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Abstract: Inorganic arsenic (NaAsO2) is a naturally occurring metalloid found in water resources
globally and in the United States at concentrations exceeding the U.S. Environmental Protection
Agency Maximum Contamination Level of 10 ppb. While exposure to arsenic has been linked to
cancer, cardiovascular disease, and skin lesions, the impact of arsenic exposure on wound healing is
not fully understood. Cultured dermal fibroblasts exposed to NaAsO2 displayed reduced migration
(scratch closure), proliferation, and viability with a lowest observable effect level (LOEL) of 10 µM
NaAsO2 following 24 h exposure. An enrichment of Matrix Metalloproteinase 1 (MMP1) transcripts
was observed at a LOEL of 1 µM NaAsO2 and 24 h exposure. In vivo, C57BL/6 mice were exposed to
10 µM NaAsO2 in their drinking water for eight weeks, then subjected to two full thickness dorsal
wounds. Wounds were evaluated for closure after 6 days. Female mice displayed a significant
reduction in wound closure and higher erythema levels, while males showed no effects. Gene
expression analysis from skin excised from the wound site revealed significant enrichment in Arsenic
3-Methyltransferase (As3mt) and Estrogen Receptor 2 (Esr2) mRNA in the skin of female mice. These
results indicate that arsenic at environmentally relevant concentrations may negatively impact wound
healing processes in a sex-specific manner.

Keywords: MMP1; As3mt; scratch assay; environmental contaminants; endocrine disruption

1. Introduction

Arsenic is a well-documented environmental human health hazard, with chronic inges-
tion of contaminated drinking water being the most prevalent route of exposure [1–4]. In
2000, approximately 50 million Bangladesh citizens were exposed to high levels of arsenic
by way of contaminated drinking water, which was considered the largest population-level
poisoning in history [5]. As a result of large-scale contaminations, such as happened in
Bangladesh, the World Health Organization (WHO) and the United States Environmental
Protection Agency (USEPA) established a maximum contaminant level (MCL) in drink-
ing water of 10 µg/L (10 ppb) in 2003, which was lowered from the previous MCL of
50 µg/L [6,7].

Although the MCL was lowered in 2003, many water resources in the USA still exceed
10 ppb. In the southwest United States, numerous groundwater, well water, and springs
have been documented with concerning levels of arsenic [8]. For example, in Verde Valley,
AZ, Montezuma Well contains 210 µg/L (210 ppb) of arsenic [9], groundwater around
the Verde River, AZ, contains 16 µg/L (16 ppb) of arsenic on average, with peak values
reaching 1.3 mg/L (1.3 ppm) [10]. Notably, many wells in the Verde Valley exceed 50 µg/L
(50 ppb) [11]. Similar exceedances occur across Arizona [12].

While exposure to arsenic at or below the MCL is considered safe by some author-
ities, studies have shown detrimental results from chronic arsenic exposure below the
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MCL, including prostate cancer [13], diabetes [14–16], cardiovascular diseases [17–19], and
disrupted microbiomes in non-human organisms such as zebrafish [20]. A 2010 review
described arsenic-induced shifts in the expression of genes responsible for numerous cellu-
lar processes, including oxidative stress, inflammation, proteotoxicity, proliferation, DNA
repair, cell cycle control, and apoptosis [21]. Wound healing requires the orchestration
of several of these processes and, therefore, could be at risk for disruption from arsenic
exposure.

Exposure to very high concentrations of arsenic, such as those found in the Bangladesh
disaster, increases the risk of dermal skin lesions, leaving chronically exposed populations
at risk for subsequent co-morbidities associated with open skin wounds [22–24]. Moreover,
arsenic impairs dermal fibroblast viability [25] and functions such as cellular migration, and
proliferation, which are key components in wound closure [26,27]. These studies suggest
that arsenic disrupts skin homeostasis, which may lead to poor wound healing outcomes,
and places chronically exposed populations at higher risk for infections in healing wounds.

Toxic metalloids, such as arsenic, have the potential to interact with endogenous
hormones and can disrupt cellular signaling. Hormonal influences, especially estrogen, are
imperative to the proper healing of wounds [28]. Estrogen prohibits excessive recruitment
of neutrophils to the wound site post-wound bed clearance [29] in an anti-inflammatory role
that contributes to normal wound healing. Arsenic has been shown to bind to estrogen [30],
potentially limiting its availability at the receptor, and low dose exposure to arsenic inhibits
estrogen-regulated gene expression both in vitro and in vivo [31]. These studies suggest
that arsenic exposure may inhibit the estrogenic effects on wound healing and impart
a greater risk of developing chronic wounds. While the effects of estrogen on arsenic-
exposed dermal fibroblasts have been described previously [26], the effects of these complex
interactions have not been studied in vivo, which is imperative to understanding how
wound healing can be influenced.

In the current studies, the effects of environmentally relevant concentrations of sodium
arsenite (NaAsO2) on dermal fibroblast scratch closure, metabolic activity, viability, and
gene expression were evaluated. In addition, the impacts of NaAsO2 exposure on wound
healing components, including wound closure, wound erythema, and gene expression were
investigated in vivo using a murine full-thickness wound model. These studies unmask
the detriments of NaAsO2 on wound healing functions in both in vitro and in vivo models.

2. Results
2.1. NaAsO2 Exposure Impairs Scratch Closure and Upregulates MMP1 in Cultured
Dermal Fibroblasts

Arsenic slowed scratch closure in human dermal fibroblasts in both 24 and 72 h
exposures. While a 24 h exposure to 1 µM NaAsO2 prior to scratching had little effect on
scratch closure, 24 h exposure to 10 µM NaAsO2 prior to scratching significantly decreased
scratch closure compared to control, and a LOEL was determined (n = 21, F = 53.58,
p < 0.001; Figure 1A,B). A 72 h exposure to 1 µM NaAsO2 prior to scratching decreased
scratch closure, although not significantly, while a 72 h exposure to 10 µM NaAsO2 was
cytotoxic (n = 12, F = 2.51, p = 0.0512; Figure 1C,D).

Human dermal fibroblasts exposed to 1 and 10 µM NaAsO2 in the scratch assay
additionally displayed an upregulation of MMP1 expression at 24 h (n = 4, F = 12.1,
p < 0.001). A 24 h exposure to 1 µM NaAsO2 resulted in a 2.14-fold upregulation of MMP1
compared to control (Tukey’s, p < 0.05), and a 24 h exposure to 10 µM NaAsO2 led to a
5.4-fold upregulation of MMP1 compared to control (ANOVA, n = 4, F = 12.1, p < 0.001;
Figure 2A). A 72 h exposure to 1 µM NaAsO2 resulted in a 5.56-fold upregulation of MMP1
compared to control, while a 72 h exposure to 10 µM NaAsO2 was cytotoxic (Tukey’s,
p < 0.05; Figure 2B).
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Figure 1. NaAsO2 exposure for 24 h and 72 h and its effects on scratch closure. (A) Quantification of 

dermal fibroblast migration in the scratch assay following NaAsO2 exposure for 24 h. Mean area 

under the curve (AUC) values for each treatment group are represented +/− SEM (n = 21, F = 53.58, 

p < 0.001). (B) Light micrographs of cells from the 24 h arsenic exposure scratch assay over a 20 h 

period. (C) Quantification of dermal fibroblast migration in the scratch assay following NaAsO2 

exposure for 72 h. Mean AUC values for each treatment group are represented +/− SEM (n = 12, F = 

2.51, p = 0.0512). (D) Light micrographs of cells from the 72 h arsenic exposure scratch assay over a 

20 h period. 72 pre-scratch exposure to 10 µM arsenic killed all cells thus no images were taken. * 

Statistically significant values (p < 0.05) compared to control (Tukey’s post hoc test). 

Human dermal fibroblasts exposed to 1 and 10 µM NaAsO2 in the scratch assay ad-

ditionally displayed an upregulation of MMP1 expression at 24 h (n = 4, F = 12.1, p < 0.001). 
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Figure 2. Relative gene expression of MMP1 in dermal fibroblasts exposed to NaAsO2. (A) Effect of 

0, 0.1, 1, and 10 µM NaAsO2 on MMP1 gene expression in dermal fibroblasts collected after 24 h in 

Figure 1. NaAsO2 exposure for 24 h and 72 h and its effects on scratch closure. (A) Quantification
of dermal fibroblast migration in the scratch assay following NaAsO2 exposure for 24 h. Mean area
under the curve (AUC) values for each treatment group are represented +/− SEM (n = 21, F = 53.58,
p < 0.001). (B) Light micrographs of cells from the 24 h arsenic exposure scratch assay over a 20 h
period. (C) Quantification of dermal fibroblast migration in the scratch assay following NaAsO2

exposure for 72 h. Mean AUC values for each treatment group are represented +/− SEM (n = 12,
F = 2.51, p = 0.0512). (D) Light micrographs of cells from the 72 h arsenic exposure scratch assay over
a 20 h period. 72 pre-scratch exposure to 10 µM arsenic killed all cells thus no images were taken.
* Statistically significant values (p < 0.05) compared to control (Tukey’s post hoc test).
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Figure 2. Relative gene expression of MMP1 in dermal fibroblasts exposed to NaAsO2. (A) Effect
of 0, 0.1, 1, and 10 µM NaAsO2 on MMP1 gene expression in dermal fibroblasts collected after 24 h
in the scratch closure assay (n = 4, F = 12.1, p < 0.001). (B) Effect of 0, 0.1, 0.5, and 1 µM NaAsO2

on MMP1 gene expression in dermal fibroblasts collected after 72 h in the scratch closure assay
(n = 4, F = 12.1, p < 0.001). Individual data points represent fold changes per replicate +/− SEM.
* Statistically significant values (p < 0.05) compared to control (Tukey’s post hoc test).

2.2. Exposure to NaAsO2 in Dermal Fibroblasts Alters Cell Morphology and Slows Proliferation

Arsenic exposure affected overall cellular appearance and growth of fibroblasts in
a dose-dependent pattern. Control and 0.1 µM NaAsO2-exposed fibroblasts remained
adherent and displayed spindle-like morphology with lamellipodial and filopodial exten-
sions protruding outward from the cell body, indicative of a ‘normal’ cell. In contrast, the
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0.5, 1, and 10 µM NaAsO2-treated cells appeared rounded in shape and were frequently
observed suspended in the media indicating a loss of adherence (Figure 3A). Cell counting
revealed lower population numbers after 48 h in the presence of 10 µM NaAsO2-treatment
(n = 4, F = 12.86, p < 0.001), with reduced growth appearing at 72 h of exposure with 1 µM
NaAsO2 (n = 4, F = 26.81, p < 0.05; Figure 3B). By 96 h, reduced cell growth was observed in
the 0.5 µM NaAsO2-treatment (n = 4, F = 25.01, p < 0.01; Figure 3B). After 96 h of growth,
the 0.5, 1, and 10 µM NaAsO2 treatments significantly slowed cellular proliferation with
average cell counts of 55,527, 30,895, and 417, respectively, compared to control. After 144 h
of growth, cellular proliferation contributed no further changes or return to baseline.
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Figure 3. NaAsO2 exposure over a 96 h time period and its effects on dermal fibroblast proliferation.
(A) Light micrographs of cells exposed to NaAsO2 for 96 h. (B) Effect of arsenic exposure on dermal
fibroblast proliferation over a 96 h period. Mean cell counts are represented for each day and
treatment group +/− SEM (n = 4). * Statistically significant values (p < 0.05) compared to control
(Tukey’s post hoc test).

2.3. NaAsO2 Exposure for 24 h at the Time of Scratch Reduces Cell Metabolism and Alters
DNA Quantity

While PrestoBlue is an indicator of viable DNA of all the cells in any one well, which
under conditions of cell stress, such as occurs during exposure to toxicants, may not be a
true measure of cell viability. Therefore, we used a combination of the PrestoBlue assay and
the CyQuant assay, which is used as a proliferation assay for determining metabolic activity,
and the combination of PrestoBlue and CyQuant as a measure of metabolism/living DNA
to represent a cell metabolic index. Fibroblasts exposed to NaAsO2 for 24 h displayed
a dose-dependent decrease in metabolism measured by PrestoBlue as treatment doses
increased (n = 6, F = 29.19, p < 0.001, Tukey’s, p < 0.05; Figure 4A). While a 24 h exposure to
NaAsO2 reduced metabolism, NaAsO2 treatment induced a non-monotonic dose response
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with increased proliferation at 0.1 µM, no effect at 1 µM, and decreased proliferation at
higher doses compared to the control (n = 6, F = 131.9, p < 0.001; Tukey’s, p < 0.05; Figure 4B).
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Figure 4. NaAsO2 exposure for 24 h and 72 h and its effects on metabolic activity, viability, and
metabolic ratio (value of PrestBlue:CyQuant) (A) Effect of 24 h NaAsO2 exposure on metabolic
activity. Mean RFU values for each treatment group are represented +/− SEM (n = 6, F = 29.19,
p < 0.001). (B) Effect of 24 h NaAsO2 exposure on DNA content. Mean RFU values for each treatment
group are represented +/− SEM (n = 6, F = 131.9, p < 0.001). (C) Effect of 24 h NaAsO2 exposure
on metabolic output per unit of viable DNA. The ratio of RFU values for each treatment group are
represented +/− SEM (n = 6, F = 7.58, p < 0.001). (D) Effect of 72 h NaAsO2 exposure on metabolic
activity. Mean RFU values for each treatment group are represented +/− SEM (n = 10, F = 2040.7,
p < 0.001). (E) Effect of 72 h NaAsO2 exposure on DNA content. Mean RFU values for each treatment
group are represented +/− SEM (n = 10, F = 2735.1, p < 0.001). (F) Effect of 72 h NaAsO2 exposure on
metabolic output per unit DNA. The ratio of RFU values for each treatment group are represented
+/− SEM (n = 10, F = 19.6, p < 0.001). * Statistically significant values (p < 0.05) compared to control
(Tukey’s post hoc test).

2.4. Exposure to NaAsO2 for 72 h Reduces Cell Metabolism and Alters DNA Quantity as a
Measure of Viability

Fibroblasts exposed to NaAsO2 for 72 h displayed changes in cell metabolism mea-
sured by PrestoBlue at all treatment doses (n = 10, F = 2040.7, p < 0.001; Figure 4D; Tukey’s,
p < 0.05). There was a dose-dependent decrease in viability with increasing NaAsO2 concen-
trations beginning at 1 µM (Tukey’s, p < 0.05; Figure 4D). However, there was an increase
in viability in cells exposed to 0.1 µM NaAsO2 (Tukey’s, p < 0.05; Figure 4D).

Fibroblasts exposed to NaAsO2 for 72 h displayed changes in proliferation measured
by CyQuant (n = 10, F = 2735.1, p < 0.001; Figure 4E). This exposure to NaAsO2 for 72 h
resulted in a dose-dependent decrease in proliferation with increasing NaAsO2 concentra-
tions beginning at 1 µM (Tukey’s, p < 0.05). Furthermore, increasing time of exposure from
24 to 72 h decreased the LOEL from 2.5 to 1 µM (Figure 4E).

2.5. Reduction in Metabolic Output Relative to Viable DNA Content after 24 and 72 h Exposure
to NaAsO2

A non-monotonic dose-response was observed in which 24 h NaAsO2 exposures
decreased cellular metabolic rate relative to viable DNA content at all treatment doses
compared to control (n = 6, F = 7.58, p < 0.001; Tukey’s, p < 0.05; Figure 4C). Exposure to
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NaAsO2 for 72 h also affected metabolic output per unit of DNA (n = 10, F = 19.6, p < 0.001)
but only at doses 2.5 µM and greater (Tukey’s, p < 0.05; Figure 4F).

2.6. Wound Healing Processes in Female Mice Are Negatively Affected by NaAsO2-Exposure

An 8-week exposure to 10 µM NaAsO2 in drinking water impeded wound closure
in mice 6 days post-wounding (Chi2 = 13.3458; p = 0.0039, Figure 5A). Wound closure
areas were significantly decreased in NaAsO2-treated females compared to control or
NaAsO2-treated males (Z = 2.817; p = 0.0290) and control females (Z = −3.185; p = 0.0087;
Figure 5A).
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Figure 5. Wound closure areas, wound erythema, and representative wound images at day 6 post-
wounding in mice exposed to 10 µM NaAsO2 for 8 weeks (A) Wound closures in NaAsO2-treated
females were significantly decreased compared to control females (Chi2 = 16.5095, p = 0.0022) and
NaAsO2-treated males (Chi2 = 16.5095, p = 0.0091). Mean wound closure areas for each treatment
group are represented +/− SEM (n = 12). (B) Erythema scores in NaAsO2-treated females were
significantly elevated compared to control females (Chi2 = 19.3237, p < 0.0001). Mean erythema values
for each treatment group are represented +/− SEM (n = 12). (C) Representative gross images of
wound sites from vehicle and NaAsO2-treated mice on day 0 and on day 6. * Statistically significant
values (p < 0.05) compared to control (Dunn’s post hoc test).

NaAsO2-treated female mice displayed increased wound erythema levels compared
to all other groups (Figure 5B). A Kruskal Wallis test revealed a significant effect among all
treatment groups (Chi2 = 9.456; p = 0.0238). Macroscopic observations revealed increased
visual erythema in NaAsO2-treated female mice at day 6 with no difference observed in
other treatment groups (Figure 5C). Water consumption was significantly higher in males
vs. females (ANOVA, p < 0.0001) with post hoc tests revealing no difference between control
and arsenic male mice (Dunn’s, p > 0.9999) and no difference between control and arsenic
female mice (Dunn’s, ANOVA p = 0.1639).
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2.7. Altered Gene Expression in Mouse Wound Biopsies due to NaAsO2-Exposure

An 8-week exposure to 10 µM NaAsO2 in drinking water altered gene expression in
wound biopsies (Figure 6). One-way ANOVAs revealed significant differences in both
As3mt (W = 12.20; p = 0.0008) and Esr2 expression (W = 19.30; p = 0.0002) across groups.
As3mt was significantly upregulated in wounds of NaAsO2-treated females compared to
control females, control males, and NaAsO2-treated males (n = 6; p < 0.0001; p < 0.0001;
p = 0.0230, respectively). Esr2 was significantly upregulated in wounds of NaAsO2-treated
females compared to control female and NaAsO2-treated male groups (n = 6; p = 0.006;
p = 0.006, respectively). No significant differences in transcript levels were detected for
Esr1, Gper1, Mmp1a, or Timp1 in wound sites (Figure 6).
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genes in mice exposed to 10 µM NaAsO2 for 8 weeks. Exposure to NaAsO2 significantly increased
As3mt expression in NaAsO2-treated female mice compared to control groups (W = 12.20, p = 0.008).
Exposure to NaAsO2 significantly increased Esr2 expression in NaAsO2-treated female mice com-
pared to control groups (W = 19.30, p = 0.0002). Individual data points represent fold changes per
replicate +/− SEM (n = 6). * Statistically significant (p < 0.05) compared to control (Tukey’s post
hoc test).

3. Discussion

In the current study, arsenic (NaAsO2) exposure interfered with normal wound healing
processes modeled using in vitro and in vivo experimental tests. In cell culture experiments,
dermal fibroblasts exposed to environmentally relevant concentrations of NaAsO2 dis-
played slowed scratch closure, decreased cell proliferation, and decreased cell metabolism
relative to viable DNA content. Increased transcription of MMP1 was detected in dermal
fibroblasts exposed to NaAsO2. In mice, 10 µM NaAsO2 negatively impacted wound
healing outcomes in female mice displaying slower wound closure and higher erythema
scores. Increased transcription of Esr2 and As3mt were also measured in mouse wound
biopsies. Here, we demonstrated the use of in vitro techniques to help guide study designs
in an in vivo full thickness wound model where NaAsO2 exposure was found to impair
wound healing functions and outcomes in both models.

Our results demonstrated that scratch closure, proliferation, metabolic activity, and
cell viability of fibroblasts were detrimentally affected when exposed to environmentally
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relevant NaAsO2 concentrations. Altered fibroblast activity during the wound healing
process may lead to poor wound healing outcomes, including an increased risk for non-
healing wounds and infection [32,33]. In the scratch assay, NaAsO2 exposure at the time of
scratching negatively impacted closure, and 72 h exposure to NaAsO2 prior to scratching
exacerbated the effect, in some cases reducing the LOEL by 10-fold. This shift in exposure
timing and LOEL suggests that long-term exposure to arsenic is more detrimental to cellular
processes than short-term exposure.

Cellular proliferation was also impacted by NaAsO2 exposure, which was evident by
the dose-dependent decline in cell counts. This trend was consistent with Xiong et al.’s
findings of arsenic induced cell cycle arrest in neuroblastoma cells. This group treated cells
with similar concentrations of As2O3 (1, 2, or 4 µM), in which 4 µM induced cell cycle arrest
leading to decreased cellular proliferation [34].

The decrease in scratch closure and proliferation of continuously exposed fibroblasts
were accompanied by decreased cellular metabolism relative to viable DNA content. The
detrimental effects of NaAsO2 on metabolic activity and cell viability reported here were
expected due to arsenic’s known affinity for thiol groups and disruption of sulfhydryl
group-containing enzymes, many of which have prominent roles in several metabolic
pathways [35]. In addition to decreases in cell metabolism, increased cell death due to
NaAsO2 exposure has been previously described. One study found that exposure to low-
dose NaAsO2 (0.5 µM) exhibited cytotoxic effects both acutely and chronically in lung
fibroblasts [36], and our dermal fibroblast viability results were consistent with their studies.
Interestingly, 0.1 µM NaAsO2 slightly increased proliferation and metabolism in our study.
Low levels of arsenic may induce these changes through a variety of pathways, which
may include a non-detectable change in oxidative stress and reduced cell autophagy [37].
Like most toxicants, effects of arsenic are likely concentration-dependent, in which in-
creasing concentrations no longer provide stimulatory changes, but rather detrimental
consequences [38].

While other matrix remodeling genes were analyzed in this study (not published), only
MMP1 was significantly upregulated in dermal fibroblasts. MMP1 transcript levels were
enriched in NaAsO2-treated fibroblasts, which was consistent with a reported significant
upregulation of MMP1 gene expression, however, in human uroepithelial cells (SV-HUC-1)
exposed to arsenic [39]. MMP1 functions to remodel the extracellular matrix (ECM) of a
healing wound through proteolytic digestion of collagen, which then stimulates fibroblasts
to lay down new collagen for cell adherence and subsequent cellularization [40,41]. The
dynamic process of ECM remodeling by dermal fibroblasts during tissue remodeling is
a delicate balance of collagen deposition and MMP1 enzymatic digestion. For example,
increased collagen deposition during the final stages of wound healing can lead to hyper-
trophic scarring or the formation of a keloid scar [42]. In contrast, elevated levels of MMP1
are implicated in the pathogenesis of chronic wounds; therefore, results from the current
study suggest that arsenic may play a role in the pathogenesis of chronic wound formation
in individuals who are repeatedly exposed for extended periods [43,44].

While NaAsO2 impeded fibroblast functions, multiple cell types, including epithelial
cells, fibroblasts, and leukocytes, work together to close and remodel wounds in a living
organism. The effects of NaAsO2 were further explored in a full thickness wound model
in mice to evaluate if in vitro findings translated to in vivo models. Exposure to 10 µM
(10 ppb) NaAsO2 for 8 weeks diminished wound closure and increased erythema in
female mice, with no visual detriments observed in male mice. Sex differences were
seen in wound healing for both gross evaluations and gene expression analysis, which
suggests disrupted hormone signaling. Additionally, water consumption in our study was
significantly different between male and female mice, but not within treatment groups. Sex
difference results were expected and have been reported in the literature previously [45].
Water consumption data in our study may have been influenced by a variety of variables
including cage movement and water leakage during water changes.
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Hormone signaling plays an imperative role in cell communication, specifically in
wound healing. Under normal inflammatory processes, neutrophils are rapidly recruited
to the wound site in a spatial pattern surrounding the wound [46] and undergo apoptosis
after wound bed clearance [47], which slows the recruitment of additional neutrophils.
Estrogen inhibits excessive neutrophil recruitment by upregulating mitogen-activated
protein kinase phosphatase 2 (MKP-2) [29], and by reducing leukocyte interleukin-1β
(IL-1β) secretion [29,48,49]. Because of arsenic’s affinity for endogenous estrogen [30], the
presence of NaAsO2 in our study may have inhibited estrogen’s ability to promote normal
wound healing in female mice.

There is evidence that arsenic acts as an endocrine disruptor through several potential
molecular mechanisms. Arsenic binds to estrogen directly [30], and many studies have
investigated the endocrine disrupting properties of arsenic [50–53]; however, there is
limited literature regarding arsenic–estrogen interactions in skin. In the current study,
we evaluated estrogen receptor mRNA expression in vivo (Esr1, Esr2, and Gpr30) and
found that Esr2 was upregulated in the wound sites of female mice exposed to NaAsO2.
In skin, Esr1 exhibits low expression [54], while Esr2 expression is widespread [55]. One
study showed that knockout mice for estrogen receptor beta (Erβ), encoded by the Esr2
gene, showed impaired wound healing [56], indicating that Erβ activity in the skin is vital
to wound closure. These results suggest that arsenic may interfere with wound healing
through disruption of estrogen signaling.

There was a significant upregulation of the As3mt gene in the wound sites of both
sexes in vivo. Arsenic methyltransferase (AS3MT) detoxifies inorganic arsenic in many
species including humans [57], rodents [58], and fish [59,60]. The upregulation of the
AS3MT gene in the skin of both male and female mice exposed to NaAsO2 in this study
demonstrated the ability of NaAsO2 to affect the skin. One study found that As3mt is
required for NaAsO2 metabolism in mice, with As3mt knockout mice retaining toxic arsenic
metabolites in tissues [61]. Interestingly, polymorphisms in the human AS3MT gene may
also lead to a higher risk of arsenic-induced premalignant skin lesions [62], indicating that
human AS3MT expression in skin may play a protective role. The As3mt upregulation in
the wound sites of mice in the current study may have been a sign of detoxification in
the skin, and therefore may have been protective. Additionally, one study has previously
shown that when exposed to arsenate, GAPDH acts as an AsV reductase, and therefore
shows that in the presence of arsenate and other isoforms of arsenic, GAPDH is present [63].
The presence of GAPDH during arsenic detoxification supports the use of this gene as a
housekeeping gene in these studies.

In normal human wound healing processes, MMP1 degrades type 1 collagen to
remodel the wound bed, while its inhibitor, TIMP1, acts to inhibit MMP1 activity [64,65].
The in vivo results paralleled the cytotoxic effects seen in fibroblasts exposed to 10 µM
NaAsO2 for 72 h. While there were no significant differences in the expression of Mmp1a
and Timp1, the expression of other collagenases, gelatinases, and MMP inhibitors may have
changed in response to NaAsO2 exposure for 72 h. In our study, wound sites may have
had reduced ECM at the time of tissue collection (6 days post-wound creation). Another
study identified a 7–14 day matrix remodeling phase in murine wound models [66]. This
finding of a longer murine wound remodeling phase may suggest that the timepoint of
tissue collection was critical for analysis of matrix remodeling genes.

Limitations to our study include time of tissue collection, which is mentioned previ-
ously, and length of arsenic exposure. Some studies utilizing a chronic model of arsenic
exposure dosed for more than 8 weeks [66]; however, longer exposure times were out of the
scope of the current study. Additionally, dermal protein expression, histological analysis,
and flow cytometry may provide more insight into cellular changes; however, these studies
are out of the scope of the current study.

These data underscore the significance to human and environmental health concerns
of long-term arsenic exposure. This study used NaAsO2 concentrations between 0.1 and
10 µM, which capture the USEPA MCL of 0.13 µM (10 ppb); however, global surface and
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groundwater resources often contain levels well above 0.13 µM. These arsenic-contaminated
resources (many above 10 µM) are found globally, including areas in Asia and the Ameri-
cas [1,4,5,12,67–70]. Overall, these data suggest that individuals who experience delayed
wound closure and/or the formation of chronic non-healing skin wounds are at particular
risk if chronically exposed to arsenic.

4. Materials and Methods
4.1. Arsenic Preparation

Sodium arsenite (CAS#: 7784-46-5, Sigma-Aldrich, St. Louis, MO, USA) was weighed
and diluted in reverse osmosis deionized (DI) water to create a 10 mM stock solution. For
cell culture assays and mouse experiments, 10 mM NaAsO2 stocks were further diluted
into either cell culture medium or reconditioned RO water to reach a final concentration of
10 µM.

4.2. General Cell Culture Conditions

Human neonatal dermal fibroblasts (hDFn), primary isolates up to 5th passage, (Cell
Applications, Inc, San Diego, CA, USA) were grown as a monolayer in a tissue culture
treated T75 flask (Corning Inc., Corning, NY, USA) at a seeding density of 5000 cells/cm2

and passaged at 70–80% confluence. All cell counts were generated using a hemocytometer.
The cells were grown in Dulbecco’s Modified Eagle Medium (DMEM, Life Technologies,
Carlsbad, CA, USA) supplemented with 10% v/v fetal bovine serum (FBS, Life Technologies,
Carlsbad, CA, USA). Cells were incubated at 37 ◦C, 5% CO2.

4.3. Exposure for 24 h and 72 h Cell Scratch Assay

Cells were sub-cultured into a tissue culture-treated 12-well plate (Corning Inc., Corn-
ing, NY, USA) at a seeding density of 5000 cells/cm2 and incubated for 2–3 days until the
cells reached 100% confluence. Upon reaching confluence, the monolayer was scratched
by hand using a P200 pipet tip (Gilson Inc., Middleton, WI, USA). Next, the media were
removed, the wells rinsed with 1x Hanks Balanced Salt Solution (HBSS, Life Technologies,
Carlsbad, CA, USA) to remove detached cells, and NaAsO2 in DMEM at 0.01, 0.1, 0.5, 1, and
10 µM concentrations were added. Independent scratch assays were conducted to assess the
effect of 24 h versus 72 h NaAsO2 exposure on wound closure. In the 24 h exposure assays,
the cells were scratched and concomitantly exposed to NaAsO2 concentrations. In the 72 h
exposure assays, cells were exposed to NaAsO2 for 72 h prior to performing the scratch. In
both assays, an inverted microscope and digital camera (Leica, Wetzlar, Germany) were
used to capture images every four hours for 24 h to record cellular migration. Scratch
closure was quantified for all experimental conditions and compared to control conditions
using an automated algorithm that was developed to quantify cellular migration using
MatLab (See Supplemental File). Summed area under the curve (AUC) was calculated
using the summed trapezoid method of the percent closure values over a 24 h period from
individual wells. At the experiment’s conclusion, all cells were lysed in 300 µL TRIzol
reagent (Thermo Fisher, Waltham, MA, USA), and the lysates were stored at −80 ◦C to be
used later for gene expression analysis.

4.4. Quantitative Polymerase Chain Reaction (qPCR) in Human Dermal Fibroblasts

Total RNA was isolated from the same cells used in the scratch assay (stored in
TRIzol at −80 ◦C) with a DirectZol MicroPrep RNA kit (Zymo, Irvine, CA, USA). RNA
quantity and ribosomal RNA integrity (RIN) was determined using a fragment analyzer
(Advanced Analytical, Ankeny, IA, USA). First-strand cDNA was synthesized using the
iScript cDNA synthesis kit (BioRad, Hercules, CA, USA) from 1 µg of RNA. All qPCR
assays utilized primers designed using design software (Primer3, NCBI: https://www.ncbi.
nlm.nih.gov/tools/primer-blast/ accessed 1 August 2019) and synthesized by Integrated
DNA Technologies (Coralville, IA, USA) (Table 1). A standard curve was run for each
primer set, and melting peaks were assessed. All assays were performed using qPCR SYBR

https://www.ncbi.nlm.nih.gov/tools/primer-blast/
https://www.ncbi.nlm.nih.gov/tools/primer-blast/
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Green Master Mix chemistry (BioRad, Hercules, CA, USA) and a CFX384-TOUCH real-time
thermocycler. All samples were conducted in quadruplicate technical replicates. Cycling
conditions were polymerase activation at 95 ◦C (30 s), followed by 40 amplification cycles
of template denaturation at 95 ◦C (15 s), primer annealing/extension/detection at 60 ◦C
(30 s), and a melt analysis at 65–95 ◦C (∆0.5 ◦C/5 s). Expression was determined using the
delta-delta cT method and presented as “log 2-fold change” relative to untreated control
samples normalized to the geometric mean of 2 housekeeping genes in control and treated
samples.

Table 1. Real-time qPCR gene targets and primer sequences for human dermal fibroblasts and Mus
musculus.

Gene Transcript Gene
Abbreviation Primer Sequence Annealing

Temperature (◦C)
Amplicon

Length

Human

Glyceraldehyde 3-phosphate
dehydrogenase GAPDH

F-CTCCAAAATCAAGTGGGGCGA 60.89
70R-CATGGTGGTGAAGACGCCAG 61.3

Succinate dehydrogenase
complex subunit A SDHA

F-TGGCCCTGAGAAAGATCACG 59.75
193R-GACCTGCCCCTTGTAGTTGG 60.32

Matrix metalloproteinase 1 MMP1
F-GGCCACAAAGTTGATGCAGTT 59.93

137R-TTCCTGCAGTTGAACCAGCTA 59.58

Mouse

Glyceraldehyde 3-phosphate
dehydrogenase GAPDH

F-CATCACTGCCACCCAGAAGACTG 63.28
153R-ATGCCAGTGAGCTTCCCGTTCAG 65.15

Succinate dehydrogenase
complex subunit A SDHA

F-GAGATACGCACCTGTTGCCAAG 61.82
113R-GGTAGACGTGATCTTTCTCAGGG 60.18

Matrix metalloproteinase 1a MMP1a
F-AGGAAGGCGATATTGTGCTCTCC 62.37

98R-TGGCTGGAAAGTGTGTGAGCAAGC 63.85

TIMP metallopeptidase
inhibitor 1

TIMP1
F-TCTTGGTTCCCTGGCGTACTCT 63.08

131R-GTGAGTGTCACTCTCCAGTTTGC 61.59

Arsenic 3-methyltransferase AS3MT
F-TCCACGTTTGGTCACTGCCGAT 64.71

100R-GAAGAGGCGAAATGTGGCAGAC 62.07

G-Protein coupled estrogen
receptor 1 GPER1

F-GCCACATAGTCAACCTTGCAGC 62.34
113R-CGTCTTCTGCTCCACATAGAGC 60.8

Estrogen receptor 1 ESR1
F-TCTGCCAAGGAGACTCGCTACT 62.86

153R-GGTGCATTGGTTTGTAGCTGGAC 62.46

Estrogen receptor 2 ESR2
F-GGTCCTGTGAAGGATGTAAGGC 60.68

139R-TAACACTTGCGAAGTCGGCAGG 63.35

4.5. Cell Proliferation and Viability Assays

Human neonatal dermal fibroblasts (hDFn) were grown as a monolayer in a tissue
culture treated T75 flask at a seeding density of 5000 cells/cm2 and passaged at 70–80%
confluence. Cells were sub-cultured into a black wall, clear bottom, tissue culture-treated
96-well plate (Corning Inc., Corning, NY, USA) at a seeding density of 7000 cells/cm2 in
200 µL media/well, with 200 µL water blanks in outer periphery of wells to prevent media
evaporation of inner treatment wells. Cells were grown for 24 h, then exposed to NaAsO2
concentrations (0, 0.1, 1, 2.5, 5, and 10 µM) for either 24 or 72 h prior to the addition of
fluorescent dyes. On the day of experiment, PrestoBlue (PB, Invitrogen, Carlsbad, CA, USA)
and CyQuant (CQ, Invitrogen, Carlsbad, CA, USA) solutions were prepared according
to the manufacturer’s protocol. A portion of media was removed from each of the wells
(150 µL) and replaced with 50 µL diluted PB, leaving 100 µL total volume per well. Once
PB was added, the plate was incubated for 10 min at 37 ◦C, 5% CO2 and read on a Biotek
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Synergy HT fluorescent plate reader (Biotek, Winooski, VT, USA) at 560/590 nm and gain
set at 45. Next, 100 µL of CQ diluent was added to each well. The plate was incubated
for 60 min at 37 ◦C, 5% CO2 and read on a Biotek Synergy HT fluorescent plate reader at
480/538 nm and gain set at 70. Relative fluorescent units (RFU) were generated for each
well, which was directly correlated to cell metabolic output per unit DNA.

4.6. Growth Curve Assay

Cells were sub-cultured into tissue culture-treated 12-well plates at a seeding density
of 2630 cells/cm2 into a total of 12 plates. At the time of seeding in 12-well plates, concen-
trations of NaAsO2 (0, 0.1, 0.5, 1, and 10 µM) were added. Cells from 4 wells/plate were
counted using a hemocytometer every 24 h over a 6-day period. At the end of the 6-day
period, the cell counts from each day were used to assess fibroblast proliferation in the
presence of increasing NaAsO2.

4.7. Full-Thickness Wound Creation and Image Analysis

Twelve female and twelve male 8-week-old mice (Mus musculus C57BL/6) were
purchased from Jackson Laboratory (Bar Harbor, ME, USA). These mice were used in
accordance with Northern Arizona University’s (NAU) Institutional Animal Care and
Use Committee (Protocol# 18-018). The mice arrived in a healthy condition at NAU’s
Research Annex and were allowed a 28-day acclimatization period, during which animal
care staff placed mice in cages in a blinded fashion without interference from research staff.
Mice were randomly selected (6 female and 6 male) to receive RO water containing 10 µM
NaAsO2, while the rest of the groups (6 female and 6 male) received RO water. Once dosing
began, cages and food were changed weekly, and water was changed every 3 days. Water
intake was measured per cage every 3 days using a 500 mL graduated cylinder.

After 8 weeks of dosing, mice were anesthetized using 3% Isoflurane and two full-
thickness wounds were created, one on each side of the midline of the dorsum of each
animal using a sterile 6 mm dermal punch and tissue excision following prior methods [71].
All animals were treated with Tegaderm (3M., St Paul, MN, USA) dressings to cover the
wound sites and butterfly harnesses (LOMIR INC., Malone, NY, USA) to prevent animal
interference with wound sites. Mice were individually housed for the duration of the
experiment. Left- and right-wound sites for each mouse were photographed with a Nikon
DSLR camera with lightbox and macro lens attachments on days 0 and 6.

Wound images from days 0 and 6 post-operation were analyzed with ImageJ software
v.1.54h (U. S. National Institutes of Health, Bethesda, MD, USA). Scale was determined by
measuring a 1 mm line on the ruler in every photo (using the line tool). Wound areas were
traced along the inside wound edge (using the freehand selections tool) and the total area
was computed. Percent wound closure was calculated using the below equation:

% Wound Closure = [(Initial Wound Area − Final Wound Area) × 100]/(Initial Wound Area)

Erythema was measured using a qualitative rating scale for all images at each time-
point across cohorts. Images were ranked from 1–10, with 1 being the least red and 10 being
the reddest.

4.8. Tissue Collection and Quantitative Polymerase Chain Reaction (qPCR) in Mouse
Wound Biopsies

On day 6, all animals were euthanized by 5% Isoflurane overdose and cervical disloca-
tion. Animals were weighed and all wound areas (2 per mouse) were excised, placed in
1 mL RNAlater™ Stabilization Solution (Thermo Fisher, Waltham, WA, USA), and stored at
−80 ◦C until RNA isolation. Dermal punches were sent to University of Arizona Genetics
Core (Tucson, AZ, USA) for RNA isolation. Total RNA was isolated from each mouse skin
tissue sample using the Invitrogen PureLink RNA Mini extraction kit (Invitrogen, Carlsbad,
CA, USA). RNA quantity and ribosomal RNA integrity (RIN) was determined using the
2100 Bioanalyzer Instrument (Agilent Technologies, Santa Clara, CA, USA). Primers for
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Gapdh, Sdha, As3mt, Mmp1a, Timp1, Esr1, Esr2, and Gper1 were designed using the total gene
sequences (Primer3, NCBI) for each target gene assessed (Integrated Data Technologies,
Coralville, IA, USA) (Table 1). A standard curve was run for each primer set and melting
peaks were assessed. Reagents for cDNA synthesis/qPCR and thermocycler settings were
previously described.

4.9. Statistical Analysis

Statistically significant differences among experimental conditions in vitro were deter-
mined using the R-Program for Statistical Computation (V3.2.2 GUI 2014) using an ANOVA
with a Tukey’s HSD post hoc evaluation. In vivo data were statistically evaluated using
JMP® (Version 15. SAS Institute Inc., Cary, NC, USA) software. Data were evaluated for
normality and homogeneity of variance, with the alpha set at 0.05. Wound area, erythema
endpoints, and water consumption were assessed using a one-way Kruskal Wallis test with
a Dunn’s post hoc test for non-parametric data. Transcript levels assayed by qPCR were
compared using a one-way ANOVA and Tukey’s HSD post hoc evaluation. Graphing was
performed using GraphPad Prism version 9.0.0 for Windows, GraphPad Software v9.4.1,
San Diego, CA, USA.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms25042161/s1.
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