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Analytical mass spectrometry applies irreplaceable mass spectrometric (MS) methods
to analytical chemistry and chemical analysis, among other areas of analytical science. There
are ongoing debates [1–3] on the definitions of analytical chemistry. These definitions by
Zolotov (2021) [1] and Adams and Adriaens (2021) [3], labeled (1) and (2) below, respectively,
shaped the research tasks of the latter field:

(1) “Analytical Chemistry is the science creating and developing the general method-
ology, methods, and means of the determination of the chemical composition and chemical
structure of substances and developing methods of chemical analysis of particular material
samples [1]”.

(2) “Analytical chemistry is the autonomous and fundamental scientific field involved
with the development of methods for the complete or partial compositional and structural
description in space and/or time of specific, natural, or man-made material objects or
representative portions thereof, in order to relate this information with properties or
functional or other characteristics of the objects. While its name historically refers to its
origins in chemistry, analytical chemistry now applies any chemical, physical, biological, or
other principles and methods to pursue its specific objectives. The discipline feeds and is
connected to chemical analysis, a related applied scientific field, which is involved with
various applications of analytical chemistry for either fundamental research in various
scientific disciplines, or for technological or societal applications [3]”.

Therefore, analytical chemistry uses measurands of chemical analysis, thus detailing
the analyte amount, its molecular properties, 3D molecular conformation, and electronic
structure via instrumental methods. From the perspective of the themes of the Special Issue,
analytical mass spectrometry uses measurable variables of the mass spectrum of chemicals.
Methodologically, the field elaborates not only MS instrumentation and techniques but also
methods for the data processing of measurands. The latter approaches are implemented
into so-called omics methods, thus gaining crucial knowledge of biological systems. Fields
of bioinformatics utilize these bioanalytical tools [3–5].

Among the various MS methods, soft ionization methods have become the gold
standard in analytical practice [6,7]. They exhibit superior instrumental features and per-
formances, thus showing (a) ultra-high accuracy, precision, reproducibility, sensitivity,
reliability, selectivity, and specificity; (ii) capability of low- and high-molecular weight
analyte (10–100 kDa) analyses; (iii) low concentration limits chemical of detection and quan-
titation within the framework of attomole to fmol levels [8,9]; and (iv) ultra-high resolving
power, determining the error of mass-to-charge (m/z) measurement ~1 ppm [10–13], respec-
tively. These performances are achieved via high-resolution mass analyzers, in particular
Orbitrap [11–14] and Fourier transform (FT) ion cyclotron resonance (ICR) [14–17]. The
former analyzer was developed by Makarov [18], while the latter was developed by Comis-
arow and Marshall, respectively [19]. The orbital ion trapping phenomenon established
by Kingdon [20] is also used in designing the Orbitrap analyzer. These industrial-scale
implemented innovations have resulted in crucial methodological developments in ana-

Int. J. Mol. Sci. 2024, 25, 1995. https://doi.org/10.3390/ijms25041995 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms25041995
https://doi.org/10.3390/ijms25041995
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0002-5788-4404
https://doi.org/10.3390/ijms25041995
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms25041995?type=check_update&version=1


Int. J. Mol. Sci. 2024, 25, 1995 2 of 10

lytical mass spectrometric instrumentation [2,14,21–24], respectively, in a large number of
multidisciplinary research fields utilizing mass spectrometric approaches.

The dynamically harmonized measurement cell of FTICR-MS, designed by Nikolaev
and Boldin [25,26], refines isotopomers of peptides and proteins [27]. The newcomer solves
problems with the FT-ICR-MS phenomena of inhomogeneity of trapping electric fields [28]
and ion coalescence [29] because FTICR-MS is often limited by space-charge effects, thus
shifting and broadening MS peaks. There is systematic spectral error in proteomics and
metabolomics due to the merging of two close MS peaks in FT-ICR-MS experiments.
Explanatory and predictive theories of these phenomena have been developed, respectively,
by Boldin and Nikolaev [29] and Naito and Inoue [30,31]. There is a decrease in the
error contribution to MS measurands from ion sources, analyzers, and detectors, thus
obtaining the mass spectrum of the analyte and exhibiting its fine isotope distribution.
The task is challenging even when utilizing the latest generation of FT-ICR or Orbitrap
analyzers. There is also theory detailing the space charge shift of ICR frequency by Jeffries
and co-workers [32]. The same phenomenon has also been described theoretically by
Gorshkov, Marshall, and Nikolaev [33]. The molecular isotopologies yield a relative
isotopic abundance of stable natural isotopes of atoms in analytes, thus increasing the
crucial reliability of their identification and annotation. The task is important for omics
protocols used in clinical precision medicine due to the compulsory request for high
analytical standard method performance of omics analyses.

However, so-called fluctuations in elemental composition are due to isotope fractiona-
tion obtained by (bio)chemical and geochemical processes [27]. They perturb the value of
the isotope ratio among isotopes of the same atom and also yield errors in proteomics [34]
or isotomics [27,35]. Highly precise measurands of isotopomers contribute crucially not
only to the fields of medicine and clinical diagnostics but also to ecology, geology, history,
forensic anthropology, and more [36].

In highlighting the ultra-high resolution of MS measurands, it should be mentioned
that the already achieved single-sample analysis of 126,264 species using 9.4T FT-ICR-
MS, in addition to the highest broadband accuracy and resolving power obtained via MS
methods at 21 T [16,17,37], is 3.105 resolution at m/z 400. A resolving power of 2.106
has been detected when studying proteins over a measurement span time t = 12 s. The
Orbitrap analyzer accurately determines the m/z value of heterogeneous viral specials and
oligomers of immunoglobulin with high charges [38,39].

Mass spectrometric methods also exhibit (v) (automated) direct analysis and assay
without employment in sample pre-treatment [40–44]; (vi) flexible (and portable) instru-
mentation coupled to methods of chromatography, electrochemistry, and more; (vii) lab-on-
chip technologies; and (viii) miniaturized instrumentation devices and techniques [45,46],
respectively. A miniature mass spectrometer achieves fast monitoring (t~4 min) of ther-
apeutics in a whole blood sample (r2 = 0.9962) [46,47]. The methods (ix) adopt imaging
techniques [27]. The so-called imaging mass spectrometry assesses living cells, organs,
microorganisms [48,49], and whole bodies [50–57], as well as determines, free of isotope
labeling, hundreds to thousands of chemicals, metabolites, lipids, proteins, and more in
tissue within the framework of a single experiment [50]. Applications of the technique to
the biochemistry of lipids in tissues have been highlighted comprehensively in the review
article [53]. Monitoring of bacterial growth has been illustrated (2022) [58].

Mass spectrometric approaches (x) monitor continuous flow chemical reactions;
(xi) examine complex analyte mixtures in biological tissues and fluids [37,40,59],
environmental [60–62], and foodstuff samples; (xii) are used for in vivo diagnostics; and
(xiii) experimentally determine kinetics, thermodynamics, diffusion, and ion mobility
parameters of chemicals and their reactions [63–68].

The kinetic method developed by Cooks and co-workers shows many advantages,
among others [69]. In addition, a linear correlation between the energetics of MS reactions
based on Hammett free energy and kinetic parameters has been established by McLaf-
ferty and co-workers [70]. Data on the intensity of peaks of the mass spectra of parent
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and product ions of analytes examining reaction kinetics show a linear relation between
intensity peak ratio and time of chemical reaction (r2 = 0.99) [64–68]. Experimental mass
spectrometric, ion-mobility spectrometric, and diffusion parameters provide potentials
of ion-molecule interaction, thus allowing for the calculation of ion-ion recombination
coefficients, average ionic energy, rate of dispersion of ions, electric discharges, different
atmospheric phenomena, and more [63].

Complementary employment in ion mobility spectrometry, mass spectrometry, and
diffusion extracts the so-called collision cross-section of the analyte [63,71–78]. The param-
eter can be obtained theoretically via high-accuracy methods of computational quantum
chemistry using static approaches and molecular dynamics [71–78]. Since data on collision
cross-sections provide 3D molecular structures of analytes, experimental MS and ion mo-
bility 3D molecular structures and properties of molecules are correlated with theoretical
ones [61,62,71–80].

Looking at soft-ionization MS methods, electrospray ionization (ESI) and matrix-
assisted laser/desorption ionization (MALDI) ones (ESI- and MALDI-MS) are used in
many subfields of chemistry, biochemistry, and biology [81–94]. The former method gen-
erates analyte molecular-radical and protomer from solution without perturbing specific
noncovalent interactions of molecular complexes, if any. For this reason, ESI-MS is a well-
suited method for the 3D structural analysis of biologically active molecules. It provides
elemental composition and stoichiometry of analytes and their molecular complexes during
transfer from solution into gas phase [85–87]. ESI-MS is characterized by significant repro-
ducibility and ionization efficiency~100% examining biomacromolecules. The transmission
efficiency is 96%. Quantification of peptides yields r2 = 0.98991–0.98747 [81]. Singly charged
lipid cations generated by MALDI-MS have been first reported herein [83].

There are MS applications to many subfields of analytical and environmental
chemistry [61,95–97], clinical diagnostics [37], petroleum chemistry, laboratory medicine [98],
biochemistry [98], medicinal chemistry, drug design and development of new efficacious
therapeutics, forensic chemistry [99], investigations for forensic medico-legal purposes [100],
pharmacy [98], toxicology [97,101], nuclear forensics [102], food technology [62], agricul-
tural science, geology, archaeology, etc. MS methods for molecular identification, annota-
tion, and quantification are implemented in metabolomics (m/z 50–1500) [62], proteomics,
(neuro)-proteomics, lipidomics; food-omics, steroid-omics [6,7], glycomics [103], pesticide
analysis and control [104], genomics, DNA adduct-omics, transcriptomics, lignomics [10],
interactomics [105,106], doping control, petrol-omics, isotomics [27,35], and more.

Clinical trans-omics is an innovative field integrating clinical phenomes with multi-
omics approaches [107]. The precision and reliability of omics methods determine their
use in clinical precision medicine. Omics-method performances should be traceable to
very high-order analytical standards. Therefore, analytical protocols should have defined
uncertainty based on quantitative criteria in statistics and chemometrics [40,61,62,108].

Proteomics provide in-depth knowledge of processes in living cells [16,56,57,109]. The
first algorithm elaborated for the purposes of automatic assignment of analyte charge states
of ions as well as data-processing methods for deconvolution mass spectra of multiply
charged proteins has been developed by Mann and co-workers [5]. Due to limitations in
space for this Editorial, it is unable to highlight all contributions devoted to developing
algorithms and software for the data processing of MS measurands [110].

Metabolomics uses omics methods based on hyphenated instrumentation of chro-
matography coupled to mass spectrometry [111–113] and examines small-molecular metabo-
lites of cellular metabolism [105,106]. It provides insight into biochemical reactions and a
comprehensive understanding of the real-time (mechanistic) processes of cells/tissues at
the moment of sampling. Due to the high complexity of biological samples, metabolomics
methods performances are relative quantitative ones (r2 = 0.99) [4,114,115].

Genetics and transcriptomics answer the following question: What is a cell or tissue
capable of doing [105,116]?
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Mass spectrometry determines molecular sequences and modifications, thus address-
ing many questions about biological processes in vivo. Therefore, it provides crucial
knowledge of the relationship between molecular structure and biological function both
in vitro and in vivo [117,118]. It also allows us to understand the in-depth neurobiological
reactions of neural circuits and cells. First, MALDI-MSI application to clinical diagnostics
has been proposed by Caprioli [119,120].

The implementation of biochemical methods and mass spectrometry in forensic
medico-legal investigations highlights the crucial advantages of analytical mass spec-
trometry as an objective approach [100].

Lignomics applies MS omics-methods to quantify oligomers of lignin and its
derivatives [10].

In addition, the molecules have many molecular isotopologies [27,34,35], showing
variation of number of isotopomers. In analyte sample there is concentration of the isotopo-
logically different atoms, perspective, molecular structures of single analyte. It is called
sample’s isotome [35]. It encodes data on sample physical and chemical history. Mass
spectrometric collisional fragmentation reactions and FTICR or Orbitrap MS analysers
detail on sample’s isotome.

Beyond omics methods, mass spectrometric applications to biochemistry and biology
expand dramatically to (macro)molecular structural analysis or the field of structural
biology [14]. The reader of this Editorial, perhaps, may not be aware of fundamental issues
regarding the utilization of analytical mass spectrometry for analyzing 3D molecular and
electronic structure. It, however, methodologically develops the fields of analytical mass
spectrometry and structural analysis.

In the context of the preceding paragraph, single-crystal X-ray diffraction comprises
a major method for determining the 3D structures of biological (macro)molecules [121].
However, for purposes of structural biology, it also requires high amounts of pure analytes,
good sample crystal growth, and good scattering properties. Frequently, these requirements
are major drawbacks of single-crystal X-ray diffraction and its implementation in research
on structural biology.

Computational quantum chemical methods provide high-accuracy data on analyte 3D
molecular and electronic structures as well as geometry parameters. Molecular dynamics
yields time-dependent results from molecular structure and properties under designed ex-
perimental conditions. Theoretical thermodynamics, kinetics, ion mobility, binding affinity,
diffusion, catalytic activity, and more parameters allow us to determine the 3D molecular
conformation of molecules. The enzyme inactivation reaction step of a biochemical reaction
is also obtained.

Therefore, computational quantum chemistry often overcomes the need to crystallize
high-quality single crystals of biologically active (macro)molecules.

Instrumental methods detailing biochemical reactions and molecular structure in-
clude nuclear magnetic resonance, Raman spectroscopy, circular dichroism, and more.
However, they often show drawbacks to a broad implementation into biochemistry and
structural biology. For instance, nuclear magnetic resonance experiments can be limited to
describing the structural differences of biologically active compounds in a small number of
sequences [122].

Enormous contributions to developing mass spectrometry as a robust instrumental
method for chemical analysis have positioned it in the 21st century as analytical instrumen-
tation, having high versatility to identify and quantify biological (macro)molecules and
biochemical reactions in vitro and in vivo [61,62,71–80].

Despite this, little attention is focused on the mass spectrometric capability of obtaining
exact 3D molecular and electronic structural data using complementary MS measurands
and quantum chemical data [61,62,71–80]. However, proposed candidate structures are
often isomeric and have complex electronic effects: tautomeris, isotopomers, protomers,
and more. Due to these reasons, accurately determining molecular structure among a set of
candidate structures still represents a challenging research task of both the experimental
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instrumental and theoretical computational methods, even when employing MS instrumen-
tation showing superior method performances or high-accuracy computational quantum
chemistry tools [61,62,71–80].

Moreover, mass spectrometric methods utilizing techniques of isotope labeling an-
alytes and H/D exchange yield complete analytical data on the structural consequences
of biomacromolecules and the activation biochemical reactions of enzymes. Knowledge
develops crucially in the field of biochemistry [122].

Methodological developments in exact mass spectrometric methods for 3D structural
analysis based on stochastic dynamics approaches to data processing of measurands are
also highlighted in the Special Issue [40,61,62].

As previously mentioned, the theme of this Special Issue lies in multi-disciplinary
research fields encompassing areas of analytical mass spectrometry, analytical chemistry,
and chemometrics, among others, and their application to a broad spectrum of research
fields in analytical science. Looking at the content of this Special Issue, it is immediately
clear to the reader that among all the theoretical and experimental approaches to mass
spectrometry and their applications to numerous multi-disciplinary research fields, it
addresses only a few of them.

However, it provides innovative developments in the fields sketched above for pur-
poses of mass spectrometric-based quantitation and structural analysis of biologically active
analytes and samples both in vitro and in vivo, thus highlighting the field of biochemistry.
The guest editor, editors, reviewers, and authors were motivated to provide novelty to
these scientific fields for researchers and academics working in different disciplines who
place their research efforts and innovations into a broader application perspective for
fundamental science and industry.

As the guest editor of the Special Issue, I would like to thank all authors who con-
tributed their research and review articles, were devoted to the high quality of their
innovative and exciting scientific developments and achievements, and collaborated in
publishing them.

I would like to thank the editors and reviewers for their invaluable and creative
recommendations, comments, and remarks, who contributed significantly to the quality of
papers and the larger-than-usual review task.
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