Global Proteomics Analysis of Lysophosphatidic Acid Signaling in PC-3 Human Prostate Cancer Cells: Role of CCN1
Abstract
:1. Introduction
2. Results
2.1. Identification of Proteins Differentially Expressed after LPA Treatment
2.2. Identification of Proteins Differentially Expressed after CCN1 Knockdown
2.3. Effects of CCN1 Knockdown on LPA-Induced Up-Regulation of MACC1 and TSP1
3. Discussion
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. Cell Culture
4.3. Cell Incubations and Sample Preparation
4.4. LC-MS Analysis
4.5. Immunoblotting
4.6. Data Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gibbs, T.C.; Rubio, M.V.; Zhang, Z.; Xie, Y.; Kipp, K.R.; Meier, K.E. Signal transduction responses to lysophosphatidic acid and sphingosine 1-phosphate in human prostate cancer cells. Prostate 2009, 69, 1493–1506. [Google Scholar] [CrossRef]
- Xie, Y.; Gibbs, T.C.; Mukhin, Y.V.; Meier, K.E. Role for 18:1 lysophosphatidic acid as an autocrine mediator in prostate cancer cells. J. Biol. Chem. 2002, 277, 32516–32526. [Google Scholar] [CrossRef]
- Hopkins, M.M.; Zhang, Z.; Liu, Z.; Meier, K.E. Eicosopentaneoic Acid and Other Free Fatty Acid Receptor Agonists Inhibit Lysophosphatidic Acid- and Epidermal Growth Factor-Induced Proliferation of Human Breast Cancer Cells. J. Clin. Med. 2016, 5, 16. [Google Scholar] [CrossRef]
- Hopkins, M.M.; Liu, Z.; Meier, K.E. Positive and Negative Cross-Talk between Lysophosphatidic Acid Receptor 1, Free Fatty Acid Receptor 4, and Epidermal Growth Factor Receptor in Human Prostate Cancer Cells. J. Pharmacol. Exp. Ther. 2016, 359, 124–133. [Google Scholar] [CrossRef]
- Liu, Z.; Hopkins, M.M.; Zhang, Z.; Quisenberry, C.B.; Fix, L.C.; Galvan, B.M.; Meier, K.E. Omega-3 fatty acids and other FFA4 agonists inhibit growth factor signaling in human prostate cancer cells. J. Pharmacol. Exp. Ther. 2015, 352, 380–394. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.W.; Herr, D.R.; Noguchi, K.; Yung, Y.C.; Lee, C.W.; Mutoh, T.; Lin, M.-E.; Teo, S.T.; Park, K.E.; Mosley, A.N.; et al. LPA receptors: Subtypes and biological actions. Annu. Rev. Pharmacol. Toxicol. 2010, 50, 157–186. [Google Scholar] [CrossRef]
- Rao, P.V.; Pattabiraman, P.P.; Kopczynski, C. Role of the Rho GTPase/Rho kinase signaling pathway in pathogenesis and treatment of glaucoma: Bench to bedside research. Exp. Eye Res. 2017, 158, 23–32. [Google Scholar] [CrossRef]
- Pattabiraman, P.P.; Maddala, R.; Rao, P.V. Regulation of plasticity and fibrogenic activity of trabecular meshwork cells by Rho GTPase signaling. J. Cell. Physiol. 2014, 229, 927–942. [Google Scholar] [CrossRef]
- Pattabiraman, P.P.; Rao, P.V. Mechanistic basis of Rho GTPase-induced extracellular matrix synthesis in trabecular meshwork cells. Am. J. Physiol. Cell Physiol. 2010, 298, C749–C763. [Google Scholar] [CrossRef]
- Walsh, C.T.; Stupack, D.; Brown, J.H. G protein-coupled receptors go extracellular: RhoA integrates the integrins. Mol. Interv. 2008, 8, 165–173. [Google Scholar] [CrossRef] [PubMed]
- Jun, J.I.; Lau, L.F. Taking aim at the extracellular matrix: CCN proteins as emerging therapeutic targets. Nat. Rev. Drug Discov. 2011, 10, 945–963. [Google Scholar] [CrossRef]
- Kireeva, M.L.; Mo, F.E.; Yang, G.P.; Lau, L.F. Cyr61, a product of a growth factor-inducible immediate-early gene, promotes cell proliferation, migration, and adhesion. Mol. Cell. Biol. 1996, 16, 1326–1334. [Google Scholar] [CrossRef]
- Lau, L.F.; Lam, S.C. The CCN family of angiogenic regulators: The integrin connection. Exp. Cell Res. 1999, 248, 44–57. [Google Scholar] [CrossRef]
- Sakamoto, S.; Yokoyama, M.; Zhang, X.; Prakash, K.; Nagao, K.; Hatanaka, T.; Getzenberg, R.H.; Kakahi, Y. Increased expression of CYR61, an extracellular matrix signaling protein, in human benign prostatic hyperplasia and its regulation by lysophosphatidic acid. Endocrinology 2004, 145, 2929–2940. [Google Scholar] [CrossRef]
- Walsh, C.T.; Radeff-Huang, J.; Matteo, R.; Hsiao, A.; Subramaniam, S.; Stupack, D.; Brown, J.H. Thrombin receptor and RhoA mediate cell proliferation through integrins and cysteine-rich protein 61. FASEB J. 2008, 22, 4011–4021. [Google Scholar] [CrossRef]
- Quan, T.; Zu, Y.; Qin, Z.; Robichaud, P.; Betcher, S.; Calderone, K.; He, T.; Johnson, T.M.; Voorhees, J.J.; Fisher, G.J. Elevated YAP and its downstream targets CCN1 and CCN2 in basal cell carcinoma. Am. J. Pathol. 2014, 184, 937–943. [Google Scholar] [CrossRef]
- Balijepalli, P.; Knode, B.K.; Nahulu, S.A.; Abrahamson, E.L.; Nivison, M.P.; Meier, K.E. Role for CCN1 in lysophosphatidic acid response in PC-3 human prostate cancer cells. J. Cell Commun. Signal. 2022, 36. [Google Scholar] [CrossRef]
- Chen, N.; Chen, C.C.; Lau, L.F. Adhesion of human skin fibroblasts to Cyr61 is mediated through integrin alpha 6 beta 1 and cell surface heparan sulfate proteoglycans. J. Biol. Chem. 2000, 275, 24953–24961. [Google Scholar] [CrossRef]
- Wu, D.D.; Zhang, F.; Hao, F.; Chun, J.; Xu, X.; Cui, M.Z. Matricellular protein Cyr61 bridges lysophosphatidic acid and integrin pathways leading to cell migration. J. Biol. Chem. 2014, 289, 5774–5783. [Google Scholar] [CrossRef]
- Franzen, C.A.; Chen, C.-C.; Todorovic, V.; Juric, V.; Monzon, R.I.; Lau, L.F. Matrix protein CCN1 is critical for prostate carcinoma cell proliferation and TRAIL-induced apoptosis. Mol. Cancer Res. 2009, 7, 1045–1046. [Google Scholar] [CrossRef]
- Radhakrishnan, H.; Walther, W.; Zincke, F.; Kobelt, D.; Imbastari, F.; Erdem, M.; Kortum, B.; Dahlmann, M.; Stein, U. MACC1—The first decade of a key metastasis molecule from gene discovery to clinical translation. Cancer Metastasis Rev. 2018, 37, 805–820. [Google Scholar] [CrossRef]
- Murphy-Ullrich, J.E. Thrombospondin 1 and Its Diverse Roles as a Regulator of Extracellular Matrix in Fibrotic Disease. J. Histochem. Cytochem. 2019, 67, 683–699. [Google Scholar] [CrossRef]
- Kaur, S.; Bronson, S.M.; Pal-Nath, D.; Miller, T.W.; Soto-Pantoja, D.R.; Roberts, D.D. Functions of Thrombospondin-1 in the Tumor Microenvironment. Int. J. Mol. Sci. 2021, 22, 4570. [Google Scholar] [CrossRef]
- Dash, R.; Su, Z.Z.; Lee, S.G.; Azab, B.; Boukerche, H.; Sarkar, D.; Fisher, P.B. Inhibition of AP-1 by SARI negatively regulates transformation progression mediated by CCN1. Oncogene 2010, 29, 4412–4423. [Google Scholar] [CrossRef]
- Perez-Benavente, B.; Fathinajafabadi, A.; de la Fuente, L.; Gandia, C.; Martinez-Ferriz, A.; Pardo-Sanchez, J.M.; Millian, L.; Conesa, A.; Romero, O.A.; Carretero, J.; et al. New roles for AP-1/JUNB in cell cycle control and tumorigenic cell invasion via regulation of cyclin E1 and TGF-beta2. Genome Biol. 2022, 23, 252. [Google Scholar] [CrossRef]
- Rackner, R.D.; Thiele, S.; Gobel, A.; Browne, A.; Fuessel, S.; Erdmann, K.; Wirth, M.P.; Frohner, M.; Todenhofer, T.; Muders, M.H.; et al. High serum levels of Dickkof-1 are associated with a poor prognosis in prostate cancer patients. BMC Cancer 2014, 14, 649. [Google Scholar]
- Zhou, Y.; Zhou, B.; Pache, L.; Chang, M.; Khodabakhshi, A.H.; Tanaseichuk, O.; Benner, C.; Chanda, S.K. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 2019, 10, 1523. [Google Scholar] [CrossRef]
- Deng, J.; Pan, T.; Liu, Z.; McCarthy, C.; Vicencio, J.M.; Cao, L.; Alfano, G.; Swaidan, A.A.; Yin, M.; Beatson, R.; et al. The role of TXNIP in cancer: A fine balance between redox, metabolic, and immunological tumor control. Br. J. Cancer 2023, 129, 1877–1892. [Google Scholar] [CrossRef]
- Xie, M.; Xie, R.; Xie, S.; Wu, Y.; Wang, W.; Li, X.; Xu, Y.; Liu, B.; Zhou, Y.; Wang, T.; et al. Thioredoxin interacting proteins (TXNIP) acts as a tumor suppressor in human prostate cancer. Cell Biol. Int. 2020, 44, 2094–2106. [Google Scholar] [CrossRef]
- Li, F.-Q.; Chen, X.; Fisher, C.; Siller, S.S.; Zelikman, K.; Kuriyama, R.; Takemaru, K.-I. BAR domain-containing FAM92 proteins interact with Chibby1 to facilitate ciliogenesis. Mol. Cell. Biol. 2016, 36, 2668–2680. [Google Scholar] [CrossRef]
- Pampliega, O.; Orhon, I.; Patel, B.; Sridhar, S.; Diaz-Carretero, A.; Beau ICodogno, P.; Satir, B.; Satir, P.; Cuervo, A. Functional interaction between autophagy and ciliogenesis. Nature 2013, 502, 194–200. [Google Scholar] [CrossRef]
- Pirkmajer, S.; Chibalin, A.V. Serum starvations: Caveat emptor. Am. J. Physiol. Cell Physiol. 2011, 301, C272–C279. [Google Scholar] [CrossRef]
- Zhao, H.; Khan, Z.; Westlake, C.J. Ciliogenesis membrane dynamics and organization. Semin. Cell Dev. Biol. 2023, 133, 20–31. [Google Scholar] [CrossRef]
- Afratis, N.A.; Nikitovic, D.; Multhaupt, H.A.B.; Theocharis, A.D.; Couchman, J.R.; Karamanos, N.K. Syndecans—Key regulators of cell signaling and biological functions. FEBS J. 2017, 284, 27–41. [Google Scholar] [CrossRef]
- Guo, S.; Wu, X.; Le, T.; Wang, Y.; Zhang, L.; Zhao, Q.; Huang, Y.; Shi, Y.; Wu, L. The role and therapeutic value of syndecan-1 in cancer metastasis and drug resistance. Front. Cell Dev. Biol. 2022, 9, 784983. [Google Scholar] [CrossRef]
- Lazniewska, J.; Li, K.L.; Johnson, I.R.D.; Sorvina, A.; Logan, J.; Artini, C.; Moore, C.; Ung, B.S.-Y.; Karageorgos, L.; Hickey, S.M.; et al. Dynamic interplay between sortilin and syndecan-1 contributes to prostate cancer progression. Sci. Rep. 2023, 13, 13489. [Google Scholar] [CrossRef]
- Valtonen-Andre, C.; Bjartell, A.; Hellsten, R.; Lilja, H.; Harkonen, P.; Lundwall, A. A highly conserved protein secreted by the prostate cancer cell line PC-3 is expressed in benign and malignant prostate tissue. Biol. Chem. 2007, 388, 289–295. [Google Scholar] [CrossRef]
- Zhan, P.; Li, H.; Han, M.; Wang, Z.; Zhao, J.; Tu, J.; Shi, X.; Fu, Y. PSMP Is Discriminative for Chronic Active Antibody-Mediated Rejection and Associate with Intimal Arteritis in Kidney Transplantation. Front. Immunol. 2021, 12, 661911. [Google Scholar] [CrossRef]
- Mitamura, T.; Pradeep, S.; McGuire, M.; Wu, S.Y.; Ma, S.; Hatakeyama, H.; Lyons, Y.A.; Hisamatsu, T.; Noh, K.; Villar-Prados, A.; et al. Induction of anti-VEGF therapy resistance by upregulated expression of microseminoprotein (MSMP). Oncogene 2018, 37, 722–731. [Google Scholar] [CrossRef]
- Zhang, X.; Fang, J.; Chen, S.; Wang, W.; Meng, S.; Liu, B. Nonconserved miR-608 suppresses prostate cancer progression through RAC2/PAK4/LIMK1 and BCL2L1/caspase-3 pathways by targeting the 3′-UTRs of RAC2/BCL2L1 and the coding region of PAK4. Cancer Med. 2019, 8, 5716–5734. [Google Scholar] [CrossRef]
- Wang, G.; Gu, J.; Gao, Y. MicroRNA target for MACC1 and CYR61 to inhibit tumor growth in mice with colorectal cancer. Tumour Biol. 2016, 37, 13983–13993. [Google Scholar] [CrossRef]
- Han, S.; Bui, N.T.; Ho, M.T.; Kim, Y.M.; Cho, M.; Shin, D.B. Dexamethasone Inhibits TGF-beta1-Induced Cell Migration by Regulating the ERK and AKT Pathways in Human Colon Cancer Cells Via CYR61. Cancer Res. Treat. 2016, 48, 1141–1153. [Google Scholar] [CrossRef]
- Wang, X.; Deng, Y.; Mao, Z.; Ma, X.; Fan, X.; Cui, L.; Qu, L.; Xie, D.; Zhang, J. CCN1 promotes tumorigenicity through Rac1/Akt/NF-κB signaling pathway in pancreatic cancer. Tumour Biol. 2012, 33, 1745–1758. [Google Scholar] [CrossRef]
- Xu, S.T.; Ding, X.; Ni, Q.F.; Jin, S.J. Targeting MACC1 by RNA interference inhibits proliferation and invasion of bladder urothelial carcinoma in T24 cells. Int. J. Clin. Exp. Pathol. 2015, 8, 7937–7944. [Google Scholar]
- Stein, U.; Walther, W.; Arlt, F.; Schwabe, H.; Smith, J.; Fichtner, I.; Birchmeier, W.; Schlag, P.M. MACC1, a newly identified key regulator of HGF-MET signaling, predicts colon cancer metastasis. Nat. Med. 2009, 15, 59–67. [Google Scholar] [CrossRef]
- Burock, S.; Herrmann, P.; Wendler, I.; Niederstrasser, M.; Wenecke, K.-D.; Stein, U. Circulating metastasis associated in colon cancer 1 transcripts in gastric cancer patient plasma as diagnostic and prognostic biomarker. World J. Gastroenterol. 2015, 21, 333–341. [Google Scholar] [CrossRef]
- Wang, G.; Kang, M.X.; Lu, W.J.; Chen, Y.; Zhang, B.; Wu, Y.L. MACC1: A potential molecule associated with pancreatic cancer metastasis and chemoresistance. Oncol. Lett. 2012, 4, 783–791. [Google Scholar] [CrossRef]
- Wang, Z.; Cai, M.; Weng, Y.; Zhang, F.; Meng, D.; Song, J.; Zhou, H.; Xie, Z. Circulating MACC1 as a novel diagnostic and prognostic biomarker for non-small cell lung cancer. J. Cancer Res. Clin. Oncol. 2015, 141, 1353–1361. [Google Scholar] [CrossRef]
- Ashktorab, H.; Hermann, P.; Nourale, M.; Shokrani, B.; Lee, E.; Haidary, T.; Brim, H.; Stein, U. Increased MACC1 levels in tissues and blook identify colon adenoma patients at high risk. J. Transl. Med. 2016, 14, 215. [Google Scholar] [CrossRef]
- Wang, H.; Zhao, Y.; Wen, L.; Cao, J.; Yang, J.; Yuan, Y. Diagnostic value of PSA, TAP and MACC1 expression in blood of patients with prostate cancer. J. Shanghai Jiao Tong Univ. (Med. Sci.) 2022, 42, 496–501. [Google Scholar]
- Imbastari, F.; Dahlman, M.; Sorbert, A.; Mattioli, C.C.; Mari, T.; Scholz, F.; Timm, L.; Twamley, S.; Migotti, R.; Walther, W.; et al. MACC1 regulates clathrin-mediated endocytosis and receptor recycling of transferrin receptor and EGFR in colorectal cancer. Cell. Mol. Life Sci. 2021, 78, 3525–3542. [Google Scholar] [CrossRef]
- Hohmann, T.; Hohmann, U.; Dehghani, F. MACC1-induced migration in tumors: Current state and perspectives. Front. Oncol. 2023, 13, 1165676. [Google Scholar] [CrossRef]
- Bravo-Cordero, J.J.; Hodgson, K.M.; Condeelis, J.S. Directed cell invasion during metastasis. Curr. Opin. Cell Biol. 2012, 24, 277–283. [Google Scholar] [CrossRef]
- Hohmann, T.; Hohmann, U.; Kolbe, M.R.; Dahlmann, M.; Kobelt, D.; Stein, U.; Dehghani, F. MACC1 driven alterations in cellular biomechanics facilitate cell motility in glioblastoma. Cell Commun. Signal. 2020, 18, 85. [Google Scholar] [CrossRef]
- Eble, J.A.; Niland, S. The extracellular matrix in tumor progression and metastasis. Clin. Exp. Metastasis 2019, 36, 171–198. [Google Scholar] [CrossRef]
- Kobelt, D.; Perez-Hernandez, D.; Fleuter, C.; Dahlmann, M.; Zincke, F.; Smith, J.; Migotti, R.; Popp, O.; Burock, S.; Walther, W.; et al. The newly identified MEK1 tyrosine phosphorylation target MACC1 is druggable by approved MEK1 inhibitors to restrict colorectal cancer metastasis. Oncogene 2021, 40, 5286–5301. [Google Scholar] [CrossRef]
- Zhang, X.; Luo, Y.; Cen, Y.; Qiu, X.; Li, J.; Jie, M.; Yang, S.; Qin, S. MACC1 promotes pancreatic cancer metastasis by interacting with the EMT regulator SNAI1. Cell Death Dis. 2022, 13, 923. [Google Scholar] [CrossRef]
- Kobelt, D.; Zhang, C.; Clayton-Lucey, I.A.; Glauben, R.; Voss, C.; Siegmund, B.; Stein, U. Pro-inflammatory TNF-α and IFN-γ promote tumor growth and metastasis via induction of MACC1. Front. Immunol. 2020, 11, 980. [Google Scholar] [CrossRef]
- Osaki, M.; Inaba, A.; Nishikawa, K.; Sugimoto, Y.; Shomori, K.; Inoue, T.; Oshimura, M.; Ito, H. Cysteine-rich protein 61 suppresses cell invasion via down-regulation of matrix metalloproteinase-7 expression in the human gastric carcinoma cell line MKN-45. Mol. Med. Rep. 2010, 3, 711–715. [Google Scholar] [CrossRef]
- Perbal, B. The concept of the CCN protein family revisited: A centralized coordination network. J. Cell Commun. Signal 2018, 12, 3–12. [Google Scholar] [CrossRef]
- Reid, S.E.; Kay, E.J.; Neilson, L.J.; Henze, A.T.; Serneels, J.; McGhee, E.J.; Dhayade, S.; Nixon, C.; Mackey, J.B.; Santi, A.; et al. Tumor matrix stiffness promotes metastatic cancer cell interaction with the endothelium. EMBO J. 2017, 36, 2373–2389. [Google Scholar] [CrossRef]
- Hisaoka-Nakashima, K.; Yokoe, T.; Watanabe, S.; Nakamura, Y.; Kajitani, N.; Okada-Tsuchioka, M.; Takebayashi, M.; Nakata, Y.; Morioka, N. Lysophosphatidic acid induces thrombospondin-1 production in primary cultured rat cortical astrocytes. J. Neurochem. 2021, 158, 849–864. [Google Scholar] [CrossRef] [PubMed]
- Hwang, Y.S.; Lindholm, P.F. Constitutive and inducible expression of invasion-related factors in PC-3 prostate cancer cells. J. Cancer Prev. 2015, 20, 121–128. [Google Scholar] [CrossRef]
Protein Name | Description | Fold Change |
---|---|---|
CCN1 | CCN family member 1 | 3.9 |
MACC1 | Metastasis-associated in colon cancer protein 1 | 2.8 |
THBS1 | Thrombospondin-1 | 2.5 |
DKK1 | Dickkopf-related protein 1 | 2.3 |
UPF2 | Regulator of nonsense transcripts 2 | 2.2 |
FOSL1 | Fos-related antigen 1 | 2.0 |
SEC22A | Vesicle-trafficking protein SEC22a | 2.0 |
LRCH4 | Leucine-rich repeat and calponin homology domain-containing protein 4 | 2.0 |
DMAC2 | Distal membrane-arm assembly complex protein 2 | 2.0 |
EFR3A | Protein EFR3 homolog A | 1.7 |
CELSR1 | Cadherin EGF LAG seven-pass G-type receptor 1 | 1.7 |
TMEM167A | Protein kish-A | 1.7 |
MAGT1 | Magnesium transporter protein 1 | 1.7 |
JUNB | Transcription factor jun-B | 1.6 |
ERMP1 | Endoplasmic reticulum metallopeptidase 1 | 1.5 |
OSTC | Oligosaccharyltransferase complex subunit OSTC | 1.5 |
LDLR | Low-density lipoprotein receptor | 1.5 |
KRR1 | KRR1 small subunit processome component homolog | 1.5 |
PWP1 | Periodic tryptophan protein 1 homolog | 1.5 |
CYB5R1 | NADH-cytochrome b5 reductase 1 | 1.5 |
Protein Name | Description | Fold Change |
---|---|---|
LPAR1 | Lysophosphatidic acid receptor 1 | 0.22 |
PTMS | Parathymosin | 0.24 |
TXNIP | Thioredoxin-interacting protein | 0.30 |
PGM3 | Phosphoacetylglucosamine mutase | 0.35 |
DYNLT3 | Dynein light chain Tctex-type 3 | 0.36 |
SENP1 | Sentrin-specific protease 1 | 0.36 |
VOPP1 | WW domain binding protein VOPP1 | 0.37 |
RASA1 | Ras GTPase-activating protein 1 | 0.41 |
PPID | Peptidyl-prolyl cis-trans isomerase D | 0.43 |
ILK | Integrin-linked protein kinase | 0.48 |
Protein Name | Protein Description | Fold Change |
---|---|---|
CCN1 | Cysteine rich angiogenic factor-61 | 3.25 |
DKK1 | Dickkopf-related protein 1 | 3.11 |
THBS1 | Thrombospondin-1 | 2.68 |
MAN1A2 | Alpha-mannosidase 2 | 2.01 |
MT-ND1 | NADH-ubiquinone oxidoreductase chain 1 | 1.86 |
SORT1 | Sortilin | 1.79 |
MACC1 | Metastasis-associated in colon cancer protein 1 | 1.75 |
NDC1 | Nucleoporin NDC1 | 1.74 |
TOR1B | Torsin-1B | 1.67 |
ALG5 | Dolichyl-phosphate beta-glucosyltransferase | 1.65 |
TWISTNB | DNA-directed RNA polymerase I subunit RPA43 | 1.64 |
ERN1 | Serine/threonine-protein kinase/endoribonuclease IRE1 | 1.61 |
FOSL1 | Fos-related antigen 1 | 1.58 |
OSBPL8 | Oxysterol-binding protein-related protein 8 | 1.54 |
VMA21 | Vacuolar ATPase assembly integral membrane protein VMA21 | 1.53 |
CCDC71L | Coiled-coil domain-containing protein 71L | 1.52 |
COL6A2 | Collagen alpha-2(VI) chain | 1.51 |
CDKN1A | BRCA2 and CDKN1A-interacting protein | 1.50 |
HIP1R | Huntingtin-interacting protein 1-related protein | 1.50 |
TMEM254 | Phospholipid transfer protein C2CD2L | 1.47 |
Protein Name | Description | Fold Change |
---|---|---|
TXNIP | Thioredoxin-interacting protein | 0.29 |
LPAR1 | Lysophosphatidic acid receptor 1 | 0.31 |
FAM92B | CBY1-interacting BAR domain-containing protein 2 | 0.34 |
HSF1 | Heat shock factor protein 1 | 0.37 |
ALAS1 | 5-aminolevulinate synthase, nonspecific, mitochondrial | 0.38 |
GTPBP1 | GTP-binding protein 1 | 0.39 |
PRKAG1 | 5′-AMP-activated protein kinase subunit gamma-1 | 0.40 |
SDC1 | Syndecan-1 | 0.41 |
KYNU | Kynureninase | 0.41 |
HMBS | Porphobilinogen deaminase | 0.42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balijepalli, P.; Yue, G.; Prasad, B.; Meier, K.E. Global Proteomics Analysis of Lysophosphatidic Acid Signaling in PC-3 Human Prostate Cancer Cells: Role of CCN1. Int. J. Mol. Sci. 2024, 25, 2067. https://doi.org/10.3390/ijms25042067
Balijepalli P, Yue G, Prasad B, Meier KE. Global Proteomics Analysis of Lysophosphatidic Acid Signaling in PC-3 Human Prostate Cancer Cells: Role of CCN1. International Journal of Molecular Sciences. 2024; 25(4):2067. https://doi.org/10.3390/ijms25042067
Chicago/Turabian StyleBalijepalli, Pravita, Guihua Yue, Bhagwat Prasad, and Kathryn E. Meier. 2024. "Global Proteomics Analysis of Lysophosphatidic Acid Signaling in PC-3 Human Prostate Cancer Cells: Role of CCN1" International Journal of Molecular Sciences 25, no. 4: 2067. https://doi.org/10.3390/ijms25042067
APA StyleBalijepalli, P., Yue, G., Prasad, B., & Meier, K. E. (2024). Global Proteomics Analysis of Lysophosphatidic Acid Signaling in PC-3 Human Prostate Cancer Cells: Role of CCN1. International Journal of Molecular Sciences, 25(4), 2067. https://doi.org/10.3390/ijms25042067