Bovine Pluripotent Stem Cells: Current Status and Prospects
Abstract
:1. Introduction
2. Category of PSC Pluripotency
3. Establishment of Bovine ESCs (bESCs)
4. Establishment of Bovine iPSCs (biPSCs)
4.1. Vectors
4.2. Transcription Factors
4.3. Chemical Small Molecules
4.4. Culture System
4.5. Source Cells
5. Establishment of bEPSCs
6. Challenges
7. Application Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sheng, C.; Zheng, Q.; Wu, J.; Xu, Z.; Wang, L.; Li, W.; Zhang, H.; Zhao, X.-Y.; Liu, L.; Wang, Z.; et al. Direct Reprogramming of Sertoli Cells into Multipotent Neural Stem Cells by Defined Factors. Cell Res. 2012, 22, 208–218. [Google Scholar] [CrossRef] [PubMed]
- Koh, S.; Piedrahita, J.A. From “ES-like” Cells to Induced Pluripotent Stem Cells: A Historical Perspective in Domestic Animals. Theriogenology 2014, 81, 103–111. [Google Scholar] [CrossRef] [PubMed]
- De Los Angeles, A.; Ferrari, F.; Xi, R.; Fujiwara, Y.; Benvenisty, N.; Deng, H.; Hochedlinger, K.; Jaenisch, R.; Lee, S.; Leitch, H.G.; et al. Hallmarks of Pluripotency. Nature 2015, 525, 469–478. [Google Scholar] [CrossRef] [PubMed]
- Scarfone, R.A.; Pena, S.M.; Russell, K.A.; Betts, D.H.; Koch, T.G. The Use of Induced Pluripotent Stem Cells in Domestic Animals: A Narrative Review. BMC Vet. Res. 2020, 16, 477. [Google Scholar] [CrossRef] [PubMed]
- Wolf, D.P.; Morey, R.; Kang, E.; Ma, H.; Hayama, T.; Laurent, L.C.; Mitalipov, S. Concise Review: Embryonic Stem Cells Derived by Somatic Cell Nuclear Transfer: A Horse in the Race? Stem Cells 2017, 35, 26–34. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Izpisua Belmonte, J.C. Dynamic Pluripotent Stem Cell States and Their Applications. Cell Stem Cell 2015, 17, 509–525. [Google Scholar] [CrossRef] [PubMed]
- Pieri, N.C.G.; de Souza, A.F.; Botigelli, R.C.; Machado, L.S.; Ambrosio, C.E.; Dos Santos Martins, D.; de Andrade, A.F.C.; Meirelles, F.V.; Hyttel, P.; Bressan, F.F. Stem Cells on Regenerative and Reproductive Science in Domestic Animals. Vet. Res. Commun. 2019, 43, 7–16. [Google Scholar] [CrossRef]
- Chehelgerdi, M.; BehdarvandDehkordi, F.; Chehelgerdi, M.; Kabiri, H.; Salehian-Dehkordi, H.; Abdolvand, M.; Salmanizadeh, S.; Rashidi, M.; Niazmand, A.; Ahmadi, S.; et al. Exploring the Promising Potential of Induced Pluripotent Stem Cells in Cancer Research and Therapy. Mol. Cancer 2023, 22, 189. [Google Scholar] [CrossRef]
- Cao, J.; Li, W.; Li, J.; Mazid, M.A.; Li, C.; Jiang, Y.; Jia, W.; Wu, L.; Liao, Z.; Sun, S.; et al. Live Birth of Chimeric Monkey with High Contribution from Embryonic Stem Cells. Cell 2023, 186, 4996–5014.e24. [Google Scholar] [CrossRef]
- Bissiere, S.; Hernandez, B.; Rubio, C.; Simón, C.; Plachta, N. Updates on Preimplantation Embryo Research. Fertil. Steril. 2023, 120, 467–472. [Google Scholar] [CrossRef]
- White, M.D.; Zenker, J.; Bissiere, S.; Plachta, N. Instructions for Assembling the Early Mammalian Embryo. Dev. Cell 2018, 45, 667–679. [Google Scholar] [CrossRef]
- Peng, G.; Suo, S.; Cui, G.; Yu, F.; Wang, R.; Chen, J.; Chen, S.; Liu, Z.; Chen, G.; Qian, Y.; et al. Molecular Architecture of Lineage Allocation and Tissue Organization in Early Mouse Embryo. Nature 2019, 572, 528–532. [Google Scholar] [CrossRef]
- Hanna, J.H.; Saha, K.; Jaenisch, R. Pluripotency and Cellular Reprogramming: Facts, Hypotheses, Unresolved Issues. Cell 2010, 143, 508–525. [Google Scholar] [CrossRef] [PubMed]
- Kinoshita, M.; Barber, M.; Mansfield, W.; Cui, Y.; Spindlow, D.; Stirparo, G.G.; Dietmann, S.; Nichols, J.; Smith, A. Capture of Mouse and Human Stem Cells with Features of Formative Pluripotency. Cell Stem Cell 2021, 28, 453–471.e8. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Li, J.; Yu, L.; Sun, H.-X.; Li, J.; Dong, G.; Hu, Y.; Li, Y.; Shen, Y.; Wu, J.; et al. Cross-Species Single-Cell Transcriptomic Analysis Reveals Pre-Gastrulation Developmental Differences among Pigs, Monkeys, and Humans. Cell Discov. 2021, 7, 8. [Google Scholar] [CrossRef] [PubMed]
- Evans, M.J.; Kaufman, M.H. Establishment in Culture of Pluripotential Cells from Mouse Embryos. Nature 1981, 292, 154–156. [Google Scholar] [CrossRef] [PubMed]
- Saito, S.; Strelchenko, N.; Niemann, H. Bovine Embryonic Stem Cell-like Cell Lines Cultured over Several Passages. Rouxs Arch. Dev. Biol. 1992, 201, 134–141. [Google Scholar] [CrossRef] [PubMed]
- Soto, D.A.; Ross, P.J. Pluripotent Stem Cells and Livestock Genetic Engineering. Transgenic Res. 2016, 25, 289–306. [Google Scholar] [CrossRef]
- Diamante, L.; Martello, G. Metabolic Regulation in Pluripotent Stem Cells. Curr. Opin. Genet. Dev. 2022, 75, 101923. [Google Scholar] [CrossRef] [PubMed]
- Thomson, J.A.; Itskovitz-Eldor, J.; Shapiro, S.S.; Waknitz, M.A.; Swiergiel, J.J.; Marshall, V.S.; Jones, J.M. Embryonic Stem Cell Lines Derived from Human Blastocysts. Science 1998, 282, 1145–1147. [Google Scholar] [CrossRef]
- Wang, L.; Duan, E.; Sung, L.; Jeong, B.-S.; Yang, X.; Tian, X.C. Generation and Characterization of Pluripotent Stem Cells from Cloned Bovine Embryos. Biol. Reprod. 2005, 73, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Song, M.; Yang, X.; Liu, X.; Liu, K.; Jiao, C.; Wang, J.; Bai, C.; Su, G.; Liu, X.; et al. Establishment of Bovine Embryonic Stem Cells after Knockdown of CDX2. Sci. Rep. 2016, 6, 28343. [Google Scholar] [CrossRef] [PubMed]
- Nicola, N.A.; Babon, J.J. Leukemia Inhibitory Factor (LIF). Cytokine Growth Factor Rev. 2015, 26, 533–544. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Jung, Y.-G.; Roh, S. Microarray Analysis of Embryo-Derived Bovine Pluripotent Cells: The Vulnerable State of Bovine Embryonic Stem Cells. PLoS ONE 2017, 12, e0173278. [Google Scholar] [CrossRef] [PubMed]
- Furusawa, T.; Ohkoshi, K.; Kimura, K.; Matsuyama, S.; Akagi, S.; Kaneda, M.; Ikeda, M.; Hosoe, M.; Kizaki, K.; Tokunaga, T. Characteristics of Bovine Inner Cell Mass-Derived Cell Lines and Their Fate in Chimeric Conceptuses. Biol. Reprod. 2013, 89, 28. [Google Scholar] [CrossRef] [PubMed]
- Bogliotti, Y.S.; Wu, J.; Vilarino, M.; Okamura, D.; Soto, D.A.; Zhong, C.; Sakurai, M.; Sampaio, R.V.; Suzuki, K.; Izpisua Belmonte, J.C.; et al. Efficient Derivation of Stable Primed Pluripotent Embryonic Stem Cells from Bovine Blastocysts. Proc. Natl. Acad. Sci. USA 2018, 115, 2090–2095. [Google Scholar] [CrossRef] [PubMed]
- Soto, D.A.; Navarro, M.; Zheng, C.; Halstead, M.M.; Zhou, C.; Guiltinan, C.; Wu, J.; Ross, P.J. Simplification of Culture Conditions and Feeder-Free Expansion of Bovine Embryonic Stem Cells. Sci. Rep. 2021, 11, 11045. [Google Scholar] [CrossRef]
- Cibelli, J.B.; Stice, S.L.; Golueke, P.J.; Kane, J.J.; Jerry, J.; Blackwell, C.; Ponce de León, F.A.; Robl, J.M. Transgenic Bovine Chimeric Offspring Produced from Somatic Cell-Derived Stem-like Cells. Nat. Biotechnol. 1998, 16, 642–646. [Google Scholar] [CrossRef]
- Mitalipova, M.; Beyhan, Z.; First, N.L. Pluripotency of Bovine Embryonic Cell Line Derived from Precompacting Embryos. Cloning 2001, 3, 59–67. [Google Scholar] [CrossRef]
- Saito, S.; Sawai, K.; Ugai, H.; Moriyasu, S.; Minamihashi, A.; Yamamoto, Y.; Hirayama, H.; Kageyama, S.; Pan, J.; Murata, T.; et al. Generation of Cloned Calves and Transgenic Chimeric Embryos from Bovine Embryonic Stem-like Cells. Biochem. Biophys. Res. Commun. 2003, 309, 104–113. [Google Scholar] [CrossRef]
- Yadav, P.S.; Kues, W.A.; Herrmann, D.; Carnwath, J.W.; Niemann, H. Bovine ICM Derived Cells Express the Oct4 Ortholog. Mol. Reprod. Dev. 2005, 72, 182–190. [Google Scholar] [CrossRef]
- Takahashi, K.; Yamanaka, S. Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors. Cell 2006, 126, 663–676. [Google Scholar] [CrossRef]
- Takahashi, K.; Tanabe, K.; Ohnuki, M.; Narita, M.; Ichisaka, T.; Tomoda, K.; Yamanaka, S. Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors. Cell 2007, 131, 861–872. [Google Scholar] [CrossRef]
- Cong, X.; Zhang, S.M.; Ellis, M.W.; Luo, J. Large Animal Models for the Clinical Application of Human Induced Pluripotent Stem Cells. Stem Cells Dev. 2019, 28, 1288–1298. [Google Scholar] [CrossRef]
- Han, X.; Han, J.; Ding, F.; Cao, S.; Lim, S.S.; Dai, Y.; Zhang, R.; Zhang, Y.; Lim, B.; Li, N. Generation of Induced Pluripotent Stem Cells from Bovine Embryonic Fibroblast Cells. Cell Res. 2011, 21, 1509–1512. [Google Scholar] [CrossRef]
- Talluri, T.R.; Kumar, D.; Glage, S.; Garrels, W.; Ivics, Z.; Debowski, K.; Behr, R.; Niemann, H.; Kues, W.A. Derivation and Characterization of Bovine Induced Pluripotent Stem Cells by Transposon-Mediated Reprogramming. Cell. Reprogramming 2015, 17, 131–140. [Google Scholar] [CrossRef]
- Zhao, L.; Wang, Z.; Zhang, J.; Yang, J.; Gao, X.; Wu, B.; Zhao, G.; Bao, S.; Hu, S.; Liu, P.; et al. Characterization of the Single-Cell Derived Bovine Induced Pluripotent Stem Cells. Tissue Cell 2017, 49, 521–527. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; An, X.L.; Yu, H.; Cai, N.N.; Zhai, Y.H.; Li, Q.; Cheng, H.; Zhang, S.; Tang, B.; Li, Z.Y.; et al. Transcriptomeprofile of bovine iPSCs derived from Sertoli Cells. Theriogenology 2020, 146, 120–132. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Cai, N.-N.; An, X.-L.; Zhu, W.-Q.; Yang, R.; Tang, B.; Li, Z.-Y.; Zhang, X.-M. Naïve-like Conversion of Bovine Induced Pluripotent Stem Cells from Sertoli Cells. Theriogenology 2023, 196, 68–78. [Google Scholar] [CrossRef] [PubMed]
- Rony, I.K.; Baten, A.; Bloomfield, J.A.; Islam, M.E.; Billah, M.M.; Islam, K.D. Inducing Pluripotency in Vitro: Recent Advances and Highlights in Induced Pluripotent Stem Cells Generation and Pluripotency Reprogramming. Cell Prolif. 2015, 48, 140–156. [Google Scholar] [CrossRef] [PubMed]
- Kumar, D.; Anand, T.; Talluri, T.R.; Kues, W.A. Potential of Transposon-Mediated Cellular Reprogramming towards Cell-Based Therapies. World J. Stem Cells 2020, 12, 527–544. [Google Scholar] [CrossRef] [PubMed]
- Canizo, J.R.; Vazquez Echegaray, C.; Klisch, D.; Aller, J.F.; Paz, D.A.; Alberio, R.H.; Alberio, R.; Guberman, A.S. Exogenous Human OKSM Factors Maintain Pluripotency Gene Expression of Bovine and Porcine iPS-like Cells Obtained with STEMCCA Delivery System. BMC Res. Notes 2018, 11, 509. [Google Scholar] [CrossRef] [PubMed]
- Sumer, H.; Liu, J.; Malaver-Ortega, L.F.; Lim, M.L.; Khodadadi, K.; Verma, P.J. NANOG Is a Key Factor for Induction of Pluripotency in Bovine Adult Fibroblasts. J. Anim. Sci. 2011, 89, 2708–2716. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.-C.; Kuo, K.-K.; Wuputra, K.; Lin, S.-H.; Ku, C.-C.; Yang, Y.-H.; Wang, S.-W.; Wang, S.-W.; Wu, D.-C.; Wu, C.-C.; et al. Bovine Induced Pluripotent Stem Cells Are More Resistant to Apoptosis than Testicular Cells in Response to Mono-(2-Ethylhexyl) Phthalate. Int. J. Mol. Sci. 2014, 15, 5011–5031. [Google Scholar] [CrossRef]
- Pillai, V.V.; Koganti, P.P.; Kei, T.G.; Gurung, S.; Butler, W.R.; Selvaraj, V. Efficient Induction and Sustenance of Pluripotent Stem Cells from Bovine Somatic Cells. Biol. Open 2021, 10, bio058756. [Google Scholar] [CrossRef]
- Su, Y.; Wang, L.; Fan, Z.; Liu, Y.; Zhu, J.; Kaback, D.; Oudiz, J.; Patrick, T.; Yee, S.P.; Tian, X.C.; et al. Establishment of Bovine-Induced Pluripotent Stem Cells. Int. J. Mol. Sci. 2021, 22, 10489. [Google Scholar] [CrossRef]
- Chen, J.; Gao, Y.; Huang, H.; Xu, K.; Chen, X.; Jiang, Y.; Li, H.; Gao, S.; Tao, Y.; Wang, H.; et al. The Combination of Tet1 with Oct4 Generates High-Quality Mouse-Induced Pluripotent Stem Cells. Stem Cells 2015, 33, 686–698. [Google Scholar] [CrossRef]
- Gao, Y.; Chen, J.; Li, K.; Wu, T.; Huang, B.; Liu, W.; Kou, X.; Zhang, Y.; Huang, H.; Jiang, Y.; et al. Replacement of Oct4 by Tet1 during iPSC Induction Reveals an Important Role of DNA Methylation and Hydroxymethylation in Reprogramming. Cell Stem Cell 2013, 12, 453–469. [Google Scholar] [CrossRef]
- Kidder, B.L.; Hu, G.; Yu, Z.-X.; Liu, C.; Zhao, K. Extended Self-Renewal and Accelerated Reprogramming in the Absence of Kdm5b. Mol. Cell. Biol. 2013, 33, 4793–4810. [Google Scholar] [CrossRef]
- Xie, B.; Zhang, H.; Wei, R.; Li, Q.; Weng, X.; Kong, Q.; Liu, Z. Histone H3 Lysine 27 Trimethylation Acts as an Epigenetic Barrier in Porcine Nuclear Reprogramming. Reproduction 2016, 151, 9–16. [Google Scholar] [CrossRef]
- Zhou, C.; Wang, Y.; Zhang, J.; Su, J.; An, Q.; Liu, X.; Zhang, M.; Wang, Y.; Liu, J.; Zhang, Y. H3K27me3 Is an Epigenetic Barrier While KDM6A Overexpression Improves Nuclear Reprogramming Efficiency. FASEB J. 2019, 33, 4638–4652. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Liang, Z.; Zhang, J.; Hu, G.; Wang, J.; Li, Y.; Guo, R.; Dong, X.; Babarinde, I.A.; Ping, W.; et al. CTCF Functions as an Insulator for Somatic Genes and a Chromatin Remodeler for Pluripotency Genes during Reprogramming. Cell Rep. 2022, 39, 110626. [Google Scholar] [CrossRef] [PubMed]
- Fan, A.; Ma, K.; An, X.; Ding, Y.; An, P.; Song, G.; Tang, L.; Zhang, S.; Zhang, P.; Tan, W.; et al. Effects of TET1 Knockdown on Gene Expression and DNA Methylation in Porcine Induced Pluripotent Stem Cells. Reproduction 2013, 146, 569–579. [Google Scholar] [CrossRef]
- Liuyang, S.; Wang, G.; Wang, Y.; He, H.; Lyu, Y.; Cheng, L.; Yang, Z.; Guan, J.; Fu, Y.; Zhu, J.; et al. Highly Efficient and Rapid Generation of Human Pluripotent Stem Cells by Chemical Reprogramming. Cell Stem Cell 2023, 30, 450–459.e9. [Google Scholar] [CrossRef]
- Hou, P.; Li, Y.; Zhang, X.; Liu, C.; Guan, J.; Li, H.; Zhao, T.; Ye, J.; Yang, W.; Liu, K.; et al. Pluripotent Stem Cells Induced from Mouse Somatic Cells by Small-Molecule Compounds. Science 2013, 341, 651–654. [Google Scholar] [CrossRef] [PubMed]
- Botigelli, R.C.; Pieri, N.C.G.; Bessi, B.W.; Machado, L.S.; Bridi, A.; de Souza, A.F.; Recchia, K.; Neto, P.F.; Ross, P.J.; Bressan, F.F.; et al. Acquisition and Maintenance of Pluripotency Are Influenced by Fibroblast Growth Factor, Leukemia Inhibitory Factor, and 2i in Bovine-Induced Pluripotent Stem Cells. Front. Cell Dev. Biol. 2022, 10, 938709. [Google Scholar] [CrossRef] [PubMed]
- Katoh, M. Therapeutics Targeting FGF Signaling Network in Human Diseases. Trends Pharmacol. Sci. 2016, 37, 1081–1096. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, H.T. MAPK Signal Pathways in the Regulation of Cell Proliferation in Mammalian Cells. Cell Res. 2002, 12, 9–18. [Google Scholar] [CrossRef]
- Kawaguchi, T.; Tsukiyama, T.; Kimura, K.; Matsuyama, S.; Minami, N.; Yamada, M.; Imai, H. Generation of Naïve Bovine Induced Pluripotent Stem Cells Using PiggyBac Transposition of Doxycycline-Inducible Transcription Factors. PLoS ONE 2015, 10, e0135403. [Google Scholar] [CrossRef]
- Ren, Y.; Ma, Z.; Yu, T.; Ling, M.; Wang, H. Methanol Fixed Fibroblasts Serve as Feeder Cells to Maintain Stem Cells in the Pluripotent State in Vitro. Sci. Rep. 2018, 8, 7780. [Google Scholar] [CrossRef]
- Cong, S.; Cao, G.; Liu, D. Effects of Different Feeder Layers on Culture of Bovine Embryonic Stem Cell-like Cells in Vitro. Cytotechnology 2014, 66, 995–1005. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Guo, B.; Xiao, Z.; Lin, H.; Zhang, X.; Song, Y.; Li, Y.; Gao, X.; Yu, J.; Shao, Z.; et al. Long Noncoding RNA CCDC144NL-AS1 Knockdown Induces Naïve-like State Conversion of Human Pluripotent Stem Cells. Stem Cell Res. Ther. 2019, 10, 220. [Google Scholar] [CrossRef] [PubMed]
- Fang, R.; Liu, K.; Zhao, Y.; Li, H.; Zhu, D.; Du, Y.; Xiang, C.; Li, X.; Liu, H.; Miao, Z.; et al. Generation of Naive Induced Pluripotent Stem Cells from Rhesus Monkey Fibroblasts. Cell Stem Cell 2014, 15, 488–497. [Google Scholar] [CrossRef] [PubMed]
- Bessi, B.W.; Botigelli, R.C.; Pieri, N.C.G.; Machado, L.S.; Cruz, J.B.; de Moraes, P.; de Souza, A.F.; Recchia, K.; Barbosa, G.; de Castro, R.V.G.; et al. Cattle In Vitro Induced Pluripotent Stem Cells Generated and Maintained in 5 or 20% Oxygen and Different Supplementation. Cells 2021, 10, 1531. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Yang, Y.; Tian, Y.; Park, J.; Dai, A.; Roberts, R.M.; Liu, Y.; Han, X. Efficient Long-Term Cryopreservation of Pluripotent Stem Cells at −80 °C. Sci. Rep. 2016, 6, 34476. [Google Scholar] [CrossRef] [PubMed]
- Heo, Y.T.; Quan, X.; Xu, Y.N.; Baek, S.; Choi, H.; Kim, N.H.; Kim, J. CRISPR/Cas9 nuclease-mediated gene knock-in in bovine-induced pluripotent cells. Stem Cells Dev. 2015, 24, 393–402. [Google Scholar] [CrossRef]
- Cravero, D.; Martignani, E.; Miretti, S.; Accornero, P.; Pauciullo, A.; Sharma, R.; Donadeu, F.X.; Baratta, M. Generation of Induced Pluripotent Stem Cells from Bovine Epithelial Cells and Partial Redirection Toward a Mammary Phenotype In Vitro. Cell. Reprogram. 2015, 17, 211–220. [Google Scholar] [CrossRef]
- Wang, S.W.; Wang, S.S.; Wu, D.C.; Lin, Y.C.; Ku, C.C.; Wu, C.C.; Chai, C.Y.; Lee, J.N.; Tsai, E.M.; Lin, C.L.; et al. Androgen receptor-mediated apoptosis in bovine testicular induced pluripotent stem cells in response to phthalate esters. Cell Death Dis. 2013, 4, e907. [Google Scholar] [CrossRef]
- Bai, C.; Li, X.; Gao, Y.; Yuan, Z.; Hu, P.; Wang, H.; Liu, C.; Guan, W.; Ma, Y. Melatonin Improves Reprogramming Efficiency and Proliferation of Bovine-Induced Pluripotent Stem Cells. J. Pineal. Res. 2016, 61, 154–167. [Google Scholar] [CrossRef]
- Mascetti, V.L.; Pedersen, R.A. Contributions of Mammalian Chimeras to Pluripotent Stem Cell Research. Cell Stem Cell 2016, 19, 163–175. [Google Scholar] [CrossRef]
- Zhao, L.; Gao, X.; Zheng, Y.; Wang, Z.; Zhao, G.; Ren, J.; Zhang, J.; Wu, J.; Wu, B.; Chen, Y.; et al. Establishment of Bovine Expanded Potential Stem Cells. Proc. Natl. Acad. Sci. USA 2021, 118, e2018505118. [Google Scholar] [CrossRef] [PubMed]
- Pillai, V.V.; Kei, T.G.; Reddy, S.E.; Das, M.; Abratte, C.; Cheong, S.H.; Selvaraj, V. Induced Pluripotent Stem Cell Generation from Bovine Somatic Cells Indicates Unmet Needs for Pluripotency Sustenance. Anim. Sci. J. 2019, 90, 1149–1160. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Zhu, J.; Salman, S.; Tang, Y. Induced Pluripotent Stem Cells from Farm Animals. J Anim Sci. 2020, 98, skaa343. [Google Scholar] [CrossRef] [PubMed]
- Ho, R.; Chronis, C.; Plath, K. Mechanistic Insights into Reprogramming to Induced Pluripotency. J. Cell. Physiol. 2011, 226, 868–878. [Google Scholar] [CrossRef] [PubMed]
- Brosh, R.; Assia-Alroy, Y.; Molchadsky, A.; Bornstein, C.; Dekel, E.; Madar, S.; Shetzer, Y.; Rivlin, N.; Goldfinger, N.; Sarig, R.; et al. P53 Counteracts Reprogramming by Inhibiting Mesenchymal-to-Epithelial Transition. Cell Death Differ. 2013, 20, 312–320. [Google Scholar] [CrossRef]
- Hanahan, D.; Weinberg, R.A. Hallmarks of Cancer: The next Generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef]
- Lancaster, M.A.; Knoblich, J.A. Organogenesis in a Dish: Modeling Development and Disease Using Organoid Technologies. Science 2014, 345, 1247125. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, L.; Tang, B.; Xie, G.; Yang, R.; Zhang, B.; Wang, Y.; Zhang, Y.; Jiang, D.; Zhang, X. Bovine Pluripotent Stem Cells: Current Status and Prospects. Int. J. Mol. Sci. 2024, 25, 2120. https://doi.org/10.3390/ijms25042120
Chen L, Tang B, Xie G, Yang R, Zhang B, Wang Y, Zhang Y, Jiang D, Zhang X. Bovine Pluripotent Stem Cells: Current Status and Prospects. International Journal of Molecular Sciences. 2024; 25(4):2120. https://doi.org/10.3390/ijms25042120
Chicago/Turabian StyleChen, Lanxin, Bo Tang, Guanghong Xie, Rui Yang, Boyang Zhang, Yueqi Wang, Yan Zhang, Daozhen Jiang, and Xueming Zhang. 2024. "Bovine Pluripotent Stem Cells: Current Status and Prospects" International Journal of Molecular Sciences 25, no. 4: 2120. https://doi.org/10.3390/ijms25042120
APA StyleChen, L., Tang, B., Xie, G., Yang, R., Zhang, B., Wang, Y., Zhang, Y., Jiang, D., & Zhang, X. (2024). Bovine Pluripotent Stem Cells: Current Status and Prospects. International Journal of Molecular Sciences, 25(4), 2120. https://doi.org/10.3390/ijms25042120