Pleiotropic Effects of PhaR Regulator in Bradyrhizobium diazoefficiens Microaerobic Metabolism
Abstract
:1. Introduction
2. Results
2.1. Mutation in the phaR Gene Affects Growth Rate, PHB Accumulation, RNA Levels, and Protein Abundance under Microaerobic Conditions
2.2. PhaR Negatively Controls PHB Metabolism
2.3. PhaR Regulates Both the FixK2 and NifA Regulons
2.4. PhaR Controls Carbon and Nitrogen Allocation of Key Metabolic Central Pathways
2.5. PhaR Showed a Remarkable and Diverse Regulatory Function
2.6. Other Genes/Proteins Are Controlled by PhaR
2.7. Identification of PhaR Direct Targets
2.8. Functional Mutagenesis of the phaP1 Promoter
2.9. PhaR Binds to DNA as a Multimeric Form
2.10. Identification of PHB Granule-Associated Proteins in Wild Type Cells
3. Discussion
4. Materials and Methods
4.1. Bacterial Strains and Culture Conditions
4.2. PHB Extraction and Quantification
4.3. Microarray Experiments and Data Analyses
4.4. PhaR–DNA-Binding Site Prediction
4.5. Total Protein Isolation, Identification, and Quantification
4.6. Overexpression and Purification of a Recombinant Untagged PhaR Protein
4.7. Electrophoretic Mobility Shift DNA Assays
4.8. Gel Filtration
4.9. PHB Granules Isolation and Associated Protein Analysis
4.10. Databases
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Quelas, J.I.; Mongiardini, E.J.; Perez-Gimenez, J.; Parisi, G.; Lodeiro, A.R. Analysis of two polyhydroxyalkanoate synthases in Bradyrhizobium japonicum USDA 110. J. Bacteriol. 2013, 195, 3145–3155. [Google Scholar] [CrossRef] [PubMed]
- Quelas, J.I.; Mesa, S.; Mongiardini, E.J.; Jendrossek, D.; Lodeiro, A.R. Regulation of polyhydroxybutyrate synthesis in the soil bacterium Bradyrhizobium diazoefficiens. Appl. Environ. Microbiol. 2016, 82, 4299–4308. [Google Scholar] [CrossRef]
- Trainer, M.A.; Charles, T.C. The role of PHB metabolism in the symbiosis of rhizobia with legumes. Appl. Microbiol. Biotechnol. 2006, 71, 377–386. [Google Scholar] [CrossRef]
- Kaneko, T.; Nakamura, Y.; Sato, S.; Minamisawa, K.; Uchiumi, T.; Sasamoto, S.; Watanabe, A.; Idesawa, K.; Iriguchi, M.; Kawashima, K.; et al. Complete genomic sequence of nitrogen-fixing symbiotic bacterium Bradyrhizobium japonicum USDA 110. DNA Res. 2002, 9, 189–197. [Google Scholar] [CrossRef]
- Yoshida, K.; Takemoto, Y.; Sotsuka, T.; Tanaka, K.; Takenaka, S. PhaP phasins play a principal role in poly-beta-hydroxybutyrate accumulation in free-living Bradyrhizobium japonicum. BMC Microbiol. 2013, 13, 290. [Google Scholar] [CrossRef]
- Kutralam-Muniasamy, G.; Perez-Guevara, F. Evolutionary relationships between the transcriptional repressors of the polyhydroxyalkanoate reserve storage system in prokaryotes: Conserved but phylogenetically heterogeneous. Gene 2020, 735, 144397. [Google Scholar] [CrossRef] [PubMed]
- Maehara, A.; Taguchi, S.; Nishiyama, T.; Yamane, T.; Doi, Y. A repressor protein, PhaR, regulates polyhydroxyalkanoate (PHA) synthesis via its direct interaction with PHA. J. Bacteriol. 2002, 184, 3992–4002. [Google Scholar] [CrossRef] [PubMed]
- Pötter, M.; Madkour, M.H.; Mayer, F.; Steinbuchel, A. Regulation of phasin expression and polyhydroxyalkanoate (PHA) granule formation in Ralstonia eutropha H16. Microbiology 2002, 148, 2413–2426. [Google Scholar] [CrossRef]
- Yamada, M.; Yamashita, K.; Wakuda, A.; Ichimura, K.; Maehara, A.; Maeda, M.; Taguchi, S. Autoregulator protein PhaR for biosynthesis of polyhydroxybutyrate [P(3HB)] possibly has two separate domains that bind to the target DNA and P(3HB): Functional mapping of amino acid residues responsible for DNA binding. J. Bacteriol. 2007, 189, 1118–1127. [Google Scholar] [CrossRef]
- Maestro, B.; Sanz, J.M. Polyhydroxyalkanoate-associated phasins as phylogenetically heterogeneous, multipurpose proteins. Microb. Biotechnol. 2017, 10, 1323–1337. [Google Scholar] [CrossRef]
- de Koning, E.A.; Panjalingam, M.; Tran, J.; Eckhart, M.R.; Dahlberg, P.D.; Shapiro, L. The PHB granule biogenesis pathway in Caulobacter. bioRxiv 2023. [Google Scholar] [CrossRef]
- Pötter, M.; Muller, H.; Steinbuchel, A. Influence of homologous phasins (PhaP) on PHA accumulation and regulation of their expression by the transcriptional repressor PhaR in Ralstonia eutropha H16. Microbiology 2005, 151, 825–833. [Google Scholar] [CrossRef]
- Ushimaru, K.; Motoda, Y.; Numata, K.; Tsuge, T. Phasin proteins activate Aeromonas caviae polyhydroxyalkanoate (PHA) synthase but not Ralstonia eutropha PHA synthase. Appl. Environ. Microbiol. 2014, 80, 2867–2873. [Google Scholar] [CrossRef]
- Mezzina, M.P.; Pettinari, M.J. Phasins, Multifaceted polyhydroxyalkanoate granule-associated proteins. Appl. Environ. Microbiol. 2016, 82, 5060–5067. [Google Scholar] [CrossRef]
- Zhao, H.; Wei, H.; Liu, X.; Yao, Z.; Xu, M.; Wei, D.; Wang, J.; Wang, X.; Chen, G.Q. Structural insights on PHA binding protein PhaP from Aeromonas hydrophila. Sci. Rep. 2016, 6, 39424. [Google Scholar] [CrossRef]
- Tian, S.J.; Lai, W.J.; Zheng, Z.; Wang, H.X.; Chen, G.Q. Effect of over-expression of phasin gene from Aeromonas hydrophila on biosynthesis of copolyesters of 3-hydroxybutyrate and 3-hydroxyhexanoate. FEMS Microbiol. Lett. 2005, 244, 19–25. [Google Scholar] [CrossRef]
- Mesa, S.; Hauser, F.; Friberg, M.; Malaguti, E.; Fischer, H.M.; Hennecke, H. Comprehensive assessment of the regulons controlled by the FixLJ- FixK2-FixK1 cascade in Bradyrhizobium japonicum. J. Bacteriol. 2008, 190, 6568–6579. [Google Scholar] [CrossRef] [PubMed]
- Nishihata, S.; Kondo, T.; Tanaka, K.; Ishikawa, S.; Takenaka, S.; Kang, C.M.; Yoshida, K.I. Bradyrhizobium diazoefficiens USDA 110 PhaR functions for pleiotropic regulation of cellular processes besides PHB accumulation. BMC Microbiol. 2018, 18, 156. [Google Scholar] [CrossRef] [PubMed]
- Cabrera, J.J.; Jimenez-Leiva, A.; Tomas-Gallardo, L.; Parejo, S.; Casado, S.; Torres, M.J.; Bedmar, E.J.; Delgado, M.J.; Mesa, S. Dissection of FixK2 protein-DNA interaction unveils new insights into Bradyrhizobium diazoefficiens lifestyles control. Environ. Microbiol. 2021, 23, 6194–6209. [Google Scholar] [CrossRef] [PubMed]
- Hauser, F.; Pessi, G.; Friberg, M.; Weber, C.; Rusca, N.; Lindemann, A.; Fischer, H.M.; Hennecke, H. Dissection of the Bradyrhizobium japonicum NifA+σ54 regulon, and identification of a ferredoxin gene (fdxN) for symbiotic nitrogen fixation. Mol. Genet. Genom. 2007, 278, 255–271. [Google Scholar] [CrossRef] [PubMed]
- Lindemann, A.; Moser, A.; Pessi, G.; Hauser, F.; Friberg, M.; Hennecke, H.; Fischer, H.M. New target genes controlled by the Bradyrhizobium japonicum two-component regulatory system RegSR. J. Bacteriol. 2007, 189, 8928–8943. [Google Scholar] [CrossRef] [PubMed]
- Cogo, C.; Perez-Gimenez, J.; Rajeswari, C.B.; Luna, M.F.; Lodeiro, A.R. Induction by Bradyrhizobium diazoefficiens of different pathways for growth in D-mannitol or L-arabinose leading to pronounced differences in CO2 fixation, O2 consumption, and lateral-flagellum production. Front. Microbiol. 2018, 9, 1189. [Google Scholar] [CrossRef] [PubMed]
- Sosa-Saavedra, F.; León-Barrios, M.; Pérez-Galdona, R. Pentose phosphate pathway as the main route for hexose catabolism in Bradyrhizobium sp. lacking Entner–Doudoroff pathway. A role for NAD+-dependent 6-phosphogluconate dehydrogenase (decarboxylating). Soil Biol. Biochem. 2001, 33, 339–343. [Google Scholar] [CrossRef]
- Green, L.S.; Li, Y.; Emerich, D.W.; Bergersen, F.J.; Day, D.A. Catabolism of alpha-ketoglutarate by a sucA mutant of Bradyrhizobium japonicum: Evidence for an alternative tricarboxylic acid cycle. J. Bacteriol. 2000, 182, 2838–2844. [Google Scholar] [CrossRef]
- Mongiardini, E.J.; Quelas, J.I.; Dardis, C.; Althabegoiti, M.J.; Lodeiro, A.R. Transcriptional control of the lateral-flagellar genes of Bradyrhizobium diazoefficiens. J. Bacteriol. 2017, 199, e00253-17. [Google Scholar] [CrossRef]
- Kanbe, M.; Yagasaki, J.; Zehner, S.; Göttfert, M.; Aizawa, S.I. Characterization of two sets of subpolar flagella in Bradyrhizobium japonicum. J. Bacteriol. 2007, 189, 1083–1089. [Google Scholar] [CrossRef]
- Delmotte, N.; Ahrens, C.H.; Knief, C.; Qeli, E.; Koch, M.; Fischer, H.M.; Vorholt, J.A.; Hennecke, H.; Pessi, G. An integrated proteomics and transcriptomics reference data set provides new insights into the Bradyrhizobium japonicum bacteroid metabolism in soybean root nodules. Proteomics 2010, 10, 1391–1400. [Google Scholar] [CrossRef] [PubMed]
- Pang, Y.L.; Abo, R.; Levine, S.S.; Dedon, P.C. Diverse cell stresses induce unique patterns of tRNA up- and down-regulation: tRNA-seq for quantifying changes in tRNA copy number. Nucleic Acid Res. 2014, 42, e170. [Google Scholar] [CrossRef]
- Crooks, G.E.; Hon, G.; Chandonia, J.M.; Brenner, S.E. WebLogo: A sequence logo generator. Genome Res. 2004, 14, 1188–1190. [Google Scholar] [CrossRef]
- Frith, M.C.; Saunders, N.F.; Kobe, B.; Bailey, T.L. Discovering sequence motifs with arbitrary insertions and deletions. PLoS Comput. Biol. 2008, 4, e1000071. [Google Scholar] [CrossRef]
- Smith, B.J. SDS polyacrylamide gel electrophoresis of proteins. Methods Mol. Biol. 1984, 1, 41–55. [Google Scholar]
- Maehara, A.; Doi, Y.; Nishiyama, T.; Takagi, Y.; Ueda, S.; Nakano, H.; Yamane, T. PhaR, a protein of unknown function conserved among short-chain-length polyhydroxyalkanoic acids producing bacteria, is a DNA-binding protein and represses Paracoccus denitrificans phaP expression in vitro. FEMS Microbiol. Lett. 2001, 12, 9–15. [Google Scholar] [CrossRef]
- Liebergesell, M.; Schmidt, B.; Steinbüchel, A. Isolation and identification of granule-associated proteins relevant for poly(3-hydroxyalkanoic acid) biosynthesis in Chromatium vinosum D. FEMS Microbiol. Lett. 1992, 78, 227–232. [Google Scholar] [CrossRef]
- Jendrossek, D.; Pfeiffer, D. New insights in the formation of polyhydroxyalkanoate granules (carbonosomes) and novel functions of poly(3-hydroxybutyrate). Environ. Microbiol. 2014, 16, 2357–2373. [Google Scholar] [CrossRef] [PubMed]
- Sznajder, A.; Pfeiffer, D.; Jendrossek, D. Comparative proteome analysis reveals four novel polyhydroxybutyrate (PHB) granule-associated proteins in Ralstonia eutropha H16. Appl. Environ. Microbiol. 2015, 81, 1847–1858. [Google Scholar] [CrossRef]
- Ruth, K.; de Roo, G.; Egli, T.; Ren, Q. Identification of two acyl-CoA synthetases from Pseudomonas putida Gpo1: One is located at the surface of polyhydroxyalkanoates granules. Biomacromolecules 2008, 9, 1652–1659. [Google Scholar] [CrossRef] [PubMed]
- Ren, Q.; de Roo, G.; Witholt, B.; Zinn, M.; Thony-Meyer, L. Overexpression and characterization of medium-chain-length polyhydroxyalkanoate granule bound polymerases from Pseudomonas putida Gpo1. Microb. Cell Factories 2009, 8, 60. [Google Scholar] [CrossRef] [PubMed]
- Tirapelle, E.F.; Muller-Santos, M.; Tadra-Sfeir, M.Z.; Kadowaki, M.A.; Steffens, M.B.; Monteiro, R.A.; Souza, E.M.; Pedrosa, F.O.; Chubatsu, L.S. Identification of proteins associated with polyhydroxybutyrate granules from Herbaspirillum seropedicae SmR1-old partners, new players. PloS ONE 2013, 8, e75066. [Google Scholar] [CrossRef]
- Lindemann, A.; Koch, M.; Pessi, G.; Muller, A.J.; Balsiger, S.; Hennecke, H.; Fischer, H.M. Host-specific symbiotic requirement of BdeAB, a RegR-controlled RND-type efflux system in Bradyrhizobium japonicum. FEMS Microbiol. Lett. 2010, 312, 184–191. [Google Scholar] [CrossRef]
- Shimizu, T.; Teramoto, H.; Inui, M. Construction of a Rhodobacter sphaeroides strain that efficiently produces hydrogen gas from acetate without poly(β-Hydroxybutyrate) accumulation: Insight into the role of PhaR in acetate metabolism. Appl. Environ. Microbiol. 2022, 88, e00507-22. [Google Scholar] [CrossRef]
- Jin, H.; Nikolau, B.J. Role of genetic redundancy in polyhydroxyalkanoate (PHA) polymerases in PHA biosynthesis in Rhodospirillum rubrum. J. Bacteriol. 2012, 194, 5522–5529. [Google Scholar] [CrossRef]
- McKinlay, J.B.; Harwood, C.S. Carbon dioxide fixation as a central redox cofactor recycling mechanism in bacteria. Proc. Natl. Acad. Sci. USA 2010, 107, 11669–11675. [Google Scholar] [CrossRef] [PubMed]
- Gourion, B.; Delmotte, N.; Bonaldi, K.; Nouwen, N.; Vorholt, J.A.; Giraud, E. Bacterial RuBisCO is required for efficient Bradyrhizobium/Aeschynomene symbiosis. PloS ONE 2011, 6, e21900. [Google Scholar] [CrossRef]
- Launay, H.; Avilan, L.; Gerard, C.; Parsiegla, G.; Receveur-Brechot, V.; Gontero, B.; Carriere, F. Location of the photosynthetic carbon metabolism in microcompartments and separated phases in microalgal cells. FEBS Lett. 2023, 597, 2853–2878. [Google Scholar] [CrossRef] [PubMed]
- Qi, Q.; Steinbüchel, A.; Rehm, B.H.A. In vitro synthesis of poly(3-hydroxydecanoate): Purification and enzymatic characterization of type II polyhydroxyalkanoate synthases PhaC1 and PhaC2 from Pseudomonas aeruginosa. Appl. Microbiol. Biotechnol. 2000, 54, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Uchino, K.; Saito, T.; Gebauer, B.; Jendrossek, D. Isolated poly(3-hydroxybutyrate) (PHB) granules are complex bacterial organelles catalyzing formation of PHB from acetyl coenzyme A (CoA) and degradation of PHB to acetyl-CoA. J. Bacteriol. 2007, 189, 8250–8256. [Google Scholar] [CrossRef] [PubMed]
- Wolfe, A.J. The acetate switch. Microbiol. Mol. Biol. Rev. 2005, 69, 12–50. [Google Scholar] [CrossRef] [PubMed]
- Wolfe, A.J. Physiologically relevant small phosphodonors link metabolism to signal transduction. Curr. Opin. Microbiol. 2010, 13, 204–209. [Google Scholar] [CrossRef]
- Galan, J.E.; Nakayama, K.; Curtiss, R., 3rd. Cloning and characterization of the asd gene of Salmonella typhimurium: Use in stable maintenance of recombinant plasmids in Salmonella vaccine strains. Gene 1990, 94, 29–35. [Google Scholar] [CrossRef]
- Harb, O.S.; Abu Kwaik, Y. Identification of the aspartate-beta-semialdehyde dehydrogenase gene of Legionella pneumophila and characterization of a null mutant. Infect. Immun. 1998, 66, 1898–1903. [Google Scholar] [CrossRef]
- Quelas, J.I.; Althabegoiti, M.J.; Jimenez-Sanchez, C.; Melgarejo, A.A.; Marconi, V.I.; Mongiardini, E.J.; Trejo, S.A.; Mengucci, F.; Ortega-Calvo, J.J.; Lodeiro, A.R. Swimming performance of Bradyrhizobium diazoefficiens is an emergent property of its two flagellar systems. Sci. Rep. 2016, 7, 23841. [Google Scholar] [CrossRef] [PubMed]
- Althabegoiti, M.J.; Covelli, J.M.; Pérez-Giménez, J.; Quelas, J.I.; Mongiardini, E.J.; López, M.F.; López-García, S.L.; Lodeiro, A.R. Analysis of the role of the two flagella of Bradyrhizobium japonicum in competition for nodulation of soybean. FEMS Microbiol. Lett. 2011, 319, 133–139. [Google Scholar] [CrossRef]
- Long, J.; Song, K.; He, X.; Zhang, B.; Cui, X.; Song, C. Mutagenesis of PhaR, a regulator gene of polyhydroxyalkanoate biosynthesis of Xanthomonas oryzae pv. Oryzae caused pleiotropic phenotype changes. Front. Microbiol. 2018, 9, 3046. [Google Scholar]
- Kadouri, D.; Burdman, S.; Jurkevitch, E.; Okon, Y. Identification and isolation of genes involved in poly(beta-hydroxybutyrate) biosynthesis in Azospirillum brasilense and characterization of a phbC mutant. Appl. Environ. Microbiol. 2002, 68, 2943–2949. [Google Scholar] [CrossRef]
- Peplinski, K.; Ehrenreich, A.; Döring, C.; Bömeke, M.; Reinecke, F.; Hutmacher, C.; Steinbüchel, A. Genome-wide transcriptome analyses of the “Knallgas” bacterium Ralstonia eutropha H16 with regard to polyhydroxyalkanoate metabolism. Microbiology 2010, 156, 2136–2152. [Google Scholar] [CrossRef]
- Raberg, M.; Reinecke, F.; Reichelt, R.; Malkus, U.; König, S.; Pötter, M.; Fricke, W.F.; Pohlmann, A.; Voigt, B.; Hecker, M.; et al. Ralstonia eutropha H16 flagellation changes according to nutrient supply and state of poly(3-hydroxybutyrate) accumulation. Appl. Environ. Microbiol. 2008, 14, 4477–4490. [Google Scholar] [CrossRef] [PubMed]
- Tribelli, P.M.; López, N. Poly(3-hydroxybutyrate) influences biofilm formation and motility in the novel Antarctic species Pseudomonas extremaustralis under cold conditions. Extremophiles 2011, 15, 541–547. [Google Scholar] [CrossRef] [PubMed]
- Fernández, N.; Cabrera, J.J.; Salazar, S.; Parejo, S.; Rodríguez, M.C.; Lindemann, A.; Bonnet, M.; Hennecke, H.; Bedmar, E.J.; Mesa, S. Molecular determinants of negative regulation of the Bradyrhizobium diazoefficiens transcription factor FixK2; Biological Nitrogen Fixation and Beneficial Plant-Microbe Interaction; González-Andrés, F., James, E., Eds.; Springer International Publishing: Cham, Germany, 2016; pp. 57–72. [Google Scholar]
- Parniske, M.; Zimmermann, C.; Cregan, P.B.; Werner, D. Hypersensitive reaction of nodule cells in the Glycine sp./Bradyrhizobium japonicum-symbiosis occurs at the genotype-specific level. Bot. Acta 1990, 103, 143–148. [Google Scholar] [CrossRef]
- Bennett, E.M.; Murray, J.W.; Isalan, M. Engineering Nitrogenases for Synthetic Nitrogen Fixation: From Pathway Engineering to Directed Evolution. BioDesign Res. 2023, 5, 0005. [Google Scholar] [CrossRef]
- Regensburger, B.; Hennecke, H. RNA polymerase from Rhizobium japonicum. Arch. Microbiol. 1983, 135, 103–119. [Google Scholar] [CrossRef]
- Vincent, J.M. A Manual for the Practical Study of the Root Nodule Bacteria. IBP Handbook No. 15; Blackwell Scientific Publications: Oxford, UK, 1970. [Google Scholar]
- Law, J.H.; Slepecky, R.A. Assay of poly-hydroxybutyric acid. J. Bacteriol. 1961, 82, 33–36. [Google Scholar] [CrossRef] [PubMed]
- Pessi, G.; Ahrens, C.H.; Rehrauer, H.; Lindemann, A.; Hauser, F.; Fischer, H.M.; Hennecke, H. Genome-wide transcript analysis of Bradyrhizobium japonicum bacteroids in soybean root nodules. Mol. Plant Microbe Interact. 2007, 20, 1353–1363. [Google Scholar] [CrossRef] [PubMed]
- Parejo, S.; Cabrera, J.J.; Jimenez-Leiva, A.; Tomas-Gallardo, L.; Bedmar, E.J.; Gates, A.J.; Mesa, S. Fine-tuning modulation of oxidation-mediated posttranslational control of Bradyrhizobium diazoefficiens FixK2 transcription factor. Int. J. Mol. Sci. 2022, 23, 5117. [Google Scholar] [CrossRef] [PubMed]
- Bedtools: A Powerful Toolset for Genome Arithmetic—Bedtools 2.31.0 Documentation. 2023. Available online: https://bedtools.readthedocs.io/en/latest/ (accessed on 18 May 2023).
- Bailey, T.L.; Johnson, J.; Grant, C.E.; Noble, W.S. The MEME Suite. Nucleic Acid Res. 2015, 43, W39–W49. [Google Scholar] [CrossRef] [PubMed]
- Mullan, L.J.; Bleasby, A.J. Short EMBOSS user guide. Brief. Bioinform. 2002, 3, 92–94. [Google Scholar] [CrossRef] [PubMed]
- Tyanova, S.; Temu, T.; Sinitcyn, P.; Carlson, A.; Hein, M.Y.; Geiger, T.; Mann, M.; Cox, J. The Perseus computational platform for comprehensive analysis of prote(omics) data. Nat. Methods 2016, 13, 731–740. [Google Scholar] [CrossRef] [PubMed]
- Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970, 227, 680–685. [Google Scholar] [CrossRef]
- Goedhart, J.; Gadella, T.W., Jr. Analysis of oligonucleotide annealing by electrophoresis in agarose gels using sodium borate conductive medium. Anal. Biochem. 2005, 343, 186–187. [Google Scholar] [CrossRef]
- Pötter, M.; Müller, H.; Reinecke, F.; Wieczorek, R.; Fricke, F.; Bowien, B.; Friedrich, B.; Steinbüchel, A. The complex structure of polyhydroxybutyrate (PHB) granules: Four orthologous and paralogous phasins occur in Ralstonia eutropha. Microbiology 2004, 150, 2301–2311. [Google Scholar] [CrossRef]
- Kanehisa, M.; Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 2000, 28, 27–30. [Google Scholar] [CrossRef]
- The UniProt Consortium. UniProt: The Universal Protein knowledgebase in 2023. Nucleic Acids Res. 2023, 51, D523–D531. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.; Domrachev, M.; Lash, A.E. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002, 30, 207–210. [Google Scholar] [CrossRef] [PubMed]
- Perez-Riverol, Y.; Csordas, A.; Bai, J.; Bernal-Llinares, M.; Hewapathirana, S.; Kundu, D.J.; Inuganti, A.; Griss, J.; Mayer, G.; Eisenacher, M.; et al. The PRIDE database and related tools and resources in 2019: Improving support for quantification data. Nucleic Acids Res. 2019, 47, D442–D450. [Google Scholar] [CrossRef] [PubMed]
Locus tag a | Gene Name b | Protein Code c | Description d | FC (phaR vs. WT) e | log2 FC (phaR vs. WT) f | Position g | Motif h | Predicted Operon Structure i |
---|---|---|---|---|---|---|---|---|
blr0515 | sdhB | H7C6L4 | succinate dehydrogenase iron-sulfur protein subunit | 2.6 | 1.4 | −79 | GGCGATGCATCG | - |
blr0697 | - | Q89WJ0 | hypothetical protein | 2.3 | 2.3 | −269 −243 −206 −172 | TGCCGCGCGACT GGCGTTGCGAAC GGCTGAGCGCGG GGCCGCGCGCGA | blr0697–blr0698 |
bll0957 | - | Q89VT8 | hypothetical protein | 3.0 | 2.5 | −235−228 | TGCGATGCGCAC CGCACCGCGGGC | - |
bll0958 | acd | Q89VT7 | acyl-CoA dehydrogenase | 3.0 | 1.7 | −52 | GGCATCGCGAAT | - |
bll1105 | metZ | Q89VE2 | O-succinylhomoserine sulfhydrylase | 2.3 | 1.5 | - | - | - |
blr1496 | - | Q89UC1 | unknown protein | 2.1 | 19.9 | −156 −48 | GGCGCGGCGCTG TGCGCTGCGCCT | - |
blr2221 | bioA | Q89T29 | adenosylmethionine-8-amino-7-oxononanoate aminotransferase | 2.3 | 1.1 | −189 −176 | CGCTTGGCAAGC CGCGCTGCGACA | - |
blr3456 | - | Q89PM4 | hypothetical protein | 7.2 | 7.2 | −97 −92 | AGCGCGGCGTCG GGCGTCGCAGGC | blr3456–blr3459 |
bll3830 | - | Q89NK8 | hypothetical protein | 2.3 | 1.0 | −114 −30 | AGCTATGCGTCG AGCGTTGCAGTT | - |
blr3954 | - | Q89N88 | methylmalonate-semialdehyde dehydrogenase | 3.7 | 4.4 | −165 | CGCCCCGCACGA | blr3954–blr3957 |
blr3958 | - | Q89N84 | putative acetyl-coenzyme A synthetase (EC 6.2.1.1) | 2.6 | 2.4 | −255 −199 −194 | GGCGCGGCGACG GGCGGGGCAGGG GGCAGGGCGGGG | - |
bll4252 | - | Q89ME1 | putative hydrolase | 3.7 | 2.9 | −188 | AGCGAAGCGGCC | - |
blr4257 | - | Q89MD6 | putative hydrolase | 7.0 | 3.1 | −57 −52 | CGCTCCGCATCG CGCATCGCACCC | blr4257–blr4264 |
blr4358 | - | Q89M35 | similar to N-acetyl-gamma-glutamyl-phosphate reductase | 8.7 | 2.6 | −119 | CCGCCAAGATCAAGGCCGCGAA | - |
blr4582 | argD2 | Q89LG2 | acetylornithine aminotransferase | 48.9 | 18.2 | −286 −259 −243 −170 | AGCTGCGCATCC CGCTCGGCGGGC CGCGAAGCGCCC CGCCGCGCAGCT | - |
blr4680 | - | Q89L68 | hypothetical protein | 2.8 | 1.6 | −235 −228 −32 | CGCCATGCGCTA CGCTACGCGGAC GGCCTCGCGCGA | - |
blr4687 | asd | Q89L61 | aspartate-semialdehyde dehydrogenase | 9.1 | 22.3 | −209 | CCGCCATGTTCACGACCACCAA | - |
bll4788 | - | Q89KW2 | hypothetical protein | 2.0 | 2.4 | −186 −68 | GGCCGTGCACCG AGCGAAGCGGGG | - |
bll4896 | - | Q89KK9 | ABC transporter substrate-binding protein | 2.4 | 1.1 | −107 | AGCGTTGCAAGG | - |
bll5081 | - | Q89K37 | putative multidrug resistance protein | 7.1 | 2.0 | - | - | bll5081–bll5079 |
bll5155 | phaP1 | Q89JW4 | phasin family protein | 2.4 | 0.9 | −101 −72 | TGCGACGCACAA TGCGTTGCACTA | - |
bll5290 | - | Q89JJ3 | hypothetical protein | 2.3 | 2.0 | −298 −123 −41 | GGCGAGGCATCC AGCAGCGCGCGA CGCCAAGCGGCC | - |
bll5331 | Q89JF2 | hypothetical protein | 2.1 | 0.7 | −267 −252 −119 −42 −40 | TGCCGCGCGACT GGCGTTGCGAAC GGCGCGGCGGTT CGCGCTGCGCGC CGCTGCGCGCGC | bll5331–bll5330 | |
bll5846 | - | Q89HZ3 | hypothetical protein | 2.8 | 1.8 | −177 −174 | GGCGGCGCGGCG GGCGCGGCGACG | - |
bll5913 | cycC | Q45234 | cytochrome C | 3.2 | 0.8 | −114 −97 | TGCCGCGCGGGA CGCCCCGCGCGG | - |
blr6331 | bkdA1 | Q89GL4 | 2-oxoisovalerate dehydrogenase alpha subunit | 9.9 | 8.1 | −234 −46 | CGCGGCGCGGTT GGCCAGGCGTTG | blr6331–blr6334 |
blr6667 | - | Q89FN2 | hypothetical protein | 2.7 | 1.2 | −28 | GGCCCTGCACGA | - |
bsr6998 | - | Q89ES4 | hypothetical protein | 2.5 | 2.8 | −253 −246 −216 −208 −75 −55 | GGCCTCGCGCTC CGCTCCGCGCGC AGCTTTGCAGCG AGCGTCGCGCTC GGCTTAGCGGAT CGCCGCGCGTAG | - |
blr7054 | - | Q89EL9 | hypothetical protein | 6.6 | 0.7 | −194 −25 | GGCATCGCGCTG TGCTGCGCGCTC | - |
bll7459 | - | Q89DI0 | probable branched-chain amino acid aminotransferase protein | 2.2 | 1.0 | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quelas, J.I.; Cabrera, J.J.; Díaz-Peña, R.; Sánchez-Schneider, L.; Jiménez-Leiva, A.; Tortosa, G.; Delgado, M.J.; Pettinari, M.J.; Lodeiro, A.R.; del Val, C.; et al. Pleiotropic Effects of PhaR Regulator in Bradyrhizobium diazoefficiens Microaerobic Metabolism. Int. J. Mol. Sci. 2024, 25, 2157. https://doi.org/10.3390/ijms25042157
Quelas JI, Cabrera JJ, Díaz-Peña R, Sánchez-Schneider L, Jiménez-Leiva A, Tortosa G, Delgado MJ, Pettinari MJ, Lodeiro AR, del Val C, et al. Pleiotropic Effects of PhaR Regulator in Bradyrhizobium diazoefficiens Microaerobic Metabolism. International Journal of Molecular Sciences. 2024; 25(4):2157. https://doi.org/10.3390/ijms25042157
Chicago/Turabian StyleQuelas, Juan I., Juan J. Cabrera, Rocío Díaz-Peña, Lucía Sánchez-Schneider, Andrea Jiménez-Leiva, Germán Tortosa, María J. Delgado, M. Julia Pettinari, Aníbal R. Lodeiro, Coral del Val, and et al. 2024. "Pleiotropic Effects of PhaR Regulator in Bradyrhizobium diazoefficiens Microaerobic Metabolism" International Journal of Molecular Sciences 25, no. 4: 2157. https://doi.org/10.3390/ijms25042157
APA StyleQuelas, J. I., Cabrera, J. J., Díaz-Peña, R., Sánchez-Schneider, L., Jiménez-Leiva, A., Tortosa, G., Delgado, M. J., Pettinari, M. J., Lodeiro, A. R., del Val, C., & Mesa, S. (2024). Pleiotropic Effects of PhaR Regulator in Bradyrhizobium diazoefficiens Microaerobic Metabolism. International Journal of Molecular Sciences, 25(4), 2157. https://doi.org/10.3390/ijms25042157