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Abstract: Periodontitis is a significant health concern for individuals with diabetes mellitus (DM),
characterized by inflammation and periodontium loss. Hyperglycaemia in DM exacerbates suscepti-
bility to periodontitis by inducing inflammaging in the host immune system. The use of erbium-doped
yttrium–aluminum–garnet laser (ErL) in periodontitis treatment has gained attention, but its impact
on diabetic-associated periodontitis (DP) and underlying mechanisms remain unclear. In this study,
we simulated DP by exposing human periodontal ligament fibroblasts (PDLFs) to advanced gly-
cation end products (AGEs) and lipopolysaccharides from P. gingivalis (Pg-LPS). Subsequently, we
evaluated the impact of ErL on the cells’ wound healing and assessed their inflammaging markers.
ErL treatment promoted wound healing and suppressed inflammaging activities, including cell
senescence, IL-6 secretion, and p65 phosphorylation. Moreover, the laser-targeted cells were observed
to have upregulated expression of CTBP1-AS2, which, when overexpressed, enhanced wound healing
ability and repressed inflammaging. Moreover, bioinformatic analysis revealed that CTBP1-AS2
acted as a sponge for miR155 and upregulated SIRT1. In conclusion, ErL demonstrated the abil-
ity to improve wound healing and mitigate inflammaging in diabetic periodontal tissue through
the CTBP1-AS2/miR-155/SIRT1 axis. Targeting this axis could represent a promising therapeutic
approach for preventing periodontitis in individuals with DM.

Keywords: diabetic periodontitis; Er:YAG laser; miR-155

1. Introduction

Periodontitis is a localized inflammation of the tooth-supporting tissues and can lead to
the destruction of underlying connective tissues and alveolar bone [1]. This local disease has
a bidirectional relationship with diabetes mellitus (DM) and it has been demonstrated that
periodontal management has a considerable impact on glycemic health in DM patients and
vice versa [2–4]. Periodontitis often arises due to the host’s immune response to microbial
triggers present in the dental plaque, while the accumulation of advanced glycation end
product (AGE) levels in DM magnifies this host response [5]. AGEs are acknowledged
for inducing inflammaging, a state constituted by low-grade chronic inflammation and
pre-aging in various periodontal tissues including human gingival fibroblast, keratinocytes,
and macrophages [6–10]. Inflammaging was believed to accelerate the progression of
DP through several mechanisms, including cellular senescence and senescence-associated
secretory phenotype (SASP) [11–15].

Cellular senescence is defined as a permanent cell cycle arrest in response to cellular
damage or stress. For instance, AGEs in DM interact with their receptors (RAGEs) in
cells and result in prolonged endoplasmic reticulum (ER) stress, leading to senescence
or premature aging [16]. These ‘aged’ cells can exhibit senescence-associated secretory
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phenotype (SASP) by generating various pro-inflammatory cytokines including interleukin
(IL)-6 [14,15,17,18]. Elevated activity of cell senescence and their SASP can create a detri-
mental pro-inflammatory milieu, which gives rise to tissue dysfunction and wound healing
insufficiency [19]. Prolonged inflammation can provoke DNA damage, which in turn can
aggravate senescence and perpetuate this vicious cycle [20]. Thus, it is crucial to address
these in oral cells in order to limit tissue destruction and treat periodontitis.

In light of that, the erbium-doped yttrium–aluminum–garnet laser (ErL) has been
widely known for its application in the treatment of periodontal diseases [21–24]. It is a
solid-state crystal laser that operates in the infrared spectrum at 2940 nm. It has been shown
to successfully remove dental calculus and decontaminate infected root surfaces [25,26].
While a few studies have revealed that ErL therapy benefited DM patients with periodontitis
in terms of their periodontal parameters [27] and glycaemic control [28], little is known
regarding its molecular mechanism in targeting inflammaging in DP.

Interestingly, it was found that people with DM have reduced expression of CTBP1-
AS2 in their peripheral blood mononuclear cells [29]. This long non-coding RNA CTBP1,
known as C-terminal-binding protein 1, is a transcriptional corepressor that is crucial for the
regulation of gene expression and subsequent biological processes, including cell prolifera-
tion, differentiation, and apoptosis [30]. Given that the upregulation of CTBP1-AS2 expres-
sion was able to suppress high glucose-induced inflammation in diabetic nephropathy in
an in vitro study [31], it would be valuable to look into whether ErL targets inflammaging
in DP via this long non-coding RNA, as well as its interplay with other microRNAs.

Periodontal ligament fibroblasts (PDLFs), which are found between the root cementum
and alveolar bone, play a pivotal role in the maintenance of periodontal health. Their
responsibilities include synthesizing extracellular matrix proteins and regulating occlusal
force [32]. Notably, they actively contribute to local immune responses and facilitate tissue
regeneration [33–35] and cellular defects in them pose threats to the integrity of periodontal
tissue. Consequently, we sought to explore the influence of ErL on inflammaging in DP-
simulated PDLFs and its underlying molecular mechanism revolving around the CTBP1-
AS2 and its target genes. The null hypothesis states that ERL does not exert a significant
impact on inflammaging in DP-simulated PDLFs, and it does not modulate the expression
of CTBP1-AS2 and its target genes.

2. Results
2.1. Advanced Glycation End Products (AGEs) Reduce the Cell Proliferation in PDLFs

First of all, the effects of various concentrations of AGEs on the cell viability were
assessed to determine the dose of AGEs for subsequent experiments. AGEs significantly
inhibited cell proliferation in a dose-dependent fashion (Figure 1). The lowest effective
dose of AGEs, 62.5 µg/mL, was used for subsequent experiment.
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Figure 1. AGEs at 62.5μg/mL had a significant inhibition on the cell proliferation in PDLFs and its 
higher dosage further increased the suppression. Data were expressed in mean ± standard devia-
tion. * p < 0.05 compared to control group. 
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* p < 0.05 compared to control group.



Int. J. Mol. Sci. 2024, 25, 2116 3 of 13

2.2. AGEs/LPS-Stimulated PDLFs Impair Wound Healing While ErL Irradiation Reverses
the Phenomena

To mimic diabetic periodontitis in vitro, PDLFs were cultured with AGEs and LPS.
PDL-1 and PDLF-2 refer to PDLFs obtained from two different individuals. As shown in
Figure 2, wound healing was shown the most impaired in PDLFs stimulated with both
LPS and AGEs, in comparison to control (no stimuli) or AGEs or LPS stimuli alone. When
ErL was given as an intervention, an energy density of 3.6 J/cm2 did not have significant
improvement while the higher energy densities, 4.2 and 6.3 J/cm2, increased the wound
healing capability.

Int. J. Mol. Sci. 2024, 25, 2116 3 of 14 
 

2.2. AGEs/LPS-Stimulated PDLFs Impair Wound Healing While ErL Irradiation Reverses the 
Phenomena 

To mimic diabetic periodontitis in vitro, PDLFs were cultured with AGEs and LPS. 
PDL-1 and PDLF-2 refer to PDLFs obtained from two different individuals. As shown in 
Figure 2, wound healing was shown the most impaired in PDLFs stimulated with both 
LPS and AGEs, in comparison to control (no stimuli) or AGEs or LPS stimuli alone. When 
ErL was given as an intervention, an energy density of 3.6 J/cm2 did not have significant 
improvement while the higher energy densities, 4.2 and 6.3 J/cm2, increased the wound 
healing capability. 

 
Figure 2. AGE/LPS-induced poor wound healing was reversed in PDLFs treated with ErL irradia-
tion of higher energy densities. Data were expressed in mean ± standard deviation. * p < 0.05 com-
pared to control group; # p < 0.05 compared to AGE/LPS only group. Scale bar, 100 μm. 

2.3. ErL Irradiation Targets the Upregulated Inflammaging Activities in PDLFs Subjected to 
AGEs/LPS  

Given that inflammaging’s markers include cellular senescence along its senescence-
associated secretory phenotype (SASP) [11–15], our assessment focused on the impacts of 
AGEs/LPS and ErL on these parameters. As expected, AGE/LPS stimulus markedly in-
creased inflammaging, characterized by the upregulated cell senescence expression (Fig-
ure 3A), IL-6 secretion (Figure 3B), and NF-κB signaling (Figure 3C). Meanwhile, ErL ir-
radiation led to a significant inhibition of cell senescence activity (Figure 3A), IL-6 secre-
tion (Figure 3B), and NF-κB signaling (Figure 3C). Collectively, these findings demon-
strated that ErL irradiation has an anti-inflammaging trait in DP in vitro. 
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of higher energy densities. Data were expressed in mean ± standard deviation. * p < 0.05 compared
to control group; # p < 0.05 compared to AGE/LPS only group. Scale bar, 100 µm.

2.3. ErL Irradiation Targets the Upregulated Inflammaging Activities in PDLFs Subjected to
AGEs/LPS

Given that inflammaging’s markers include cellular senescence along its senescence-
associated secretory phenotype (SASP) [11–15], our assessment focused on the impacts
of AGEs/LPS and ErL on these parameters. As expected, AGE/LPS stimulus markedly
increased inflammaging, characterized by the upregulated cell senescence expression
(Figure 3A), IL-6 secretion (Figure 3B), and NF-κB signaling (Figure 3C). Meanwhile, ErL
irradiation led to a significant inhibition of cell senescence activity (Figure 3A), IL-6 secretion
(Figure 3B), and NF-κB signaling (Figure 3C). Collectively, these findings demonstrated
that ErL irradiation has an anti-inflammaging trait in DP in vitro.

2.4. The Stimulatory Effects of ErL Irradiation on CTBP1-AS2 and the Overexpression of
CTBP1-AS2 Represses AGE/LPS-Induced Poor Wound Healing and Inflammaging

Considering that DM patients exhibited reduced expression of CTBP1-AS2 in their
peripheral blood mononuclear cells [29], we investigated whether the expression of this
lncRNA was similarly affected in PDLFs subjected to AGEs/LPS. Interestingly, the expres-
sion of CTBP1-AS2 in these DP-simulated cells was found tremendously lower compared
to that of the control group with no AGE/LPS stimulus. However, following intervention
with laser irradiation, this downregulated lncRNA was restored to a level significantly
higher than that of the control group (Figure 4A). Given that Er:YAG laser (ErL) was
effective in ameliorating inflammaging and increasing the expression of CTBP1-AS2, it
was crucial to explore the significance of this lncRNA in the suppression of inflammaging.
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Subsequently, we overexpressed CTBP1-AS2 in cells and assessed wound healing, cell
senescence, and ROS production. It was demonstrated that the CTBP1-AS2 overexpression
reversed all AGE/LPS-induced effects including poor wound healing (Figure 4B), enhanced
cell senescence (Figure 4C), and ROS production (Figure 4D).
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2.5. miR-155 Is a Direct Target of CTBP1-AS2 and Inhibition of miR-155
Downregulates Inflammaging

CTBP1-As2 has been shown to translocate into the cytoplasm to exert its influence
on target molecules [36]. Here, we revealed that the level of CTBP1-AS2 expression was
markedly upregulated in the cytoplasm of PDLFs after ErL irradiation (Figure 5A). Previous
studies have demonstrated that CTBP1-AS2 functions as a sponge for miR-155 in human
glomerular mesangial cells, and there is notable upregulation of miR-155-5p in the periph-
eral blood of patients with diabetic nephropathy [31]. Given this, our investigation aimed
to assess the potential interaction between CTBP1-AS2 and miR-155 in PDLFs. By using
bioinformatics analysis, a putative miR-155 binding site on CTBP1-AS2 was discovered
and the complementarity between the 3′ UTR regions of CTBP1-AS2 and miR-155 was
illustrated (Figure 5B). When PDLFs were transfected with CTBP1-AS2, the mRNA level
of miR-155 was decreased tremendously (Figure 5C). Reporter plasmids containing either
full-length (Wt-) or mutated (mut-CTBP1-AS2) forms of the miR-155-binding region were
constructed and cotransfected with miR-155 mimics into PDLFs. The luciferase activity of
Wt-CTBP1-AS2 vector was reduced when cotransfected with miR-155 mimics, whereas no
significant change was present in the mut-CTBP1-AS2 vector in PDLFs (Figure 5D). This
result demonstrated there is a direct interaction between CTBP1-AS2 and miR-155. When
miR-155 inhibitor was introduced, the inflammaging expression in PDLFs was reduced,
as defined by the decrease in cell senescence (Figure 5E) and ROS levels (Figure 5F). This
showed that CTBP1-AS2 alleviated inflammaging via directly binding to miR-155 and
reducing its expression.
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Figure 5. The level of CTBP1-AS2 expression was markedly upregulated in cytoplasm of PDLFs after
ErL irradiation (A). The illustration of three prime untranslated region (3′ UTR) of CTBP1-AS2 and
miR-155 (B). Transfection of PDLFs with CTBP1-AS2 resulted in a lower mRNA level of miR-155 (C).
The luciferase activity of Wt-CTBP1-AS2 vector was reduced when cotransfected with miR-155
mimics, whereas no significant change was present in the mut-CTBP1-AS2 vector in PDLFs (D).
When miR-155 inhibitor was introduced, the increased cell senescence (E) and ROS levels (F) were
reversed. * p < 0.05 compared to control group/ miR-Scr. only group; # p < 0.05 compared with
sh-CTBP1-AS2+miR-Scr. group.
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2.6. CTBP1-AS2 Ameliorates Inflammaging in PDLFs via Regulation of miR155/SIRT1 Signaling

miR-155 has been identified as a direct repressor of the histone deacetylase Sirtuin 1
(SIRT1) in various pathologies including diabetic nephropathy [37,38] and diabetic osteo-
porosis in vitro [39]. However, the study on this relationship in diabetic periodontitis is
limited and therefore, we examined whether miR-155 interacted with SIRT1 in PDLFs. We
employed the luciferase reporter assay to examine the promoter activity and the alignment
of the SIRT1 3′ UTR region with miR-155 is shown in (Figure 6A). Cells cotransfected
with miR-155 mimic and reporter plasmid containing wild-type SIRT1 3′ UTR displayed
reduced luciferase activity, whereas the luciferase activity was unaffected by cotransfection
of miR-155 and reporter vector cloned with SIRT1 3′ UTR containing a mutated binding
sequence (Figure 6B). When miR-155 mimics were added to PDLFs, the mRNA level of
SIRT1 decreased significantly (Figure 6C). These data demonstrated that miR-155 negatively
regulated SIRT1 gene expression. To validate if CTBP1-AS2 targets SIRT1, we compared the
cell senescence in CTBP1-AS2-silenced PDLFs with and without SIRT1 mimic. Our results
showed that the increased cell senescence of CTBP1-AS2-silenced PDLFs was downregu-
lated when SIRT1 mimics were added (Figure 6D). Taken together, these results showed
that CTBP1-AS2 possesses the ability to promote SIRT1 expression through the inhibition
of miR-155 in ameliorating inflammaging.
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Figure 6. Schematic presentation of the constructed 3′ UTR plasmids of wild-type (Wt) and mutated
(Mut) SIRT1 (A). The luciferase activity of each combination was measured and only WT reporter
activity was inhibited by miR-155 (B). When miR-155 mimics were added to PDLFs, the mRNA level of
SIRT1 decreased significantly (C). These data demonstrated that miR-155 negatively regulated SIRT1
gene expression. The increased cell senescence of CTBP1-AS2-silenced PDLFs was downregulated
when SIRT1 mimics were added (D). * p < 0.05 compared with miR-Scr. only group; # p < 0.05
compared with sh-CTBP1-AS2+miR-Scr. group.

3. Discussion

In the current investigation, we present the first demonstration illustrating the protec-
tive role of CTBP1-AS2 in safeguarding PDLFs against AGE/LPS stimuli by the attenuation
of inflammaging through the regulation of the miR-155/SIRT1 axis. These findings shed
light on the underlying mechanism through which ErL intervention addresses the com-
plexities of diabetic periodontitis (DP).

Upon examining the impact of AGEs and LPS from P. gingivalis on PDLFs, there was
a synergistic and detrimental effect on the cell’s wound healing, aligning with findings
from previous studies [40,41]. When these cells were intervened with laser treatment,
particularly at higher energy densities, they demonstrated a greater benefit in the impaired
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wound healing efficacy, comparable to the study of Lin et al. [42]. In addition, the positive
effect of ErL on wound healing has been observed in various cells, including gingival
fibroblast and osteoblast [43–45]. Though not explored here, it was thought that the laser’s
enhancement of wound healing may be attributed to augmented cell proliferation and
migration [42,46]. Given that poor wound healing is associated with inflammaging [47],
it comes as anticipated in this study that AGE/LPS-stimulated PDLFs exhibited signs of
inflammaging. This was evidenced by a significant surge in cell senescence, IL-6, and
NF-κB signaling activation [15,17,48,49]. The NF-κB pathway, recognized as a pivotal
regulator in inflammaging, plays a crucial role in the release of inflammatory cytokines and
cellular senescence, along with SASP [50–54]. In contrast, ErL intervention dramatically
reversed the induced inflammatory phenomena. Notably, ErL as adjunct therapy was
revealed to reduce IL-6 expression in gingival crevicular fluid (GCF) in patients with
chronic periodontitis compared to scaling and root planing (SRP) alone [55].

Numerous studies have uncovered the role of long non-coding RNA (lncRNA) dys-
regulation in periodontitis pathogenesis, orchestrating diverse regulatory mechanisms.
Accumulating evidence suggests that their influence encompasses critical processes in
periodontal cells, such as osteogenic differentiation, inflammation, proliferation, apoptosis,
and autophagy [56]. Interestingly, AGE/LPS stimuli resulted in a diminished expression of
lncRNA CTBP1-AS2 in PDLFs. The level of this lncRNA was significantly restored post-ErL
intervention, surpassing levels observed in the control group. This lncRNA emerges as a
crucial player in mitigating inflammaging, as its overexpression successfully reversed all
AGE/LPS-induced consequences in wound healing, cell senescence, and ROS production.
Given that DM patients have been reported to have lower levels of CTBP1-AS2 in their pe-
ripheral blood mononuclear cells [29] and replenishing CTBP1-AS2 expression can prevent
high glucose-induced diabetic nephropathy [31], the prospect of employing this lncRNA as
a targeted therapeutic approach or even a diagnostic marker in individuals with DP holds
considerable promise.

The current study reveals that CTBP1-AS2 ameliorated inflammaging in PDLFs via
regulation of miR155/SIRT1 signaling. Similar to Wang’s study [31], CTBP1-AS2 was
observed to act as a sponge for miR-155. miR-155, previously found to be associated
with the DNA damage response, has been linked to the buildup of cell senescence, SASP,
and ultimately inflammaging [57]. In various DM-associated complications such as di-
abetic nephropathy and diabetic osteoporosis in vitro, the high levels of miR-155 have
been recognized as a direct suppressor of histone deacetylase SIRT1 [37–39]. SIRT1, a
nicotinamide adenosine dinucleotide (NAD)-dependent deacetylase and a class III histone
deacetylase [58], is known to contribute to osteoblastic differentiation and alleviation of
inflammation in periodontal ligament cells [59–61].

One limitation of this study is that it is solely an in vitro investigation, and thus, the
findings may not fully capture the complexities of DP in vivo. Further animal and pre-
clinical studies would be necessary to correlate periodontal tissue loss severity, glycemic
control in DM, and the studied lncRNA expression. Despite this limitation, the insights
gained from this study hold significant promise, enhancing our understanding of inflam-
maging in DP through the CTBP1-AS2 pathway. Utilizing this lncRNA as a targeted
therapeutic approach could involve strategies to restore or enhance its expression, aiming
to mitigate the progression of periodontal complications in individuals with DM. Addition-
ally, its potential role as a diagnostic marker could offer a non-invasive means of assessing
the risk or severity of DP in DM patients, enabling earlier intervention and personalized
treatment strategies. Furthermore, considering the increasing association of inflammaging
with various inflammatory diseases, this knowledge holds the potential to advance thera-
peutic strategies, addressing heightened host responses not only in DP but also in other
DM-related complications, including diabetic nephropathy.

Collectively, these findings highlight the role of CTBP1-AS2 in enhancing SIRT1 expres-
sion by inhibiting miR-155 in its amelioration of inflammaging. As illustrated in Figure 7,
the diminished expression of CTBP1-AS2 in DP tissues leads to the upregulation of miR-155,
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subsequently suppressing SIRT1 expression, thereby contributing to inflammaging. The
irradiation of ErL, on the other hand, effectively restored the impaired levels of this lncRNA
and reversed inflammaging.
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4. Materials and Methods
4.1. Tissue Collection, Cell Culture, and Reagents

All steps were carried out in line with Chung Shan Medical University Hospital’s
Institutional Review Board-approved norms (IRB approval number: CSMUH No: CS18196).
After consent was obtained, PDLFs were isolated from two healthy individuals who had
their premolars extracted for orthodontic purposes. From the middle one-third of the
root, PDLFs were extracted and Dulbecco’s modified Eagle’s medium containing 10% fetal
bovine serum, 100 units/mL penicillin, and 100 mg/mL streptomycin were used to keep
the cells alive.

4.2. Laser Irradiation

ErL (Erwin AdvErlTM, wavelength 2940 nm, pulse width 250 µs, J. Morita Mfg, Kyoto,
Japan) with a 2940 nm emission wavelength was used. Before the irradiation, the medium
of the cells was first removed to expose the monolayer to ErL. With no covering sleeve
or contact point for the handpiece, the laser was pointed perpendicularly at the culture
dish from a height of 15 or 20 cm. The energy densities were determined at 3.6, 4.2,
and 6.3 J/cm2 by manipulating the laser parameters, which are based on the previous
studies [42]. Thermal-hypersensitive paper was used to mark the laser irradiation area to
ensure the irradiation area fully covered the 35 mm cell culture dishes.

4.3. Cell Proliferation Assay

Cells were seeded at 1 × 104 cells/well in the 96-well plates with varied AGE con-
centrations at 37 ◦C and followed by laser irradiation at the 24th hour. After irradiation,
the cells were further cultured at 37 ◦C for 48 h. Following that, a solution of 3-(4,5-
Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) was supplemented to each
well and cultured for 3 h. Following that, the MTT formazan was dissolved in DMSO and
measured spectrophotometrically at 570 nm. The optical density readings for each group
were expressed as a percentage of the control.

4.4. Flow Cytometry Analysis

Using flow cytometry analysis, ROS production was examined by measuring the
fluorescence strength of 2′,7′-dichlorofluorescein (DCF) in PDLFs stimulated with AGEs,
LPS, and different intensities of ErL. The fluorescence of 2′,7′-dichlorofluorescein (DCF) as
well as ethidium (ETH), are the products of oxidation of 2′,7′-dichlorodihydrofluorescein
diacetate (DCFH-DA; Sigma–Aldrich, Madrid, Spain) and dihydroethidium (DHE; Molec-
ular Probes, Eugene, OR, USA) with a sensitivity for H2O2/NO-based radicals and O-2,
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respectively. For 60 min and at 37 ◦C, the irradiated cells were incubated with 10 µM DCFH-
DA or DHE preceding being washed twice with PBS. Flow cytometry (Becton–Dickinson,
San Diego, CA, USA) was utilized to examine ETH fluorescence and DCF fluorescence of
10,000 cells at excitation and emission wavelengths of 488 and 525 nm, respectively.

4.5. Wound Healing Assay

Once seeded into a 12-well culture dish, the cells were cultivated till they reached
up to 80% confluence. This was followed by creating a wound among the monolayer by
scratching across the center of the well with a sterile 200 L pipette tip. Cells were allowed to
develop for another 48 h before staining with crystal violet. At 0 and 48 h, the displacement
of cells towards the wound site was measured using a microscope.

4.6. Senescence-Associated Beta-Galactosidase Staining

A senescence detection kit (BioVision, San Francisco, CA, USA) was utilized according
to the manufacturer’s procedure to assess the SA-βGal-positive cell ratios. Irradiated
cultures of 4 × 103 cells were first washed with 1 mL PBS once and then fixed for 10 min at
room temperature with the kit Fixative Solution. The cells were then stained with 470 µL
of kit Staining Solution, 5 µL of Staining Supplement, and 25 µL of 20 mg/mL X-gal in
DMF. This was followed by washing the samples twice using 1 mL of PBS. After that,
each well received an additional 0.5 cc of the kit’s Staining Solution Mix and incubated
overnight at 37 ◦C. The cells were then examined under a phase contrast microscope
(200 total magnification) for the formation of blue color.

4.7. Western Blotting

The Western blot test was carried out in accordance with the procedure previously
described [62]. Antibodies to phospho-p65 markers (p-p65) were employed as primary an-
tibodies. Primary antibodies used included antibodies to phospho-p65 markers (1:500; cat.
no. sc-134306; mouse monoclonal) from Santa Cruz Biotechnology, Dallas, TX, USA, and
anti-GAPDH (Millipore, Bedford, MD, USA) was used as the loading control. Following
blocking, the membranes were incubated with indicated primary antibodies followed by
corresponding secondary antibodies. The immunoreactive bands were generated with an
ECL-plus chemiluminescence substrate (Perkin-Elmer, Waltham, MA, USA) and taken with
ImageQuant LAS 4000 Mini (GE Healthcare, Piscataway, NJ, USA). Each densitometric
value was expressed as the mean ± standard deviation.

4.8. ELISA Analysis

An Il-6 ELISA kit (Detection Range: 7.8–2500 pg/mL; Sensitivity: <2 pg/mL) was used
in the present study (Thermo Fisher Scientific, Waltham, MA, USA). IL-6 concentrations
were quantified with an ELISA filter on a microplate reader with a 450 nm filter (MRX;
Dynatech Laboratories, Chantilly, VA, USA) and each individual model was evaluated
three times.

4.9. Cell Transfection

We constructed pcDNA3.1-CTBP1-AS2 (CTBP1-AS2) and pcDNA3.1 empty vector
(Vector). For cell transfection, PDLFs in the logarithmic phase were transfected with these
plasmids using Lipofectamine 2000 (Invitrogen, Carlsbad, CA, USA) prior to 48 h treatment
with LPS and AGEs. Wound healing, cell senescence, and ROS production were then
measured in the AGE+LPS-induced cells.

4.10. MiRNA-Targeting Gene Prediction and Dual-Luciferase Reporter Assay

The wild-type CTBP1-AS2-3′UTR was cloned into the β-gal control plasmid according
to the manufacturer’s protocol. The mutant reporter was generated by replacing the original
sequence ACGUUUU in the wild-type reporter with GCUAAUU. The ß-galactosidase
activity of vector alone plasmid, the wild-type reporter, and the mutant reporter were
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normalized using the luciferase activity of a cotransfected plasmid expressing luciferase in
order to represent background reporter activity. The reporter plasmid and miR-155 mimic
or miR-Scramble were cotransfected into cells using a Lipofectamine 2000 reagent (LF2000,
Invitrogen, Carlsbad, CA, USA). Firefly luciferase activity after normalizing to transfection
efficiency represented reporter activity.

4.11. Lentiviral-Mediated RNAi for Silencing TGIF2

The pLV-RNAi vector was purchased from Biosettia Inc. (San Diego, CA, USA). The
method of cloning the double-stranded shRNA sequence followed the manufacturer’s
protocol. The oligonucleotide sequence of lentiviral vectors expressing shRNA that targets
human TGIF2 was synthesized and cloned into pLVRNAi to generate a lentiviral expres-
sion vector. The target sequences for TGIF2 are listed as follows: Sh-TGIF2-1 5′-AAAA-
GCTGCCAAATTCAGTCCTATTGGATCCAATAGGACTGAATTTGGCAGC-3′. Lentivirus
production was performed by cotransfection of plasmid DNA mixture with lentivector
plus helper plasmids (VSVG and Gag-Pol) into 293T cells (American Type Culture Collec-
tion, Manassas, VA, USA) using Lipofectamine 2000 (LF2000, Invitrogen, Carlsbad, CA,
USA) [63].

4.12. RNA Isolation and Quantitative Reverse Transcription PCR (qRT-PCR)

Total RNA was isolated using TRIzol reagent (Invitrogen), and reversely transcribed
to cDNA using the PrimeScriptcDNA Synthesis kit (Takara, Dalian, China), according
to the manufacturer’s instructions. The synthesized cDNA was then used for qRT-PCR
analysis using the SYBR Green Kit (Takara). The transcript levels of target genes were
calculated according to the 2−∆∆CT method using U6 or GAPDH as the internal ref-
erence. The specific primers used were as follows: CTBP1-AS2 (Forward primer) 5′-
CGTTCTGATTCCTGGCATGG-3′, (Reverse primer) 5′-TACCTCATCGACGTTCCCAG-
3. GAPDH (Forward primer) 5′-TGCACCACCAACTGCTTAGC-3′, (Reverse primer) 5′-
GGCATGGACTGTGGTCATGAG-3′. miR-155 (Forward primer) GTTAATGCTAATTGT-
GATAGGGG, (Reverse primer) CATCATACCCTGTTAATGCTAAC. U6 (Forward primer)
5′-GAGGGTTAATGCTAATCGTGATAGG-3′, (Reverse primer) 5′-GCACAGAATCAA-
CACGACTCACTAT-3′.

4.13. Statistical Analysis

Statistical Package of Social Sciences software (version 13.0) (SPSS, Inc., Chicago, IL,
USA) was used for statistical analysis. Data from at least triplicate analysis were shown as
mean ± SEM. Study variables were tested for normal distribution using the Shapiro–Wilk
test. Intergroup comparisons of means in each parametric and non-parametric parameter
were performed using the two-sample t-test and Wilcoxon rank sum test, respectively.
Statistical significance was set at a two-tailed p-value of <0.05 for all tests.

5. Conclusions

In conclusion, ErL demonstrated anti-inflammaging influence in diabetes-associated
periodontitis in vitro and it is proposed to be mediated through the CTBP1-AS2/miR-
155/SIRT1 axis and, therefore, could be a potential therapeutic target in DM patients
with periodontitis.
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