Unraveling Biomarker Signatures in Triple-Negative Breast Cancer: A Systematic Review for Targeted Approaches
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Search
2.2. Inclusion and Exclusion Criteria
2.3. Study Selection and Data Extraction
3. Results
3.1. Molecular Signatures in TNBC and Impact of Their Manipulation in Pre-Clinical Studies
3.1.1. Genomics
3.1.2. Epigenomics
3.1.3. Transcriptomics
Role of microRNAs in TNBC
3.1.4. Proteomics
3.1.5. Metabolomics
3.1.6. Signaling Pathways in TNBC
3.2. Untargeted Molecular Signatures in TNBC
Author (Year) | Biomarkers | Biomarker Expression | Controls |
---|---|---|---|
Abuderman (2020) [79] | MFAP5, ITM2A | ⇧, ⇩ | None |
Al-Saraireh (2021) [4] | CYP4Z1 | ⇧ | Healthy cells |
Al-Zahrani (2018) [80] | Sox10 | ⇧ | Non-TNBC |
Al-Twigeri (2022) [81] | AUF1 | ⇧ | Non-TNBC |
Ameh-Mensah (2021) [82] | Bcl-2, p53 | ⇧ | Non-TNBC |
Andrade (2020) [83] | miR-221, miR-1305, miR-4708, RMDN2 | ⇩ | None |
Avery-Kiejda (2014) [84] | miR-130a, miR-1280, miR-590-5p, miR-1308, miR-17 | ⇩ | Non-TNBC |
Bahnassy (2015) [85] | VEGF-A, IGF-I, IGF-IR, TGF-β1 | ⇧ | Non-TNBC |
Bao (2019) [86] | miR-455-5p, FOXC1, FAM171A1, RGMA | ⇧ | Non-TNBC and healthy cells |
Bar (2017) [87] | miR-210 | ⇧ | Healthy cells |
Bertoli (2021) [88] | miR-135b, miR-365 | ⇧, ⇩ | Healthy cells |
Bhargava (2011) [76] | IGF-1R | ⇧ | Non-TNBC and healthy cells |
Bogan (2017) [89] | BRCA-1 IRIS | ⇧ | Non-TNBC |
Bouchal (2015) [90] | STMN1, TMSB10 | ⇧ | Non-TNBC |
Cabezon (2013) [91] | Mage-A4 | ⇧ | Non-TNBC |
Camorani (2018) [92] | PDGFRβ | ⇧ | Non-TNBC |
Cheng (2012) [93] | HSP90 * | ⇧ | Non-TNBC |
Cheng (2022) [94] | CDKN2A | ⇧ | Non-TNBC |
Chung (2015) [95] | SIRT1 | ⇧ | Non-TNBC |
Cisneros-Villaneuva (2021) [96] | LINC00460 | ⇧ | Non-TNBC |
Daniels (2016) [97] | Methylated BRCA1 | ⇧ | Non-TNBC |
Darbeheshti (2019) [98] | FOXM1, ESR1, mir-135b, mir-29b | Differential | Non-TNBC |
Darbeheshti (2021) [99] | hsa_circ_0044234 | ⇩ | Non-TNBC |
Darbeheshti (2022) [100] | miR-182-5p | ⇧ | Non-TNBC and healthy cells |
De Palma (2020) [101] | LINC01087 | ⇩ | Non-TNBC |
Eichelser (2014) [102] | miR-373 | ⇧ | Non-TNBC |
El Ayachi (2019) [103] | WNT10B network: HMGA2 and EZH2 | ⇧ | Non-TNBC |
Elfgen (2019) [104] | PIK3CA | ⇩ | Non-TNBC |
Fan (2019) [105] | hsa-miR-148b, hsa-miR-203a, hsa-miR-203b, hsa-miR-3922 | Differential | Non-TNBC and healthy cells |
Fauteux (2015) [106] | MUC16, CT83, FAP, ADAM12, LRP8 | ⇧ | Non-TNBC and healthy cells |
Figenschau (2018) [107] | ICAM1 | ⇧ | Non-TNBC and healthy cells |
Gazinska (2022) [77] | PD-L1, CD40/OX40L | ⇩ | Non-TNBC |
Goncalves (2023) [108] | Vimentin | ⇧ | Non-TNBC |
Guo (2016) [109] | EZH2 | ⇧ | Non-TNBC |
Herrera (2012) [110] | TNF-a, TGF-b | ⇩ | Non-TNBC |
Ilgin (2020) [111] | Cytoplasmic CXCR1, cytoplasmic CD133, nuclear CD133 | ⇧ | Non-TNBC and healthy cells |
Jiang (2019) [112] | ERBB2, CDKN2A, PIK3CA | Differential | Non-TNBC |
Jin (2020) [113] | Sox 10 expression | ⇧ | Non-TNBC and healthy cells |
Kothari (2020) [114] | TBC1D9, MFGE8 | ⇩, ⇧ | Non-TNBC |
Kim (2016) [115] | GATA3 | ⇧ | None |
Le UQ (2022) [116] | Dear1 | ⇧ | Non-TNBC |
Li Q (2017) [117] | RGS20 | ⇧ | Non-TNBC and healthy cells |
Limsakul (2023) [118] | LYN, CSF1R, FGRF2, SRMS | Differential | None |
Lin (2021) [119] | BATM; BATM + prostaglandin E2 receptor 3 | ⇧ | Non-TNBC |
Liu (2016) [120] | LncRNAs: ENST00000443397, ENST00000447908, NR_003221, TCONS_00000027 | ⇧ | Non-TNBC |
Liu (2018) [78] | CD147 | ⇧ | Non-TNBC |
Magalhães (2022) [121] | hsa_circ_0072309 | ⇩ | Healthy cells |
Mcnamara (2016) [122] | Erb * | ⇩ | None |
Millis (2015) [123] | PIK3CA, EGFR *, AR, Ki-67, PTEN, topo-isomerase 1 | Differential | Non-TNBC |
Mirandola (2017) [124] | SP17 | ⇧ | Non-TNBC and healthy cells |
Nath (2024) [125] | SLC7A11 | ⇧ | Non-TNBC |
Nelson (2016) [75] | N-cadherin | ⇧ | TNBC pre-chemotherapy |
Noonan (2018) [126] | KISS1R and fibulin-3 | ⇧ | Non-TNBC and healthy cells |
Novelli (2008) [127] | ERb | ⇧ | Non-TNBC |
Okcu (2021) [128] | GLUT-1 | ⇧ | Non-TNBC |
Privat (2018) [129] | SOD1, MGST3, PRDX1; PFN1, ITGB1, ARGLU1, ANXA1 | ⇧ | Non-TNBC |
Purwaha (2018) [130] | sphingomyelin, ceramides, sphingoid base intermediates | Differential | None |
Qattan (2017) [131] | miR-195; hsa-miR-195, let-7miRNAs | Differential | Non-TNBC and healthy cells |
Qian (2020) [132] | IL-17 | ⇧ | None |
Rahman (2021) [133] | 909 lncRNAs and 1901 mRNAs; TCONS_00076394, TCONS_00051377 | Differential | None |
Roseweir (2017) [134] | Phosphorylated AR-515 | ⇧ | Non-TNBC |
Santarpia (2021) [135] | FBXW7 mutations | ⇧ | Non-TNBC |
Sayed (2013) [136] | PARP-1, TOPO- 2A, VEGF, C-MYC, bFGF, MMP-2 | ⇧ | Non-TNBC and healthy cells |
Suman (2016) [137] | A2M | ⇧ | Non-TNBC and healthy cells |
Sundaram (2020) [138] | EpCAM | ⇧ | Non-TNBC |
Thalor (2022) [139] | CT83, BCL11A, S100B and POU2AF1 | ⇧ | Non-TNBC |
Wang (2015) [140] | EGFR *, p53 | ⇧ | Non-TNBC |
Wang (2017) [141] | PIK3CA mutations, p-mTOR | ⇧ | None |
Xi (2018) [142] | AFAP1-AS1 | ⇧ | Non-TNBC |
Xiao (2017) [143] | miR-128 | ⇩ | Non-TNBC and healthy cells |
Yehia (2015) [144] | HIF-1α | ⇧ | Non-TNBC |
Zeindler (2019) [145] | Nectin-4 | ⇩ | None |
Zhang (2014) [146] | BIRC5, CENPA, FAM64A | ⇧ | Non-TNBC and healthy cells |
Zhao (2023) [147] | miR-15b-5p, miR-148a-3p, miR-148a-3p | ⇩ | Non-TNBC |
Zhong (2020) [1] | FaBP7, arT3, cT83, TTYH1 | ⇩ | Non-TNBC |
Zhu (2015) [148] | BRCA1 promoter methylation | ⇧ | Non-TNBC |
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhong, G.; Lou, W.; Shen, Q.; Yu, K.; Zheng, Y. Identification of key genes as potential biomarkers for triple-negative breast cancer using integrating genomics analysis. Mol. Med. Rep. 2019, 21, 557–566. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.-L.; Zhang, Z.-J.; Yi, Z.-B.; Li, J.-J. MicroRNA-211-5p suppresses tumour cell proliferation, invasion, migration and metastasis in triple-negative breast cancer by directly targeting SETBP1. Br. J. Cancer 2017, 117, 78–88. [Google Scholar] [CrossRef] [PubMed]
- Darbeheshti, F.; Mansoori, Y.; Azizi-Tabesh, G.; Zolfaghari, F.; Kadkhoda, S.; Rasti, A.; Rezaei, N.; Shakoori, A. Evaluation of Circ_0000977-Mediated Regulatory Network in Breast Cancer: A Potential Discriminative Biomarker for Triple-Negative Tumors. Biochem. Genet. 2023, 61, 1487–1508. [Google Scholar] [CrossRef] [PubMed]
- Al-Saraireh, Y.M.; Alshammari, F.O.; Youssef, A.M.; Al-Tarawneh, F.; Al-Sarayreh, S.; Almuhaisen, G.H.; Satari, A.; Al-Shuneigat, J.; Alrawashdeh, H.M. Cytochrome 4Z1 Expression is Associated with Unfavorable Survival in Triple-Negative Breast Cancers. Breast Cancer 2021, 13, 565–574. [Google Scholar] [CrossRef] [PubMed]
- Malone, M.K.; Smrekar, K.; Park, S.; Blakely, B.; Walter, A.; Nasta, N.; Park, J.; Considine, M.; Danilova, L.V.; Pandey, N.B.; et al. Cytokines secreted by stromal cells in TNBC microenvironment as potential targets for cancer therapy. Cancer Biol. Ther. 2020, 21, 560–569. [Google Scholar] [CrossRef] [PubMed]
- Breen, L.; Gaule, P.B.; Canonici, A.; Walsh, N.; Collins, D.M.; Cremona, M.; Hennessy, B.T.; Duffy, M.J.; Crown, J.; Donovan, N.O.; et al. Targeting c-Met in triple negative breast cancer: Preclinical studies using the c-Met inhibitor, Cpd A. Investig. New Drugs 2020, 38, 1365–1372. [Google Scholar] [CrossRef]
- Chatterjee, P.; Karn, R.; Emerson, I.A.; Banerjee, S. Docking and Molecular Dynamics Simulation Revealed the Potential Inhibitory Activity of Amygdalin in Triple-Negative Breast Cancer Therapeutics Targeting the BRCT Domain of BARD1 Receptor. Mol. Biotechnol. 2023, 1–19. [Google Scholar] [CrossRef]
- De Santis, F.; Romero-Cordoba, S.L.; Castagnoli, L.; Volpari, T.; Faraci, S.; Fucà, G.; Tagliabue, E.; De Braud, F.; Pupa, S.M.; Di Nicola, M. BCL6 and the Notch pathway: A signaling axis leading to a novel druggable biotarget in triple negative breast cancer. Cell. Oncol. 2022, 45, 257–274. [Google Scholar] [CrossRef]
- Christensen, A.G.; Ehmsen, S.; Terp, M.G.; Batra, R.; Alcaraz, N.; Baumbach, J.; Noer, J.B.; Moreira, J.; Leth-Larsen, R.; Larsen, M.R.; et al. Elucidation of Altered Pathways in Tumor-Initiating Cells of Triple-Negative Breast Cancer: A Useful Cell Model System for Drug Screening. Stem Cells 2017, 35, 1898–1912. [Google Scholar] [CrossRef]
- Adams, B.D.; Wali, V.B.; Cheng, C.J.; Inukai, S.; Booth, C.J.; Agarwal, S.; Rimm, D.L.; Győrffy, B.; Santarpia, L.; Pusztai, L.; et al. miR-34a Silences c-SRC to Attenuate Tumor Growth in Triple-Negative Breast Cancer. Cancer Res. 2016, 76, 927–939. [Google Scholar] [CrossRef] [PubMed]
- Cox, O.T.; Edmunds, S.J.; Simon-Keller, K.; Li, B.; Moran, B.; Buckley, N.E.; Bustamante-Garrido, M.; Healy, N.; O’Flanagan, C.H.; Gallagher, W.M.; et al. PDLIM2 Is a Marker of Adhesion and β-Catenin Activity in Triple-Negative Breast Cancer. Cancer Res. 2019, 79, 2619–2633. [Google Scholar] [CrossRef]
- da Silva, F.C.; Neto, A.B.d.M.; Martins, C.A.; Cardoso, T.C.d.S.; Gomes, M.d.S.; de Araújo, T.G.; Fürstenau, C.R. Is the regulation by miRNAs of NTPDase1 and ecto-5′-nucleotidase genes involved with the different profiles of breast cancer subtypes? Purinergic Signal. 2021, 18, 123–133. [Google Scholar] [CrossRef] [PubMed]
- Cınar, V.; Hamurcu, Z.; Guler, A.; Nurdinov, N.; Ozpolat, B. Serotonin 5-HT7 receptor is a biomarker poor prognostic factor and induces proliferation of triple-negative breast cancer cells through FOXM1. Breast Cancer 2022, 29, 1106–1120. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. he PRISMA 2020 statement: An updated guideline for reporting systematic reviews Systematic reviews and Meta-Analyses. BMJ 2021, 372, 71. [Google Scholar] [CrossRef] [PubMed]
- Ouzzani, M.; Hammady, H.; Fedorowicz, Z.; Elmagarmid, A. Rayyan—A web and mobile app for systematic reviews. Syst. Rev. 2016, 5, 210. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, M.; Takano, A.; Thang, P.M.; Tsevegjav, B.; Zhu, M.; Yokose, T.; Yamashita, T.; Miyagi, Y.; Daigo, Y. Characterization of KIF20A as a prognostic biomarker and therapeutic target for different subtypes of breast cancer. Int. J. Oncol. 2020, 57, 277–288. [Google Scholar] [CrossRef] [PubMed]
- Ni, Y.; Schmidt, K.R.; Werner, B.A.; Koenig, J.K.; Guldner, I.H.; Schnepp, P.M.; Tan, X.; Jiang, L.; Host, M.; Sun, L.; et al. Death effector domain-containing protein induces vulnerability to cell cycle inhibition in triple-negative breast cancer. Nat. Commun. 2019, 10, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liu, F.; Zhang, C.; Ren, M.; Kuang, M.; Xiao, T.; Di, X.; Feng, L.; Fu, L.; Cheng, S. Non-SMC Condensin I Complex Subunit D2 Is a Prognostic Factor in Triple-Negative Breast Cancer for the Ability to Promote Cell Cycle and Enhance Invasion. Am. J. Pathol. 2019, 190, 37–47. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Kabotyanski, E.B.; Shepherd, J.H.; Villegas, E.; Acosta, D.; Hamor, C.; Sun, T.; Montmeyor-Garcia, C.; He, X.; Dobrolecki, L.E.; et al. Tumor Suppressor PLK2 May Serve as a Biomarker in Triple-Negative Breast Cancer for Improved Response to PLK1 Therapeutics. Cancer Res. Commun. 2021, 1, 178–193. [Google Scholar] [CrossRef]
- Mazumdar, A.; Tahaney, W.M.; Bollu, L.R.; Poage, G.; Hill, J.; Zhang, Y.; Mills, G.B.; Brown, P.H. The phosphatase PPM1A inhibits triple negative breast cancer growth by blocking cell cycle progression. NPJ Breast Cancer 2019, 5, 22. [Google Scholar] [CrossRef]
- Chen, X.; Yang, D.; Carey, J.P.W.; Karakas, C.; Albarracin, C.; Sahin, A.A.; Arun, B.K.; Durak, M.G.; Li, M.; Kohansal, M.; et al. Targeting Replicative Stress and DNA Repair by Combining PARP and Wee1 Kinase Inhibitors Is Synergistic in Triple Negative Breast Cancers with Cyclin E or BRCA1 Alteration. Cancers 2021, 13, 1656. [Google Scholar] [CrossRef]
- Yan, X.; Yu, Y.; Li, L.; Chen, N.; Song, W.; He, H.; Dong, J.; Liu, X.; Cui, J. Friend leukemia virus integration 1 is a predictor of poor prognosis of breast cancer and promotes metastasis and cancer stem cell properties of breast cancer cells. Cancer Med. 2018, 7, 3548–3560. [Google Scholar] [CrossRef]
- Rodrigues-Ferreira, S.; Di Tommaso, A.; Dimitrov, A.; Cazaubon, S.; Gruel, N.; Colasson, H.; Nicolas, A.; Chaverot, N.; Molinié, V.; Reyal, F.; et al. 8p22 MTUS1 Gene Product ATIP3 Is a Novel Anti-Mitotic Protein Underexpressed in Invasive Breast Carcinoma of Poor Prognosis. PLoS ONE 2009, 4, e7239. [Google Scholar] [CrossRef]
- Aboelela, S.; Ashmawy, A.; Shaarawy, S.; Hefny, M.E.; Medhat, A. Telomerase as a Possible Candidate Targeting Therapy in Different Breast Cancer Cell Lines. Asian Pac. J. Cancer Prev. 2020, 21, 2243–2250. [Google Scholar] [CrossRef]
- Chervo, M.F.; Russo, R.I.C.; Petrillo, E.; Izzo, F.; De Martino, M.; Bellora, N.; Cenciarini, M.E.; Chiauzzi, V.A.; de la Parra, L.S.M.; Pereyra, M.G.; et al. Canonical ErbB-2 isoform and ErbB-2 variant c located in the nucleus drive triple negative breast cancer growth. Oncogene 2020, 39, 6245–6262. [Google Scholar] [CrossRef] [PubMed]
- Madera, S.; Izzo, F.; Chervo, M.F.; Dupont, A.; Chiauzzi, V.A.; Bruni, S.; Petrillo, E.; Merin, S.S.; De Martino, M.; Montero, D.; et al. Halting ErbB-2 isoforms retrograde transport to the nucleus as a new theragnostic approach for triple-negative breast cancer. Cell Death Dis. 2022, 13, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Mendaza, S.; Ulazia-Garmendia, A.; Monreal-Santesteban, I.; Córdoba, A.; de Azúa, Y.R.; Aguiar, B.; Beloqui, R.; Armendáriz, P.; Arriola, M.; Martín-Sánchez, E.; et al. ADAM12 is A Potential Therapeutic Target Regulated by Hypomethylation in Triple-Negative Breast Cancer. Int. J. Mol. Sci. 2020, 21, 903. [Google Scholar] [CrossRef] [PubMed]
- Vinet, M.; Suresh, S.; Maire, V.; Monchecourt, C.; Némati, F.; Lesage, L.; Pierre, F.; Ye, M.; Lescure, A.; Brisson, A.; et al. Protein arginine methyltransferase 5: A novel therapeutic target for triple-negative breast cancers. Cancer Med. 2019, 8, 2414–2428. [Google Scholar] [CrossRef] [PubMed]
- Cheng, G.; Sun, X.; Wang, J.; Xiao, G.; Wang, X.; Fan, X.; Zu, L.; Hao, M.; Qu, Q.; Mao, Y.; et al. HIC1 Silencing in Triple-Negative Breast Cancer Drives Progression through Misregulation of LCN2. Cancer Res. 2014, 74, 862–872. [Google Scholar] [CrossRef] [PubMed]
- Paço, A.; Leitão-Castro, J.; Freitas, R. Epigenetic Regulation of CDH1 Is Altered after HOXB7-Silencing in MDA-MB-468 Triple-Negative Breast Cancer Cells. Genes 2021, 12, 1575. [Google Scholar] [CrossRef]
- Zhao, N.; Kabotyanski, E.B.; Saltzman, A.B.; Malovannaya, A.; Yuan, X.; Reineke, L.C.; Lieu, N.; Gao, Y.; Pedroza, D.A.; Calderon, S.J.; et al. Targeting EIF4A Triggers an Interferon Response to Synergize with Chemotherapy and Suppress Triple-Negative Breast Cancer. J. Clin. Investig. 2023. [Google Scholar] [CrossRef]
- Binothman, N.; Hachim, I.Y.; Lebrun, J.-J.; Ali, S. CPSF6 is a Clinically Relevant Breast Cancer Vulnerability Target. EBioMedicine 2017, 21, 65–78. [Google Scholar] [CrossRef]
- Mitobe, Y.; Ikeda, K.; Sato, W.; Kodama, Y.; Naito, M.; Gotoh, N.; Miyata, K.; Kataoka, K.; Sasaki, H.; Horie-Inoue, K.; et al. Proliferation-associated long noncoding RNA, TMPO-AS1, is a potential therapeutic target for triple-negative breast cancer. Cancer Sci. 2020, 111, 2440–2450. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Ma, M.; Yang, X.; Zhang, M.; Luo, J.; Zhou, H.; Huang, N.; Xiao, F.; Lai, B.; Lv, W.; et al. Circular HER2 RNA positive triple negative breast cancer is sensitive to Pertuzumab. Mol. Cancer 2020, 19, 142. [Google Scholar] [CrossRef] [PubMed]
- Song, R.; Guo, P.; Ren, X.; Zhou, L.; Li, N.P.; Rahman, N.; Wołczyński, S.; Li, X.; Zhang, Y.; Liu, M.; et al. A novel polypeptide CAPG-171aa encoded by circCAPG plays a critical role in triple-negative breast cancer. Mol. Cancer 2023, 22, 104. [Google Scholar] [CrossRef]
- Wei, W.; Zou, Y.; Jiang, Q.; Zhou, Z.; Ding, H.; Yan, L.; Yang, S. PSMB5 is associated with proliferation and drug resistance in triple-negative breast cancer. Int. J. Biol. Markers 2017, 33, 102–108. [Google Scholar] [CrossRef] [PubMed]
- Nama, S.; Muhuri, M.; Di Pascale, F.; Quah, S.; Aswad, L.; Fullwood, M.; Sampath, P. MicroRNA-138 is a Prognostic Biomarker for Triple-Negative Breast Cancer and Promotes Tumorigenesis via TUSC2 repression. Sci. Rep. 2019, 9, 12718. [Google Scholar] [CrossRef]
- Dong, G.; Liang, X.; Wang, D.; Gao, H.; Wang, L.; Wang, L.; Liu, J.; Du, Z. High expression of miR-21 in triple-negative breast cancers was correlated with a poor prognosis and promoted tumor cell in vitro proliferation. Med. Oncol. 2014, 31, 57. [Google Scholar] [CrossRef]
- Moro, J.; Grinpelc, A.; Farré, P.L.; Duca, R.B.; Lacunza, E.; Graña, K.D.; Scalise, G.D.; Dalton, G.N.; Massillo, C.; Piccioni, F.; et al. miR-877-5p as a Potential Link between Triple-Negative Breast Cancer Development and Metabolic Syndrome. Int. J. Mol. Sci. 2023, 24, 16758. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Liao, H.; Xie, R.; Zhang, Y.; Zheng, R.; Chen, J.; Zhang, B. Overexpression of miRNA-3613-3p Enhances the Sensitivity of Triple Negative Breast Cancer to CDK4/6 Inhibitor Palbociclib. Front. Oncol. 2020, 10, 813. [Google Scholar] [CrossRef]
- Soudan, H.; Saeed, H.; Eldemellawy, M.; Shalaby, M.; Hassan, M.; Elkewedi, M.; El-Nikhely, N. Heat shock protein 90α inhibitor, PU-H71 in combination with DHEA promoting apoptosis in triple-negative breast cancer cell line MDA-MB-231. Acta Biochim. Pol. 2020, 67, 561–570. [Google Scholar] [CrossRef]
- Caldas-Lopes, E.; Cerchietti, L.; Ahn, J.H.; Clement, C.C.; Robles, A.I.; Rodina, A.; Moulick, K.; Taldone, T.; Gozman, A.; Guo, Y.; et al. Hsp90 inhibitor PU-H71, a multimodal inhibitor of malignancy, induces complete responses in triple-negative breast cancer models. Proc. Natl. Acad. Sci. USA 2009, 106, 8368–8373. [Google Scholar] [CrossRef]
- Oh, Y.J.; Seo, Y.H. A novel chalcone-based molecule, BDP inhibits MDA-MB-231 triple-negative breast cancer cell growth by suppressing Hsp90 function. Oncol. Rep. 2017, 38, 2343–2350. [Google Scholar] [CrossRef]
- Fang, F.; Mo, L.; Pan, X.; Yang, Z.; Huang, H.; Zhu, L.; Wang, Y.; Jiang, G. DNAJB4 promotes triple-negative breast cancer cell apoptosis via activation of the Hippo signaling pathway. Discov. Oncol. 2023, 14, 40. [Google Scholar] [CrossRef]
- Campagna, R.; Pozzi, V.; Giorgini, S.; Morichetti, D.; Goteri, G.; Sartini, D.; Serritelli, E.N.; Emanuelli, M. Comparative proteomic profiling of triple-negative breast cancer reveals that up-regulation of RhoGDI-2 is associated to the inhibition of caspase 3 and caspase 9. J. Proteom. 2014, 111, 198–211. [Google Scholar]
- Campagna, R.; Pozzi, V.; Giorgini, S.; Morichetti, D.; Goteri, G.; Sartini, D.; Serritelli, E.N.; Emanuelli, M. Paraoxonase-2 is upregulated in triple negative breast cancer and contributes to tumor progression and chemoresistance. Hum. Cell 2023, 36, 1108–1119. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.-Q.; Li, Y.; Huang, B.-F.; Zhao, Y.-M.; Yuan, H.; Guo, D.; Su, C.-M.; Hu, G.-N.; Wang, Q.; Long, T.; et al. EGFR conjunct FSCN1 as a Novel Therapeutic Strategy in Triple-Negative Breast Cancer. Sci. Rep. 2017, 7, 15654. [Google Scholar] [CrossRef]
- Giricz, O.; Calvo, V.; Pero, S.C.; Krag, D.N.; Sparano, J.A.; Kenny, P.A. GRB7 is required for triple-negative breast cancer cell invasion and survival. Breast Cancer Res. Treat. 2011, 133, 607–615. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhou, Y.; Ma, X.; Chen, L. Inhibition Lysosomal Degradation of Clusterin by Protein Kinase D3 Promotes Triple-Negative Breast Cancer Tumor Growth. Adv. Sci. 2021, 8, 2003205. [Google Scholar] [CrossRef] [PubMed]
- Ferraro, D.A.; Gaborit, N.; Maron, R.; Cohen-Dvashi, H.; Porat, Z.; Pareja, F.; Lavi, S.; Lindzen, M.; Ben-Chetrit, N.; Sela, M.; et al. Inhibition of triple-negative breast cancer models by combinations of antibodies to EGFR. Proc. Natl. Acad. Sci. USA 2013, 110, 1815–1820. [Google Scholar] [CrossRef] [PubMed]
- Linklater, E.S.; Tovar, E.A.; Essenburg, C.J.; Turner, L.; Madaj, Z.; Winn, M.E.; Melnik, M.K.; Korkaya, H.; Maroun, C.R.; Christensen, J.G.; et al. Targeting MET and EGFR crosstalk signaling in triple-negative breast cancers. Oncotarget 2016, 7, 69903–69915. [Google Scholar] [CrossRef]
- Verma, N.; Müller, A.-K.; Kothari, C.; Panayotopoulou, E.; Kedan, A.; Selitrennik, M.; Mills, G.B.; Nguyen, L.K.; Shin, S.; Karn, T.; et al. Targeting of PYK2 Synergizes with EGFR Antagonists in Basal-like TNBC and Circumvents HER3-Associated Resistance via the NEDD4–NDRG1 Axis. Cancer Res. 2017, 77, 86–99. [Google Scholar] [CrossRef] [PubMed]
- Beatty, A.; Fink, L.S.; Singh, T.; Strigun, A.; Peter, E.; Ferrer, C.M.; Nicolas, E.; Cai, K.Q.; Moran, T.P.; Reginato, M.J.; et al. Metabolite Profiling Reveals the Glutathione Biosynthetic Pathway as a Therapeutic Target in Triple-Negative Breast Cancer. Mol. Cancer Ther. 2018, 17, 264–275. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Hao, H.-F.; Jiao, Y.-N.; Fu, J.-L.; Guo, Z.-W.; Guo, Y.; Yuan, Y.; Li, P.-P.; Han, S.-Y. Dandelion extract inhibits triple-negative breast cancer cell proliferation by interfering with glycerophospholipids and unsaturated fatty acids metabolism. Front. Pharmacol. 2022, 13, 942996. [Google Scholar] [CrossRef] [PubMed]
- Pelicano, H.; Zhang, W.; Liu, J.; Hammoudi, N.; Dai, J.; Xu, R.-H.; Pusztai, L.; Huang, P. Mitochondrial dysfunction in some triple-negative breast cancer cell lines: Role of mTOR pathway and therapeutic potential. Breast Cancer Res. 2014, 16, 434. [Google Scholar] [CrossRef] [PubMed]
- Lai, Y.-W.; Hsu, W.-J.; Lee, W.-Y.; Chen, C.-H.; Tsai, Y.-H.; Dai, J.-Z.; Yang, C.-C.; Lin, C.-W. Prognostic Value of a Glycolytic Signature and Its Regulation by Y-Box-Binding Protein 1 in Triple-Negative Breast Cancer. Cells 2021, 10, 1890. [Google Scholar] [CrossRef] [PubMed]
- Apostolidi, M.; Vathiotis, I.A.; Muthusamy, V.; Gaule, P.; Gassaway, B.M.; Rimm, D.L.; Rinehart, J. Targeting Pyruvate Kinase M2 Phosphorylation Reverses Aggressive Cancer Phenotypes. Cancer Res. 2021, 81, 4346–4359. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Wu, X.; Wang, Y.; Zhang, K.; Wu, J.; Yuan, Y.-C.; Deng, X.; Chen, L.; Kim, C.C.H.; Lau, S.; et al. FZD7 has a critical role in cell proliferation in triple negative breast cancer. Oncogene 2011, 30, 4437–4446. [Google Scholar] [CrossRef] [PubMed]
- Dey, N.; Barwick, B.G.; Moreno, C.S.; Ordanic-Kodani, M.; Chen, Z.; Oprea-Ilies, G.; Tang, W.; Catzavelos, C.; Kerstann, K.F.; Sledge, G.W.; et al. Wnt signaling in triple negative breast cancer is associated with metastasis. BMC Cancer 2013, 13, 537. [Google Scholar] [CrossRef]
- Lobba, A.R.M.; Carreira, A.C.O.; Cerqueira, O.L.D.; Fujita, A.; DeOcesano-Pereira, C.; Osorio, C.A.B.; Soares, F.A.; Rameshwar, P.; Sogayar, M.C. High CD90 (THY-1) expression positively correlates with cell transformation and worse prognosis in basal-like breast cancer tumors. PLoS ONE 2018, 13, e0199254. [Google Scholar] [CrossRef]
- Ring, A.; Nguyen, C.; Smbatyan, G.; Tripathy, D.; Yu, M.; Press, M.; Kahn, M.; Lang, J.E. CBP/β-Catenin/FOXM1 Is a Novel Therapeutic Target in Triple Negative Breast Cancer. Cancers 2018, 10, 525. [Google Scholar] [CrossRef]
- Leong, S.R.; Liang, W.-C.; Wu, Y.; Crocker, L.; Cheng, E.; Sampath, D.; Ohri, R.; Raab, H.; Hass, P.E.; Pham, T.; et al. An Anti-B7-H4 Antibody–Drug Conjugate for the Treatment of Breast Cancer. Mol. Pharm. 2015, 12, 1717–1729. [Google Scholar] [CrossRef] [PubMed]
- Du, H.; Yi, Z.; Wang, L.; Li, Z.; Niu, B.; Ren, G. The co-expression characteristics of LAG3 and PD-1 on the T cells of patients with breast cancer reveal a new therapeutic strategy. Int. Immunopharmacol. 2019, 78, 106113. [Google Scholar] [CrossRef] [PubMed]
- Shen, M.; Jiang, Y.-Z.; Wei, Y.; Ell, B.; Sheng, X.; Esposito, M.; Kang, J.; Hang, X.; Zheng, H.; Rowicki, M.; et al. Tinagl1 Suppresses Triple-Negative Breast Cancer Progression and Metastasis by Simultaneously Inhibiting Integrin/FAK and EGFR Signaling. Cancer Cell 2019, 35, 64–80.e7. [Google Scholar] [CrossRef] [PubMed]
- Makvandi, M.; Tilahun, E.D.; Lieberman, B.P.; Anderson, R.-C.; Zeng, C.; Xu, K.; Hou, C.; McDonald, E.S.; Pryma, D.A.; Mach, R.H. The sigma-2 receptor as a therapeutic target for drug delivery in triple negative breast cancer. Biochem. Biophys. Res. Commun. 2015, 467, 1070–1075. [Google Scholar] [CrossRef]
- Nagano, K.; Maeda, Y.; Kanasaki, S.-I.; Watanabe, T.; Yamashita, T.; Inoue, M.; Higashisaka, K.; Yoshioka, Y.; Abe, Y.; Mukai, Y.; et al. Ephrin receptor A10 is a promising drug target potentially useful for breast cancers including triple negative breast cancers. J. Control. Release 2014, 189, 72–79. [Google Scholar] [CrossRef]
- Forte, L.; Turdo, F.; Ghirelli, C.; Aiello, P.; Casalini, P.; Iorio, M.V.; D’ippolito, E.; Gasparini, P.; Agresti, R.; Belmonte, B.; et al. The PDGFRβ/ERK1/2 pathway regulates CDCP1 expression in triple-negative breast cancer. BMC Cancer 2018, 18, 586. [Google Scholar] [CrossRef] [PubMed]
- Ring, A.; Kaur, P.; Lang, J.E. EP300 knockdown reduces cancer stem cell phenotype, tumor growth and metastasis in triple negative breast cancer. BMC Cancer 2020, 20, 1076. [Google Scholar] [CrossRef] [PubMed]
- Ruiu, R.; Barutello, G.; Arigoni, M.; Riccardo, F.; Conti, L.; Peppino, G.; Annaratone, L.; Marchiò, C.; Mengozzi, G.; Calogero, R.A.; et al. Identification of TENM4 as a Novel Cancer Stem Cell-Associated Molecule and Potential Target in Triple Negative Breast Cancer. Cancers 2021, 13, 894. [Google Scholar] [CrossRef]
- Toosi, B.M.; El Zawily, A.; Truitt, L.; Shannon, M.; Allonby, O.; Babu, M.; DeCoteau, J.; Mousseau, D.; Ali, M.; Freywald, T.; et al. EPHB6 augments both development and drug sensitivity of triple-negative breast cancer tumours. Oncogene 2018, 37, 4073–4093. [Google Scholar] [CrossRef]
- Weng, Y.-S.; Tseng, H.-Y.; Chen, Y.-A.; Shen, P.-C.; Al Haq, A.T.; Chen, L.-M.; Tung, Y.-C.; Hsu, H.-L. MCT-1/miR-34a/IL-6/IL-6R signaling axis promotes EMT progression, cancer stemness and M2 macrophage polarization in triple-negative breast cancer. Mol. Cancer 2019, 18, 42. [Google Scholar] [CrossRef] [PubMed]
- Chiu, A.M.; Mitra, M.; Boymoushakian, L.; Coller, H.A. Integrative analysis of the inter-tumoral heterogeneity of triple-negative breast cancer. Sci. Rep. 2018, 8, 11807. [Google Scholar] [CrossRef] [PubMed]
- Ricardo, S.; Gerhard, R.; Cameselle-Teijeiro, J.F.; Schmitt, F.; Paredes, J. Claudin expression in breast cancer: High or low, what to expect? Histol. Histopathol. 2012, 27, 1283–1295. [Google Scholar] [CrossRef]
- Giusti, V.; Ruzzi, F.; Landuzzi, L.; Ianzano, M.L.; Laranga, R.; Nironi, E.; Scalambra, L.; Nicoletti, G.; De Giovanni, C.; Olivero, M.; et al. Evolution of HER2-positive mammary carcinoma: HER2 loss reveals claudin-low traits in cancer progression. Oncogenesis 2021, 10, 77. [Google Scholar] [CrossRef] [PubMed]
- Nelson, E.R.; Li, S.; Kennedy, M.; Payne, S.; Kilibarda, K.; Groth, J.; Bowie, M.; Parilla-Castellar, E.; de Ridder, G.; Marcom, P.K.; et al. Chemotherapy enriches for an invasive triple-negative breast tumor cell subpopulation expressing a precursor form of N-cadherin on the cell surface. Oncotarget 2016, 7, 84030–84042. [Google Scholar] [CrossRef]
- Bhargava, R.; Beriwal, S.; McManus, K.H.; Dabbs, D.J. Insulin-like Growth Factor Receptor-1 (IGF-1R) Expression in Normal Breast, Proliferative Breast Lesions, and Breast Carcinoma. Appl. Immunohistochem. Mol. Morphol. 2011, 19, 218–225. [Google Scholar] [CrossRef] [PubMed]
- Gazinska, P.; Milton, C.; Iacovacci, J.; Ward, J.; Buus, R.; Alaguthurai, T.; Graham, R.; Akarca, A.; Lips, E.; Naidoo, K.; et al. Dynamic Changes in the NK-, Neutrophil-, and B-cell Immunophenotypes Relevant in High Metastatic Risk Post Neoadjuvant Chemotherapy-Resistant Early Breast Cancers. Clin. Cancer Res. 2022, 28, 4494–4508. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Tsang, J.Y.S.; Lee, M.; Ni, Y.-B.; Chan, S.-K.; Cheung, S.-Y.; Hu, J.; Hu, H.; Tse, G.M.K. CD147 expression is associated with poor overall survival in chemotherapy treated triple-negative breast cancer. J. Clin. Pathol. 2018, 71, 1007–1014. [Google Scholar] [CrossRef]
- Abuderman, A.; Harb, O.; Gertallah, L. Prognostic and clinicopathological values of tissue expression of MFAP5 and ITM2A in triple-negative breast cancer: An immunohistochemical study. Contemp. Oncol. 2020, 24, 87–95. [Google Scholar] [CrossRef]
- Al-Zahrani, K.N.; Cook, D.P.; Vanderhyden, B.C.; Sabourin, L.A. Assessing the efficacy of androgen receptor and Sox10 as independent markers of the triple-negative breast cancer subtype by transcriptome profiling. Oncotarget 2018, 9, 33348–33359. [Google Scholar] [CrossRef]
- Al-Tweigeri, T.; AlRaouji, N.N.; Tulbah, A.; Arafah, M.; Aboussekhra, M.; Al-Mohanna, F.; Gad, A.M.; Eldali, A.M.; Elhassan, T.A.; Aboussekhra, A. High AUF1 level in stromal fibroblasts promotes carcinogenesis and chemoresistance and predicts unfavorable prognosis among locally advanced breast cancer patients. Breast Cancer Res. 2022, 24, 46. [Google Scholar] [CrossRef]
- Ameh-Mensah, C.; Duduyemi, B.M.; Bedu-Addo, K.; Manu, E.A.; Opoku, F.; Titiloye, N. The Analysis of bcl-2 in Association with p53 and Ki-67 in Triple Negative Breast Cancer and Other Molecular Subtypes in Ghana. J. Oncol. 2021, 2021, 7054134. [Google Scholar] [CrossRef]
- Andrade, F.; Nakata, A.; Gotoh, N.; Fujita, A. Large miRNA survival analysis reveals a prognostic four-biomarker signature for triple negative breast cancer. Genet. Mol. Biol. 2020, 43, e20180269. [Google Scholar] [CrossRef]
- Avery-Kiejda, K.A.; Braye, S.G.; Mathe, A.; Forbes, J.F.; Scott, R.J. Decreased expression of key tumour suppressor microRNAs is associated with lymph node metastases in triple negative breast cancer. BMC Cancer 2014, 14, 51. [Google Scholar] [CrossRef]
- Bahnassy, A.; Mohanad, M.; Ismail, M.F.; Shaarawy, S.; El-Bastawisy, A.; Zekri, A.-R.N. Molecular biomarkers for prediction of response to treatment and survival in triple negative breast cancer patients from Egypt. Exp. Mol. Pathol. 2015, 99, 303–311. [Google Scholar] [CrossRef]
- Bao, C.; Lu, Y.; Chen, J.; Chen, D.; Lou, W.; Ding, B.; Xu, L.; Fan, W. Exploring specific prognostic biomarkers in triple-negative breast cancer. Cell Death Dis. 2019, 10, 807. [Google Scholar] [CrossRef]
- Bar, I.; Merhi, A.; Abdel-Sater, F.; Ben Addi, A.; Sollennita, S.; Canon, J.-L.; Delrée, P. The MicroRNA miR-210 Is Expressed by Cancer Cells but Also by the Tumor Microenvironment in Triple-Negative Breast Cancer. J. Histochem. Cytochem. 2017, 65, 335–346. [Google Scholar] [CrossRef]
- Bertoli, G.; Cava, C.; Corsi, F.; Piccotti, F.; Martelli, C.; Ottobrini, L.; Vaira, V.; Castiglioni, I. Triple negative aggressive phenotype controlled by miR-135b and miR-365: New theranostics candidates. Sci. Rep. 2021, 11, 6553. [Google Scholar] [CrossRef] [PubMed]
- Bogan, D.; Meile, L.; El Bastawisy, A.; Yousef, H.F.; Zekri, A.-R.N.; Bahnassy, A.A.; ElShamy, W.M. The role of BRCA1-IRIS in the development and progression of triple negative breast cancers in Egypt: Possible link to disease early lesion. BMC Cancer 2017, 17, 329. [Google Scholar] [CrossRef] [PubMed]
- Bouchal, P.; Dvořáková, M.; Roumeliotis, T.; Bortlíček, Z.; Ihnatová, I.; Procházková, I.; Ho, J.T.C.; Maryáš, J.; Imrichová, H.; Budinská, E.; et al. Combined Proteomics and Transcriptomics Identifies Carboxypeptidase B1 and Nuclear Factor κB (NF-κB) Associated Proteins as Putative Biomarkers of Metastasis in Low Grade Breast Cancer. Mol. Cell. Proteom. 2015, 14, 1814–1830. [Google Scholar] [CrossRef] [PubMed]
- Cabezón, T.; Gromova, I.; Gromov, P.; Serizawa, R.; Wielenga, V.T.; Kroman, N.; Celis, J.E.; Moreira, J.M.A. Proteomic Profiling of Triple-negative Breast Carcinomas in Combination with a Three-tier Orthogonal Technology Approach Identifies Mage-A4 as Potential Therapeutic Target in Estrogen Receptor Negative Breast Cancer. Mol. Cell. Proteom. 2013, 12, 381–394. [Google Scholar] [CrossRef] [PubMed]
- Camorani, S.; Hill, B.S.; Collina, F.; Gargiulo, S.; Napolitano, M.; Cantile, M.; Di Bonito, M.; Botti, G.; Fedele, M.; Zannetti, A.; et al. Targeted imaging and inhibition of triple-negative breast cancer metastases by a PDGFRβ aptamer. Theranostics 2018, 8, 5178–5199. [Google Scholar] [CrossRef]
- Cheng, Q.; Chang, J.T.; Geradts, J.; Neckers, L.M.; Haystead, T.; Spector, N.L.; Lyerly, H.K. Amplification and high-level expression of heat shock protein 90 marks aggressive phenotypes of human epidermal growth factor receptor 2 negative breast cancer. Breast Cancer Res. 2012, 14, R62. [Google Scholar] [CrossRef] [PubMed]
- Cheng, T.; Wu, Y.; Liu, Z.; Yu, Y.; Sun, S.; Guo, M.; Sun, B.; Huang, C. CDKN2A-mediated molecular subtypes characterize the hallmarks of tumor microenvironment and guide precision medicine in triple-negative breast cancer. Front. Immunol. 2022, 13, 970950. [Google Scholar] [CrossRef]
- Chung, Y.R.; Kim, H.; Park, S.Y.; Park, I.A.; Jang, J.J.; Choe, J.-Y.; Jung, Y.Y.; Im, S.-A.; Moon, H.-G.; Lee, K.-H.; et al. Distinctive role of SIRT1 expression on tumor invasion and metastasis in breast cancer by molecular subtype. Hum. Pathol. 2015, 46, 1027–1035. [Google Scholar] [CrossRef]
- Cisneros-Villanueva, M.; Hidalgo-Pérez, L.; Cedro-Tanda, A.; Peña-Luna, M.; Mancera-Rodríguez, M.A.; Hurtado-Cordova, E.; Rivera-Salgado, I.; Martínez-Aguirre, A.; Jiménez-Morales, S.; Alfaro-Ruiz, L.A.; et al. LINC00460 Is a Dual Biomarker That Acts as a Predictor for Increased Prognosis in Basal-Like Breast Cancer and Potentially Regulates Immunogenic and Differentiation-Related Genes. Front. Oncol. 2021, 11, 628027. [Google Scholar] [CrossRef]
- Daniels, S.L.; Burghel, G.J.; Chambers, P.; Al-Baba, S.; Connley, D.D.; Brock, I.W.; Cramp, H.E.; Dotsenko, O.; Wilks, O.; Wyld, L.; et al. Levels of DNA Methylation Vary at CpG Sites across the BRCA1 Promoter, and Differ According to Triple Negative and “BRCA-Like” Status, in Both Blood and Tumour DNA. PLoS ONE 2016, 11, e0160174. [Google Scholar] [CrossRef] [PubMed]
- Darbeheshti, F.; Rezaei, N.; Amoli, M.M.; Mansoori, Y.; Bazzaz, J.T. Integrative analyses of triple negative dysregulated transcripts compared with non-triple negative tumors and their functional and molecular interactions. J. Cell. Physiol. 2019, 234, 22386–22399. [Google Scholar] [CrossRef]
- Darbeheshti, F.; Zokaei, E.; Mansoori, Y.; Allahyari, S.E.; Kamaliyan, Z.; Kadkhoda, S.; Bazzaz, J.T.; Rezaei, N.; Shakoori, A. Circular RNA hsa_circ_0044234 as distinct molecular signature of triple negative breast cancer: A potential regulator of GATA3. Cancer Cell Int. 2021, 21, 312. [Google Scholar] [CrossRef]
- Darbeheshti, F.; Kadkhoda, S.; Keshavarz-Fathi, M.; Razi, S.; Bahramy, A.; Mansoori, Y.; Rezaei, N. Investigation of BRCAness associated miRNA-gene axes in breast cancer: Cell-free miR-182-5p as a potential expression signature of BRCAness. BMC Cancer 2022, 22, 668. [Google Scholar] [CrossRef]
- De Palma, F.D.E.; Del Monaco, V.; Pol, J.G.; Kremer, M.; D’argenio, V.; Stoll, G.; Montanaro, D.; Uszczyńska-Ratajczak, B.; Klein, C.C.; Vlasova, A.; et al. The abundance of the long intergenic non-coding RNA 01087 differentiates between luminal and triple-negative breast cancers and predicts patient outcome. Pharmacol. Res. 2020, 161, 105249. [Google Scholar] [CrossRef]
- Eichelser, C.; Stückrath, I.; Müller, V.; Milde-Langosch, K.; Wikman, H.; Pantel, K.; Schwarzenbach, H. Increased serum levels of circulating exosomal microRNA-373 in receptor-negative breast cancer patients. Oncotarget 2014, 5, 9650–9663. [Google Scholar] [CrossRef] [PubMed]
- El Ayachi, I.; Fatima, I.; Wend, P.; Alva-Ornelas, J.A.; Runke, S.; Kuenzinger, W.L.; Silva, J.; Silva, W.; Gray, J.K.; Lehr, S.; et al. The WNT10B Network Is Associated with Survival and Metastases in Chemoresistant Triple-Negative Breast Cancer. Cancer Res 2019, 79, 982–993. [Google Scholar] [CrossRef] [PubMed]
- Elfgen, C.; Reeve, K.; Moskovszky, L.; Güth, U.; Bjelic-Radisic, V.; Fleisch, M.; Tausch, C.; Varga, Z. Prognostic impact of PIK3CA protein expression in triple negative breast cancer and its subtypes. J. Cancer Res. Clin. Oncol. 2019, 145, 2051–2059. [Google Scholar] [CrossRef]
- Fan, C.; Liu, N. Identification of dysregulated microRNAs associated with diagnosis and prognosis in triple-negative breast cancer: An in silico study. Oncol. Rep. 2019, 41, 3313–3324. [Google Scholar] [CrossRef] [PubMed]
- Fauteux, F.; Hill, J.J.; Jaramillo, M.L.; Pan, Y.; Phan, S.; Famili, F.; O’Connor-McCourt, M. Computational selection of antibody-drug conjugate targets for breast cancer. Oncotarget 2015, 7, 2555–2571. [Google Scholar] [CrossRef]
- Figenschau, S.L.; Knutsen, E.; Urbarova, I.; Fenton, C.; Elston, B.; Perander, M.; Mortensen, E.S.; Fenton, K.A. ICAM1 expression is induced by proinflammatory cytokines and associated with TLS formation in aggressive breast cancer subtypes. Sci. Rep. 2018, 8, 11720. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, J.P.L.; Bollwein, C.; Noske, A.; Jacob, A.; Jank, P.; Loibl, S.; Nekljudova, V.; Fasching, P.A.; Karn, T.; Marmé, F.; et al. Characterization of Hormone Receptor and HER2 Status in Breast Cancer Using Mass Spectrometry Imaging. Int. J. Mol. Sci. 2023, 24, 2860. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Li, X.; Rohr, J.; Wang, Y.; Ma, S.; Chen, P.; Wang, Z. EZH2 overexpression in different immunophenotypes of breast carcinoma and association with clinicopathologic features. Diagn. Pathol. 2016, 11, 41. [Google Scholar] [CrossRef]
- Herrera, A.C.S.A.; Panis, C.; Victorino, V.J.; Campos, F.C.; Colado-Simão, A.N.; Cecchini, A.L.; Cecchini, R. Molecular subtype is determinant on inflammatory status and immunological profile from invasive breast cancer patients. Cancer Immunol. Immunother. 2012, 61, 2193–2201. [Google Scholar] [CrossRef]
- Ilgın, C.; Çomut, E.; Sarıgül, Ç.; Korkmaz, S.; Vardar, E.; Müftüoğlu, S.F. The evaluation of the distribution of CD133, CXCR1 and the tumor associated macrophages in different molecular subtypes of breast cancer. Histol. Histopathol. 2019, 35, 83–96. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.-Z.; Ma, D.; Suo, C.; Shi, J.; Xue, M.; Hu, X.; Xiao, Y.; Yu, K.-D.; Liu, Y.-R.; Yu, Y.; et al. Genomic and Transcriptomic Landscape of Triple-Negative Breast Cancers: Subtypes and Treatment Strategies. Cancer Cell 2019, 35, 428–440.e5. [Google Scholar] [CrossRef] [PubMed]
- Jin, L.; Qin, C.; Qi, X.; Hong, T.; Yang, X.; Zhu, X. Clinicopathological significance of Sox10 expression in triple-negative breast carcinoma. Transl. Cancer Res. 2020, 9, 5603–5613. [Google Scholar] [CrossRef] [PubMed]
- Kothari, C.; Osseni, M.A.; Agbo, L.; Ouellette, G.; Déraspe, M.; Laviolette, F.; Corbeil, J.; Lambert, J.-P.; Diorio, C.; Durocher, F. Machine learning analysis identifies genes differentiating triple negative breast cancers. Sci. Rep. 2020, 10, 10464. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Moon, B.-I.; Lim, W.; Park, S.; Cho, M.S.; Sung, S.H. Expression patterns of GATA3 and the androgen receptor are strongly correlated in patients with triple-negative breast cancer. Hum. Pathol. 2016, 55, 190–195. [Google Scholar] [CrossRef] [PubMed]
- Le, U.Q.; Chen, N.; Balasenthil, S.; Lurie, E.; Yang, F.; Liu, S.; Rubin, L.; Soto, L.M.S.; Raso, M.G.; Batra, H.; et al. Tumor suppressor DEAR1 regulates mammary epithelial cell fate and predicts early onset and metastasis in triple negative breast cancer. Sci. Rep. 2022, 12, 19504. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Jin, W.; Cai, Y.; Yang, F.; Chen, E.; Ye, D.; Wang, Q.; Guan, X. Regulator of G protein signaling 20 correlates with clinicopathological features and prognosis in triple-negative breast cancer. Biochem. Biophys. Res. Commun. 2017, 485, 693–697. [Google Scholar] [CrossRef]
- Limsakul, P.; Choochuen, P.; Charupanit, G.; Charupanit, K. Transcriptomic Analysis of Subtype-Specific Tyrosine Kinases as Triple Negative Breast Cancer Biomarkers. Cancers 2023, 15, 403. [Google Scholar] [CrossRef]
- Lin, L.; Kuhn, C.; Ditsch, N.; Kolben, T.; Czogalla, B.; Beyer, S.; Trillsch, F.; Schmoeckel, E.; Mayr, D.; Mahner, S.; et al. Breast adipose tissue macrophages (BATMs) have a stronger correlation with breast cancer survival than breast tumor stroma macrophages (BTSMs). Breast Cancer Res. 2021, 23, 45. [Google Scholar] [CrossRef]
- Liu, Y.-R.; Jiang, Y.-Z.; Xu, X.-E.; Yu, K.-D.; Jin, X.; Hu, X.; Zuo, W.-J.; Hao, S.; Wu, J.; Liu, G.-Y.; et al. Comprehensive transcriptome analysis identifies novel molecular subtypes and subtype-specific RNAs of triple-negative breast cancer. Breast Cancer Res. 2016, 18, 33. [Google Scholar] [CrossRef]
- Magalhães, L.; Ribeiro-Dos-Santos, A.M.; Cruz, R.L.; Nakamura, K.D.d.M.; Brianese, R.; Burbano, R.; Ferreira, S.P.; de Oliveira, E.L.F.; Anaissi, A.K.M.; Nahúm, M.C.d.S.; et al. Triple-Negative Breast Cancer circRNAome Reveals Hsa_circ_0072309 as a Potential Risk Biomarker. Cancers 2022, 14, 3280. [Google Scholar] [CrossRef]
- McNamara, K.M.; Oguro, S.; Omata, F.; Kikuchi, K.; Guestini, F.; Suzuki, K.; Yang, Y.; Abe, E.; Hirakawa, H.; Brown, K.A.; et al. The presence and impact of estrogen metabolism on the biology of triple-negative breast cancer. Breast Cancer Res. Treat. 2016, 161, 213–227. [Google Scholar] [CrossRef]
- Millis, S.Z.; Gatalica, Z.; Winkler, J.; Vranic, S.; Kimbrough, J.; Reddy, S.; O’Shaughnessy, J.A. Predictive Biomarker Profiling of > 6000 Breast Cancer Patients Shows Heterogeneity in TNBC, with Treatment Implications. Clin. Breast Cancer 2015, 15, 473–481.e3. [Google Scholar] [CrossRef]
- Mirandola, L.; Pedretti, E.; Figueroa, J.A.; Chiaramonte, R.; Colombo, M.; Chapman, C.; Grizzi, F.; Patrinicola, F.; Kast, W.M.; Nguyen, D.D.; et al. Cancer testis antigen Sperm Protein 17 as a new target for triple negative breast cancer immunotherapy. Oncotarget 2017, 8, 74378–74390. [Google Scholar] [CrossRef]
- Nath, P.; Alfarsi, L.H.; El-Ansari, R.; Masisi, B.K.; Erkan, B.; Fakroun, A.; Ellis, I.O.; Rakha, E.A.; Green, A.R. The amino acid transporter SLC7A11 expression in breast cancer. Cancer Biol. Ther. 2023, 25, 2291855. [Google Scholar] [CrossRef] [PubMed]
- Noonan, M.M.; Dragan, M.; Mehta, M.M.; Hess, D.A.; Brackstone, M.; Tuck, A.B.; Viswakarma, N.; Rana, A.; Babwah, A.V.; Wondisford, F.E.; et al. The matrix protein Fibulin-3 promotes KISS1R induced triple negative breast cancer cell invasion. Oncotarget 2018, 9, 30034–30052. [Google Scholar] [CrossRef] [PubMed]
- Novelli, F.; Milella, M.; Melucci, E.; Di Benedetto, A.; Sperduti, I.; Perrone-Donnorso, R.; Perracchio, L.; Venturo, I.; Nisticò, C.; Fabi, A.; et al. A divergent role for estrogen receptor-beta in node-positive and node-negative breast cancer classified according to molecular subtypes: An observational prospective study. Breast Cancer Res. 2008, 10, R74. [Google Scholar] [CrossRef] [PubMed]
- Okcu, O.; Sen, B.; Ozturk, C.; Guvendi, G.F.; Bedir, R. Glut-1 expression in breast cancer. Turk. J. Pathol. 2021, 38, 114–121. [Google Scholar] [CrossRef] [PubMed]
- Privat, M.; Rudewicz, J.; Sonnier, N.; Tamisier, C.; Ponelle-Chachuat, F.; Bignon, Y.-J. Antioxydation And Cell Migration Genes Are Identified as Potential Therapeutic Targets in Basal-Like and BRCA1 Mutated Breast Cancer Cell Lines. Int. J. Med. Sci. 2018, 15, 46–58. [Google Scholar] [CrossRef] [PubMed]
- Purwaha, P.; Gu, F.; Piyarathna, D.W.B.; Rajendiran, T.; Ravindran, A.; Omilian, A.R.; Jiralerspong, S.; Das, G.; Morrison, C.; Ambrosone, C.; et al. Unbiased Lipidomic Profiling of Triple-Negative Breast Cancer Tissues Reveals the Association of Sphingomyelin Levels with Patient Disease-Free Survival. Metabolites 2018, 8, 41. [Google Scholar] [CrossRef] [PubMed]
- Qattan, A.; Intabli, H.; Alkhayal, W.; Eltabache, C.; Tweigieri, T.; Bin Amer, S. Robust expression of tumor suppressor miRNA’s let-7 and miR-195 detected in plasma of Saudi female breast cancer patients. BMC Cancer 2017, 17, 799. [Google Scholar] [CrossRef] [PubMed]
- Qian, X.-L.; Xu, P.; Zhang, Y.-Q.; Song, Y.-M.; Li, Y.-Q.; Li, W.-D.; Jiang, C.-Y.; Shen, B.-B.; Zhang, X.-M.; Zhang, L.-N.; et al. Increased number of intratumoral IL-17+ cells, a harbinger of the adverse prognosis of triple-negative breast cancer. Breast Cancer Res. Treat. 2020, 180, 311–319. [Google Scholar] [CrossRef]
- Rahman, M.; Hossain, T.; Reza, S.; Peng, Y.; Feng, S.; Wei, Y. Identification of Potential Long Non-Coding RNA Candidates that Contribute to Triple-Negative Breast Cancer in Humans through Computational Approach. Int. J. Mol. Sci. 2021, 22, 12359. [Google Scholar] [CrossRef] [PubMed]
- Roseweir, A.K.; McCall, P.; Scott, A.; Liew, B.; Lim, Z.; Mallon, E.A.; Edwards, J. Phosphorylation of androgen receptors at serine 515 is a potential prognostic marker for triple negative breast cancer. Oncotarget 2017, 8, 37172–37185. [Google Scholar] [CrossRef]
- Santarpia, L.; Qi, Y.; Stemke-Hale, K.; Wang, B.; Young, E.J.; Booser, D.J.; Holmes, F.A.; O’shaughnessy, J.; Hellerstedt, B.; Pippen, J.; et al. Mutation profiling identifies numerous rare drug targets and distinct mutation patterns in different clinical subtypes of breast cancers. Breast Cancer Res. Treat. 2012, 134, 333–343. [Google Scholar] [CrossRef]
- Sayed-Ahmed, M.M.; Hafez, M.M.; Al-Shabanah, O.A.; Al-Rejaie, S.S.; Aleisa, A.M.; Al-Yahya, A.A.; Alsheikh, A.; Al Diab, A.I.; Al-Akeely, M.H. Increased expression of biological markers as potential therapeutic targets in Saudi women with triple-negative breast cancer. Tumori J. 2013, 99, 545–554. [Google Scholar] [CrossRef]
- Suman, S.; Basak, T.; Gupta, P.; Mishra, S.; Kumar, V.; Sengupta, S.; Shukla, Y. Quantitative proteomics revealed novel proteins associated with molecular subtypes of breast cancer. J. Proteom. 2016, 148, 183–193. [Google Scholar] [CrossRef]
- Karunagaran, D.; Sundaram, S.; Christian, S.; Krishnakumar, R.; Ramya, R.; Ramadoss, M. Clinicopathologic implications of epithelial cell adhesion molecule expression across molecular subtypes of breast carcinoma. J. Cancer Res. Ther. 2020, 16, 1354–1359. [Google Scholar] [CrossRef]
- Thalor, A.; Joon, H.K.; Singh, G.; Roy, S.; Gupta, D. Machine learning assisted analysis of breast cancer gene expression profiles reveals novel potential prognostic biomarkers for triple-negative breast cancer. Comput. Struct. Biotechnol. J. 2022, 20, 1618–1631. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Liu, Q.; Sun, J.; Zuo, W.; Hu, D.; Ma, S.; Mu, D.; Yu, Z. Correlation between p53 and epidermal growth factor receptor expression in breast cancer classification. Evolution 2015, 14, 4282–4290. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhu, X.; Xu, X.; Guo, L.; Shen, G.; Liu, X.; Chang, C.; Wang, B.; Yang, H.; Wang, M. PIK3CA mutations and downstream effector p-mTOR expression: Implication for prognostic factors and therapeutic targets in triple negative breast cancer. Int. J. Clin. Exp. Pathol. 2017, 10, 7682–7691. [Google Scholar]
- Xi, Y.; Shi, J.; Li, W.; Tanaka, K.; Allton, K.L.; Richardson, D.; Li, J.; Franco, H.L.; Nagari, A.; Malladi, V.S.; et al. Histone modification profiling in breast cancer cell lines highlights commonalities and differences among subtypes. BMC Genom. 2018, 19, 150. [Google Scholar] [CrossRef] [PubMed]
- Xiao, M.; Lou, C.; Xiao, H.; Yang, Y.; Cai, X.; Li, C.; Jia, S.; Huang, Y. MiR-128 regulation of glucose metabolism and cell proliferation in triple-negative breast cancer. Br. J. Surg. 2017, 105, 75–85. [Google Scholar] [CrossRef]
- Yehia, L.; Boulos, F.; Jabbour, M.; Mahfoud, Z.; Fakhruddin, N.; El-Sabban, M. Expression of HIF-1α and Markers of Angiogenesis Are Not Significantly Different in Triple Negative Breast Cancer Compared to Other Breast Cancer Molecular Subtypes: Implications for Future Therapy. PLoS ONE 2015, 10, e0129356. [Google Scholar] [CrossRef] [PubMed]
- Zeindler, J.; Soysal, S.D.; Piscuoglio, S.; Ng, C.K.Y.; Mechera, R.; Isaak, A.; Weber, W.P.; Muenst, S.; Kurzeder, C. Nectin-4 Expression Is an Independent Prognostic Biomarker and Associated with Better Survival in Triple-Negative Breast Cancer. Front. Med. 2019, 6, 200. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Han, Y.; Huang, H.; Min, L.; Qu, L.; Shou, C. Integrated analysis of expression profiling data identifies three genes in correlation with poor prognosis of triple-negative breast cancer. Int. J. Oncol. 2014, 44, 2025–2033. [Google Scholar] [CrossRef]
- Zhao, Y.; Song, Y.; Zhang, Y.; Ji, M.; Hou, P.; Sui, F. Screening protective miRNAs and constructing novel lncRNAs/miRNAs/mRNAs networks and prognostic models for triple-negative breast cancer. Mol. Cell. Probes 2023, 72, 101940. [Google Scholar] [CrossRef]
- Zhu, X.; Shan, L.; Wang, F.; Wang, J.; Shen, G.; Liu, X.; Wang, B.; Yuan, Y.; Ying, J.; Yang, H. Hypermethylation of BRCA1 gene: Implication for prognostic biomarker and therapeutic target in sporadic primary triple-negative breast cancer. Breast Cancer Res. Treat. 2015, 150, 479–486. [Google Scholar] [CrossRef]
Author (Year) | Biomarker | Biomarker Expression in TNBC | Impact of Its Manipulation |
---|---|---|---|
Nakamura (2020) [16] | KIF20A | Increased expression | Use of KIF20A inhibitor arrested cell cycle at the G2/M phase and induced mitotic cell death. |
Ni (2019) [17] | DEDD | Increased expression | DEED overexpression provides an increased susceptibility to the combined use of CDK4/6 and EGFR inhibitors. When used, the combination inhibited progression of TNBC. |
Zhang (2020) [18] | NCAPD2 | Increased expression | Knockdown of NCAPD2 induced G2/M arrest via p53 signaling pathway, leading to apoptosis. |
Gao (2021) [19] | PLK2 | Decreased expression | Knockdown increased colony numbers. Treatment with PLK1 (overexpressed in TNBC) inhibitors improved treatment response. |
Mazumdar (2019) [20] | PPM1A | Decreased expression | Induction of PPM1A expression suppressed TNBC growth, by decreasing CDK and Rb phosphorylation, and inducing cell cycle inhibitors p21 and p27. |
Chen (2021) [21] | Cyclin E | Increased expression (associated with increased BRCA ½ mutations) | The combination of Wee1 kinase inhibitor and PARP inhibitor induced replicative stress and downregulated DNA repair mechanisms, leading to apoptosis. |
Yan (2018) [22] | FLI-1 | Increased expression | Silencing of FLI-1 suppressed cancer stem properties and suppressed tumorigenesis. |
Rodrigues-ferreira (2009) [23] | ATIP3 | Decreased expression | Silencing of ATIP3 increased tumor cell proliferation, while ATIP3 restoration led to a reduction in proliferation and clonogenicity. |
Aboelela (2020) [24] | Telomerase | Increased expression | Targeting the hTERT gene with siRNA, alone or in combination with doxorubicin, disrupted cell survival and growth progression, inducing apoptosis. |
Chervo (2020) [25] | ErbB-2 | Expression of wild type and non-canonical isoform c in the nucleus | Silencing of Erk5, downstream mediator of ErB-2, inhibited TNBC proliferation. Eviction from the nucleus or silencing of isoform c blocked tumor growth. |
Madera (2022) [26] | ErB-2 | Expression in the nucleus | Inhibitors of the retrograde transport of NErbB-2 blocked transport and suppressed TNBC growth. |
Mendaza (2020) [27] | ADAM12 | Increased expression (due to hypomethylation) | Silencing of ADAM12 reduced TNBC cell proliferation and migration. |
Vinet (2019) [28] | PRMT5 | Distinctive subcellular distribution | Inhibition of PRMT5 by the small-molecular inhibitor EPZ015666 induced apoptosis, regulated cell cycle progression, and reduced mammosphere formation. Combining EPZ015666 with EGFR inhibitor Erlotinib showed additional benefits. |
Cheng (2014) [29] | HIC1 (and target LCN2) | Decreased expression | Restoration of HIC1 expression reduced cell migration, invasion, and metastasis. |
Paco (2021) [30] | HOXB7 | Increased expression | Silencing of HOXB7 reduced migration and invasion rates, along with increased expression of CDH1, and decreased expression of DNMT3B. |
Zhao (2023) [31] | eIF4A | Increased expression | Use of eIF4A inhibitor (Zotatifin) suppressed translation of Sox4 and Fgfr1, resulting in inhibition of cell proliferation, increased interferon response, and remodeling of tumor immune microenvironment. Zotatifin in combination with carboplatin led to T-cell dependent tumor suppression. |
Binothman (2017) [32] | CPSF6 | Key component of the A-to-I RNA editing machinery (interacting with paraspeckles and ADAR1) | Use of prolactin, a key component of mammary differentiation, suppressed this oncogenic pathway. |
Mitobe (2020) [33] | LncRNA TMPO-AS1 | Increased expression | Knockdown of TMPO-AS1 inhibited proliferation and migration of TNBC cells, and induced apoptosis. Targeting with siRNAs suppressed growth of primary and metastatic TNBC. |
Li (2020) [34] | Circ-HER2 (encoding HER2-103) | Increased expression | Knockdown of circ-HER2 inhibited TNBC proliferation and invasion. Use of Pertuzumab reduced tumorigenicity of circ-HER2/HER2-103. |
Darbeheshti (2023) [3] | Circ_0000977 | Decreased expression | Decreased expression of circ_0000977 increased levels of miR-135b-5p and downregulation of GATA3, APC, LZTSI, and SMAD5. Knockdown of miR-135b-5p led to an upregulation of APC expression. |
Song (2023) [35] | CircCAPG (and CAPG-171aa) | Increased expression | Knockdown of circCAPG inhibited TNBC growth. |
Wei (2018) [36] | PSMB5 | Increased activation | Downregulation of PSMB5 led to apoptosis of TNBC cells and increased sensitivity to chemotherapeutic agents. |
Adams (2016) [10] | miR-34a (and its target c-SRC) | Decreased expression | Reintroduction of miR-34a led to suppression of oncogenic signaling pathways involved in invasion and proliferation, causing cell death through cytostasis/senescence. miR-34a sensitized TNBC cells to dasatinib (c-SRC inhibitor). |
Nama (2019) [37] | miR-138 | Increased expression | Knockdown of miR-138 induced apoptosis and prevented tumorigenesis. |
Dong (2014) [38] | miR-21 | Increased expression | Targeting of PTEN 3′ UTR demonstrated that miR-21 targets the 3′ UTR of pro-apoptotic PTEN, decreasing PTEN mRNA levels. |
Chen (2017) [2] | miR-211-5p | Decreased expression | Overexpression of miR-211-5P inhibited proliferation and metastasis by targeting a sequence within the 3′-UTR of SETBP1. |
Da Silva (2022) [12] | miR-101 and miR-340 | Decreased expression | Overexpression of miR-340 reduced proliferation and migration of TNBC cells. |
Moro (2023) [39] | miR-877-5P | Increased expression | miRNA inhibitor targeting miR-877-5p reduced viability and growth of TNBC. |
Yu (2020) [40] | miR-3613-3p | Decreased expression | Overexpression of miR-3613-3p inhibited proliferation and migration of TNBC cells, with a G1 cell-cycle arrest through targeting of SMAD2 and EZH2. |
Soudan (2020) [41] | Hsp90 | Increased expression | The combination of PU-H71 (Hsp90 inhibitor) and DHEA (G6PD inhibitor) suppressed Nrf2 and led to apoptosis. |
Caldas-lopes (2009) [42] | Hsp90 | Increased expression | Use of Hsp90 inhibitor (PU-H71) suppressed growth and induced killing of TNBC cells. |
Oh (2017) [43] | Hsp90 | Increased expression | BPD (Hsp90 inhibitor) blocked TNBC cell growth by causing cell cycle arrest at G2/M phase, and induced degradation of several oncogenic proteins, leading to apoptosis. |
Fang (2023) [44] | DNAJB4 | Decreased expression | DNAJB4 knockdown confirmed the pro-tumorigenic effect by inhibiting TNBC apoptosis and promoting tumor growth. Overexpression of DNAJB4 yielded opposite outcomes. |
Muniz-lino (2014) [45] | RhoGDI-2 | Increased expression | Targeting RhoGDI-2 with RNA interference resulted in mitochondrial dysfunction, activation of caspase-3 and -9, and increased sensitivity to cisplatin therapy. |
Campagna (2023) [46] | PON2 | Increased expression | PON2 knockdown led to decrease in cell proliferation. |
Wang CQ (2017) [47] | FSCN1 | Increased expression | Co-treatment with FSCN1 siRNA and gefitinib resulted in reduced FSCN1 expression compared to individual treatments. |
Cox (2019) [11] | PDLIM2 | Increased expression (especially in epithelial-to-mesenchymal subtype) | Suppression of PDLIM2 reversed epithelial-to-mesenchymal subtype and inhibited tumor growth. |
Giricz (2022) [48] | GRB7 | Increased expression | Inhibition of GRB7 resulted in reduction in cell motility and invasion, and promotion of cell death through apoptosis. |
Liu (2021) [49] | CLU and PRKD3 | Increased expression | Silencing of CLU and PRKD3 suppressed tumor growth. |
Ferraro (2013) [50] | EGFR | Increased expression | Downregulation led to reduction in motility, signaling, and proliferation of TNBC cells. |
Linklater (2016) [51] | MET and EGFR | Increased expression | Inhibition of MET and EGFR with crizotinib and erlotinib inhibited tumor growth and diminished fluctuations in treatment response compared to individual therapies. |
Verma (2017) [52] | EGFR | Increased expression | Targeting of EGFR and nonreceptor tyrosine kinase PYK2/FAK inhibited proliferation of TNBC cells and suppressed tumor growth in a mouse model. PYK2 knockdown induced upregulation of NDRG1, which enhanced NEDD4-HER3 binding, leading to HER3 degradation. |
Beatty (2018) [53] | Glutathione | Decreased expression | The use of γ–glutamylcysteine ligase inhibitors to limit glutathione precursors effectively suppressed glutathione levels and inhibited TNBC growth. |
Wang (2022) [54] | Glycerophospholipids and unsaturated fatty acids | Dysregulated | Dandelion extract reduced expression of CHKA, resulting in inhibition of PI3K/AKT pathway and its downstream targets SREBP and FADS2. |
Pelicano (2014) [55] | Mitochondrial respiration and glycolysis | Decreased mitochondrial respiration and increased glycolysis causing low expression of p70S6K | Reintroduction p70S6K in TNBC cells reversed metabolism to active phosphorylation state. |
Lai (2021) [56] | YBX1 | Increased expression | Knockdown of YBX1 resulted in suppression of glycolytic genes, reduced expression of EMT-related genes, and decreased tumor migration and invasion. |
Apostolidi (2021) [57] | PKM2 | Increased expression | Manipulation of phosphorylated PKM2 revealed a connection between the phosphorylation of PKM2 at S37 and the CDK pathway. Treatment with TEPP-46, CDK inhibitor dinaciclib, or their combination, reduced tumor growth and decreased PKM2pS37. |
Yang (2011) [58] | FZD7 (Wnt signaling pathway gene) | Upregulation | Knockdown of FZD7 with shRNA led to a reduction in cell proliferation, inhibition of invasiveness and colony formation through silencing of the canonical Wnt signaling pathway. |
Christensen (2017) [9] | NF-kB | Upregulation | Inhibition of NF-Kb signaling pathway led to a decrease in a mammosphere formation and tumor initiation. |
Dey (2013) [59] | Wnt/ β-catenin genes | Upregulation | Disruption of the Wnt/β catenin pathway through Wnt antagonists showed a direct link between pathway disturbance and metastasis-related characteristics in TNBC. |
Malone (2020) [5] | Lipocalin-2 (LCN2) | Increased expression | The use of an LCN2 antibody inhibited TNBC cell growth and migration. |
Lobba (2018) [60] | CD90 | Increased expression | Overexpression of CD90 in normal mammary cells and knockdown in malignant cells demonstrated that CD90 is involved in morphological change, increased cell proliferation, invasiveness, metastasis, and activation of the EGFR pathway. |
Ring (2018) [61] | CBP/β-Catenin/FOXM1 | Increased expression | Targeting of CBP/ β-Catenin/FOXM1 with ICG-001 eliminated cancer stem cells and sensitized TNBC tumors to chemotherapy. |
Leong (2015) [62] | B7-H4 | Increased expression | The use of anti-B7-H4 produced tumor regression in cell line and patient-derived xenograft models of TNBC. |
Du (2020) [63] | LAG3 and PD-1 | Increased expression | In a mouse model of TNBC, the dual blockade of LAG3 and PD1 led to a better anti-tumor effect rather than either one alone. |
Chatterjee (2023) [7] | NARD1, RAD51, PALB2 | Increased expression | Amygdalin, a natural glycosidic inhibitor, had a preferential binding for the BRCT domain of the BARD1 receptor. |
Shen (2019) [64] | Integrin and EGFR | Increased expression | Tinagl1 inhibited EGFR and integrin/FAK activation and suppressed growth and metastasis. |
Cinar (2022) [13] | Serotonin 5-HT7 receptor | Increased expression | Genetic and pharmacological inhibition of 5-HT7 by siRNA and metergoline suppressed TNBC cell proliferation and FOXM1 and its downstream mediators, including eEF2-Kinase and cyclin-D1. |
Makvandi (2015) [65] | Sigma-2 receptor | Increased expression | Targeting the sigma-2 receptor with a cytotoxic payload induced caspase 3/7 activation and led to cell death. |
Nagano (2014) [66] | Ephrin receptor A10 | Expression in TNBC but not in normal tissue | Administration of an anti-EphA10 monoclonal antibody suppressed tumor growth in a xenograft mouse model. |
Forte (2018) [67] | CDCP1 (and PDGF-BB/PDGFRβ–mediated pathway) | Increased expression | Knockdown of PDGFRβ in TNBC cells impaired CDCP1 increase induced by WHF treatment, highlighting the role of its receptor as a central player of the WHF-mediated CDCP1 induction. |
Ring (2020) [68] | EP300 | Increased expression | EP300 knockdown abolished the cancer stem cell phenotype by reducing ABCG2 expression. |
Ruiu (2021) [69] | Teneurin 4 (TENM4) | Increased expression | TENM4 silencing impaired tumorsphere-forming ability, migratory capacity, and focal adhesion kinase phosphorylation. |
Toosi (2018) [70] | EPHB6 | Increased expression | Suppression of either ERK or OCT4 activities blocks EPHB6-induced pro-proliferative responses |
Weng (2019) [71] | MCT-1/miR-34a/IL-6/IL-6R signaling axis | Increased expression | MCT-1 knockdown and tocilizumab synergistically inhibited TNBC stemness. Tumor suppressor miR-34a was induced upon MCT-1 knockdown that inhibited IL-6R expression and activated M1 polarization. |
De Santis (2022) [8] | BLC6 | Increased expression | Inhibition of BCL6 significantly reduced tumor cell growth. Additionally, BCL6 silenced cells were impaired by pharmacological inhibition of the Notch signaling. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pastena, P.; Perera, H.; Martinino, A.; Kartsonis, W.; Giovinazzo, F. Unraveling Biomarker Signatures in Triple-Negative Breast Cancer: A Systematic Review for Targeted Approaches. Int. J. Mol. Sci. 2024, 25, 2559. https://doi.org/10.3390/ijms25052559
Pastena P, Perera H, Martinino A, Kartsonis W, Giovinazzo F. Unraveling Biomarker Signatures in Triple-Negative Breast Cancer: A Systematic Review for Targeted Approaches. International Journal of Molecular Sciences. 2024; 25(5):2559. https://doi.org/10.3390/ijms25052559
Chicago/Turabian StylePastena, Paola, Hiran Perera, Alessandro Martinino, William Kartsonis, and Francesco Giovinazzo. 2024. "Unraveling Biomarker Signatures in Triple-Negative Breast Cancer: A Systematic Review for Targeted Approaches" International Journal of Molecular Sciences 25, no. 5: 2559. https://doi.org/10.3390/ijms25052559
APA StylePastena, P., Perera, H., Martinino, A., Kartsonis, W., & Giovinazzo, F. (2024). Unraveling Biomarker Signatures in Triple-Negative Breast Cancer: A Systematic Review for Targeted Approaches. International Journal of Molecular Sciences, 25(5), 2559. https://doi.org/10.3390/ijms25052559