.; Kim, S.Y.; Choi, H.S. Increased fat due to estrogen deficiency induces bone loss by elevating monocyte chemoattractant protein-1 (MCP-1) production. Mol. Cells 2010, 29, 277–282. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Tang, G.Y.; Tang, R.B.; Peng, Y.F.; Li, W. Assessment of bone marrow changes in postmenopausal women with varying bone densities: Magnetic resonance spectroscopy and diffusion magnetic resonance imaging. Chin. Med. J. 2010, 123, 1524–1527. [Google Scholar] [PubMed]
- Martin, R.B.; Chow, B.D.; Lucas, P.A. Bone marrow fat content in relation to bone remodeling and serum chemistry in intact and ovariectomized dogs. Calcif. Tissue Int. 1990, 46, 189–194. [Google Scholar] [CrossRef] [PubMed]
- Sharp, J.C.; Copps, J.C.; Liu, Q.; Ryner, L.N.; Sebastian, R.A.; Zeng, G.Q.; Smith, S.; Niere, J.O.; Tomanek, B.; Sato, M. Analysis of ovariectomy and estrogen effects on body composition in rats by X-ray and magnetic resonance imaging techniques. J. Bone Miner. Res. 2000, 15, 138–146. [Google Scholar] [CrossRef] [PubMed]
- Prockop, D.J. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 1997, 276, 71–74. [Google Scholar] [CrossRef] [PubMed]
- Turner, R.T.; Wong, C.P.; Iwaniec, U.T. Effect of reduced c-Kit signaling on bone marrow adiposity. Anat. Rec. 2011, 294, 1126–1134. [Google Scholar] [CrossRef]
- Iwaniec, U.T.; Turner, R.T. Failure to generate bone marrow adipocytes does not protect mice from ovariectomy-induced osteopenia. Bone 2013, 53, 145–153. [Google Scholar] [CrossRef]
- Keune, J.A.; Wong, C.P.; Branscum, A.J.; Iwaniec, U.T.; Turner, R.T. Bone Marrow Adipose Tissue Deficiency Increases Disuse-Induced Bone Loss in Male Mice. Sci. Rep. 2017, 7, 46325. [Google Scholar] [CrossRef]
- Lotinun, S.; Evans, G.L.; Turner, R.T.; Oursler, M.J. Deletion of membrane-bound steel factor results in osteopenia in mice. J. Bone Miner. Res. 2005, 20, 644–652. [Google Scholar] [CrossRef]
- Deyhle, R.T., Jr.; Wong, C.P.; Martin, S.A.; McDougall, M.Q.; Olson, D.A.; Branscum, A.J.; Menn, S.A.; Iwaniec, U.T.; Hamby, D.M.; Turner, R.T. Maintenance of Near Normal Bone Mass and Architecture in Lethally Irradiated Female Mice following Adoptive Transfer with as few as 750 Purified Hematopoietic Stem Cells. Radiat. Res. 2019, 191, 413–427. [Google Scholar] [CrossRef] [PubMed]
- Reith, A.D.; Rottapel, R.; Giddens, E.; Brady, C.; Forrester, L.; Bernstein, A. W mutant mice with mild or severe developmental defects contain distinct point mutations in the kinase domain of the c-kit receptor. Genes. Dev. 1990, 4, 390–400. [Google Scholar] [CrossRef] [PubMed]
- Brannan, C.I.; Lyman, S.D.; Williams, D.E.; Eisenman, J.; Anderson, D.M.; Cosman, D.; Bedell, M.A.; Jenkins, N.A.; Copeland, N.G. Steel-Dickie mutation encodes a c-kit ligand lacking transmembrane and cytoplasmic domains. Proc. Natl. Acad. Sci. USA 1991, 88, 4671–4674. [Google Scholar] [CrossRef] [PubMed]
- Tratwal, J.; Rojas-Sutterlin, S.; Bataclan, C.; Blum, S.; Naveiras, O. Bone marrow adiposity and the hematopoietic niche: A historical perspective of reciprocity, heterogeneity, and lineage commitment. Best. Pract. Res. Clin. Endocrinol. Metab. 2021, 35, 101564. [Google Scholar] [CrossRef] [PubMed]
- Ofir, N.; Mizrakli, Y.; Greenshpan, Y.; Gepner, Y.; Sharabi, O.; Tsaban, G.; Zelicha, H.; Yaskolka Meir, A.; Ceglarek, U.; Stumvoll, M.; et al. Vertebrae but not femur marrow fat transiently decreases in response to body weight loss in an 18-month randomized control trial. Bone 2023, 171, 116727. [Google Scholar] [CrossRef] [PubMed]
- Huber, F.A.; Singhal, V.; Tuli, S.; Becetti, I.; Lopez Lopez, A.P.; Bouxsein, M.L.; Misra, M.; Bredella, M.A. Two-year Skeletal Effects of Sleeve Gastrectomy in Adolescents with Obesity Assessed with Quantitative CT and MR Spectroscopy. Radiology 2023, 307, e223256. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Rosen, C.J. New Insights into Calorie Restriction Induced Bone Loss. Endocrinol. Metab. 2023, 38, 203–213. [Google Scholar] [CrossRef] [PubMed]
- Turner, R.T.; Wong, C.P.; Fosse, K.M.; Branscum, A.J.; Iwaniec, U.T. Caloric Restriction and Hypothalamic Leptin Gene Therapy Have Differential Effects on Energy Partitioning in Adult Female Rats. Int. J. Mol. Sci. 2021, 22, 6789. [Google Scholar] [CrossRef]
- Lindenmaier, L.B.; Philbrick, K.A.; Branscum, A.J.; Kalra, S.P.; Turner, R.T.; Iwaniec, U.T. Hypothalamic Leptin Gene Therapy Reduces Bone Marrow Adiposity in ob/ob Mice Fed Regular and High-Fat Diets. Front. Endocrinol. 2016, 7, 110. [Google Scholar] [CrossRef] [PubMed]
- Turner, R.T.; Iwaniec, U.T.; Wong, C.P.; Lindenmaier, L.B.; Wagner, L.A.; Branscum, A.J.; Menn, S.A.; Taylor, J.; Zhang, Y.; Wu, H.; et al. Acute exposure to high dose gamma-radiation results in transient activation of bone lining cells. Bone 2013, 57, 164–173. [Google Scholar] [CrossRef] [PubMed]
- Turner, R.T.; Branscum, A.J.; Wong, C.P.; Iwaniec, U.T.; Morey-Holton, E. Studies in microgravity, simulated microgravity and gravity do not support a gravitostat. J. Endocrinol. 2020, 247, 273–282. [Google Scholar] [CrossRef] [PubMed]
- Huss, R.; Moosmann, S. The co-expression of CD117 (c-kit) and osteocalcin in activated bone marrow stem cells in different diseases. Br. J. Haematol. 2002, 118, 305–312. [Google Scholar] [CrossRef]
- He, D.D.; Tang, X.T.; Dong, W.; Cui, G.; Peng, G.; Yin, X.; Chen, Y.; Jing, N.; Zhou, B.O. C-KIT Expression Distinguishes Fetal from Postnatal Skeletal Progenitors. Stem Cell Rep. 2020, 14, 614–630. [Google Scholar] [CrossRef]
- El Khassawna, T.; Serra, A.; Bucher, C.H.; Petersen, A.; Schlundt, C.; Konnecke, I.; Malhan, D.; Wendler, S.; Schell, H.; Volk, H.D.; et al. T Lymphocytes Influence the Mineralization Process of Bone. Front. Immunol. 2017, 8, 562. [Google Scholar] [CrossRef]
- Fischer, V.; Haffner-Luntzer, M. Interaction between bone and immune cells: Implications for postmenopausal osteoporosis. Semin. Cell Dev. Biol. 2022, 123, 14–21. [Google Scholar] [CrossRef]
- Liu, J.; Divoux, A.; Sun, J.; Zhang, J.; Clement, K.; Glickman, J.N.; Sukhova, G.K.; Wolters, P.J.; Du, J.; Gorgun, C.Z.; et al. Genetic deficiency and pharmacological stabilization of mast cells reduce diet-induced obesity and diabetes in mice. Nat. Med. 2009, 15, 940–945. [Google Scholar] [CrossRef]
- Turner, R.T.; Iwaniec, U.T.; Marley, K.; Sibonga, J.D. The role of mast cells in parathyroid bone disease. J. Bone Miner. Res. 2010, 25, 1637–1649. [Google Scholar] [CrossRef]
- Martin, S.A.; Philbrick, K.A.; Wong, C.P.; Olson, D.A.; Branscum, A.J.; Jump, D.B.; Marik, C.K.; DenHerder, J.M.; Sargent, J.L.; Turner, R.T.; et al. Thermoneutral housing attenuates premature cancellous bone loss in male C57BL/6J mice. Endocr. Connect. 2019, 8, 1455–1467. [Google Scholar] [CrossRef]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate—A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. B 1995, 57, 289–300. [Google Scholar] [CrossRef]
WT HSC → WT | WT HSC → KitW/W-v | |
---|---|---|
Body weight (g) | 26.6 ± 0.5 | 24.3 ± 0.6 |
Abdominal white adipose tissue (g) | 0.79 ± 0.07 | 0.50 ± 0.05 a |
Spleen weight (g) | 0.059 ± 0.002 | 0.057 ± 0.003 |
Seminal vesicle weight (g) | 0.197 ± 0.013 | 0.145 ± 0.009 a |
Adrenal weight (g) | 0.005 ± 0.000 | 0.006 ± 0.001 |
Blood glucose (mg/dL) | 143 ± 8 | 137 ± 10 |
WT HSC → WT | WT HSC → KitW/W-v | |
---|---|---|
Total humerus | ||
Length (mm) | 12.5 ± 0.1 | 12.7 ± 0.1 |
Bone volume (mm3) | 10.0 ± 0.2 | 9.6 ± 0.1 |
Midshaft humerus (cortical bone) | ||
Cross-sectional volume (mm3) | 0.19 ± 0.00 | 0.18 ± 0.00 |
Cortical volume (mm3) | 0.13 ± 0.00 | 0.12 ± 0.00 |
Marrow volume (mm3) | 0.06 ± 0.00 | 0.06 ± 0.00 |
Cortical thickness (µm) | 219 ± 3 | 211 ± 1 |
Ipolar (mm4) | 0.09 ± 0.00 | 0.08 ± 0.00 |
Distal humerus epiphysis (cancellous bone) | ||
Bone volume/tissue volume (%) | 33.9 ± 0.9 | 32.3 ± 1.0 |
Connectivity density (1/mm3) | 115.9 ± 8.3 | 116.6 ± 11.5 |
Trabecular number (1/mm) | 9.0 ± 0.6 | 8.2 ± 0.4 |
Trabecular thickness (µm) | 64 ± 1 | 63 ± 1 |
Trabecular spacing (µm) | 123 ± 3 | 130 ± 5 |
WT HSC → WT | WT HSC → KitW/W-v | |
---|---|---|
Total lumbar vertebra | ||
Bone volume (mm3) | 5.1 ± 0.1 | 5.0 ± 0.1 |
Vertebral body (cancellous bone) | ||
Bone volume/tissue volume (%) | 18.2 ± 0.3 | 17.2 ± 0.5 |
Connectivity density (1/mm3) | 118.7 ± 4.6 | 124.7 ± 5.9 |
Trabecular number (1/mm) | 4.2 ± 0.1 | 4.2 ± 0.1 |
Trabecular thickness (µm) | 48 ± 1 | 46 ± 1 a |
Trabecular spacing (µm) | 230 ± 3 | 236 ± 3 |
WT HSC → WT | WT HSC → KitW/W-v | |
---|---|---|
Densitometry | ||
Bone area (cm2) | 0.44 ± 0.00 | 0.42 ± 0.01 |
BMC (g) | 0.022 ± 0.000 | 0.020 ± 0.000 |
BMD (g/cm2) | 0.050 ± 0.001 | 0.048 ± 0.001 |
microComputed Tomography | ||
Total femur | ||
Length (mm) | 15.3 ± 0.1 | 15.4 ± 0.1 |
Bone volume (mm3) | 18.98 ± 0.29 | 18.44 ± 0.30 |
Midshaft femur (cortical bone) | ||
Cross-sectional volume (mm3) | 0.35 ± 0.00 | 0.32 ± 0.01 a |
Cortical volume (mm3) | 0.19 ± 0.00 | 0.18 ± 0.002 a |
Marrow volume (mm3) | 0.16 ± 0.00 | 0.14 ± 0.004 a |
Cortical thickness (µm) | 210 ± 2 | 213 ± 2 |
Ipolar (mm4) | 0.27 ± 0.01 | 0.23 ± 0.01 a |
Distal femur metaphysis (cancellous bone) | ||
Bone volume/tissue volume (%) | 8.5 ± 0.6 | 10.0 ± 0.7 |
Connectivity density (1/mm3) | 55.0 ± 4.3 | 93.0 ± 9.3 a |
Trabecular number (1/mm) | 4.1 ± 0.1 | 4.4 ± 0.1 |
Trabecular thickness (µm) | 47 ± 1 | 45 ± 1 |
Trabecular spacing (µm) | 253 ± 5 | 239 ± 8 |
Distal femur epiphysis (cancellous bone) | ||
Bone volume/tissue volume (%) | 26.0 ± 0.5 | 26.3 ± 0.5 |
Connectivity density (1/mm3) | 141.1 ± 5.2 | 114.0 ± 5.3 a |
Trabecular number (1/mm) | 5.5 ± 0.1 | 5.4 ± 0.1 |
Trabecular thickness (µm) | 57 ± 0 | 58 ± 1 |
Trabecular spacing (µm) | 180 ± 4 | 190 ± 4 |
WT HSC → WT | WT HSC → KitW/W-v | |
---|---|---|
Bone area/tissue area (%) | 8.2 ± 0.5 | 8.7 ± 1.2 |
Mineralizing perimeter/bone perimeter (%) | 6.5 ± 1.0 | 6.0 ± 1.4 |
Mineral apposition rate (µm/d) | 1.07 ± 0.10 | 1.16 ± 0.08 |
Bone formation rate/bone perimeter (μm3/μm2/y) | 27.0 ± 5.8 | 28.2 ± 8.3 |
Bone formation rate/bone volume (%/y) | 144.1 ± 31.5 | 141.6 ± 36.5 |
Bone formation rate/tissue volume (%/y) | 11.8 ± 2.8 | 13.7 ± 4.2 |
Osteoclast perimeter/bone perimeter (%) | 6.5 ± 1.5 | 6.1 ± 1.6 |
Osteoblast perimeter/bone perimeter (%) | 7.7 ± 1.5 | 11.1 ± 2.1 |
Adipocyte area/tissue area (%) | 8.9 ± 1.1 | 0.2 ± 0.1 a |
Adipocyte density (#/mm2) | 92.5 ± 10.0 | 1.8 ± 1.2 a |
Adipocyte size (µm2) | 943 ± 34 | 927 ± 334 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Keune, J.A.; Wong, C.P.; Branscum, A.J.; Menn, S.A.; Iwaniec, U.T.; Turner, R.T. Bone Marrow Adipose Tissue Is Not Required for Reconstitution of the Immune System Following Irradiation in Male Mice. Int. J. Mol. Sci. 2024, 25, 1980. https://doi.org/10.3390/ijms25041980
Keune JA, Wong CP, Branscum AJ, Menn SA, Iwaniec UT, Turner RT. Bone Marrow Adipose Tissue Is Not Required for Reconstitution of the Immune System Following Irradiation in Male Mice. International Journal of Molecular Sciences. 2024; 25(4):1980. https://doi.org/10.3390/ijms25041980
Chicago/Turabian StyleKeune, Jessica A., Carmen P. Wong, Adam J. Branscum, Scott A. Menn, Urszula T. Iwaniec, and Russell T. Turner. 2024. "Bone Marrow Adipose Tissue Is Not Required for Reconstitution of the Immune System Following Irradiation in Male Mice" International Journal of Molecular Sciences 25, no. 4: 1980. https://doi.org/10.3390/ijms25041980
APA StyleKeune, J. A., Wong, C. P., Branscum, A. J., Menn, S. A., Iwaniec, U. T., & Turner, R. T. (2024). Bone Marrow Adipose Tissue Is Not Required for Reconstitution of the Immune System Following Irradiation in Male Mice. International Journal of Molecular Sciences, 25(4), 1980. https://doi.org/10.3390/ijms25041980