The Function, Regulation, and Mechanism of Protein Turnover in Circadian Systems in Neurospora and Other Species
Abstract
:1. Introduction
2. The Molecular Network of the Circadian Clock
3. The Regulation of Circadian Clock Protein Stability in the Neurospora Circadian Clock
3.1. Post-Translational Regulation of FRQ Protein Stability in Neurospora
3.2. Post-Translational Regulation of WC-1 and WC-2 Stability in Neurospora
4. The Regulators of Clock Protein Stability in Different Organisms
4.1. Protein Degradation Pathways Implicated in the Circadian Clock
4.1.1. Subsubsection
4.1.2. Degradation of Circadian Clock Proteins Mediated by Chaperone-Mediated Autophagy
4.2. Dynamic Regulation of the Phosphorylation State of Circadian Clock Components
4.3. Preference for Genetic Codon Usage
4.4. Additional Post-Translational Control Factors
5. The Correlation of Clock Protein Decay with the Circadian Parameters
5.1. Fine Control of the Circadian Period
5.2. Regulation of Circadian Temperature Compensation
6. Abnormal Turnover of Circadian Clock Proteins and Disorders
7. Prospects
Author Contributions
Funding
Conflicts of Interest
References
- Bell-Pedersen, D.; Cassone, V.M.; Earnest, D.J.; Golden, S.S.; Hardin, P.E.; Thomas, T.L.; Zoran, M.J. Circadian Rhythms from Multiple Oscillators: Lessons from Diverse Organisms. Nat. Rev. Genet. 2005, 6, 544–556. [Google Scholar] [CrossRef] [PubMed]
- Vaze, K.M.; Sharma, V.K. On the Adaptive Significance of Circadian Clocks for Their Owners. Chronobiol. Int. 2013, 30, 413–433. [Google Scholar] [CrossRef] [PubMed]
- Luo, R.; Huang, Y.; Ma, H.; Guo, J. How to Live on Mars with a Proper Circadian Clock? Front. Astron. Space Sci. 2022, 8, 796943. [Google Scholar] [CrossRef]
- Harmer, S.L.; Hogenesch, J.B.; Straume, M.; Chang, H.-S.; Han, B.; Zhu, T.; Wang, X.; Kreps, J.A.; Kay, S.A. Orchestrated Transcription of Key Pathways in Arabidopsis by the Circadian Clock. Science 2000, 290, 2110–2113. [Google Scholar] [CrossRef] [PubMed]
- Vijayan, V.; Zuzow, R.; O’Shea, E.K. Oscillations in Supercoiling Drive Circadian Gene Expression in Cyanobacteria. Proc. Natl. Acad. Sci. USA 2009, 106, 22564–22568. [Google Scholar] [CrossRef]
- Díaz, R.D.; Larrondo, L.F. A Circadian Clock in Neurospora Crassa Functions during Plant Cell Wall Deconstruction. Fungal Biol. 2020, 124, 501–508. [Google Scholar] [CrossRef] [PubMed]
- Ito, H.; Mutsuda, M.; Murayama, Y.; Tomita, J.; Hosokawa, N.; Terauchi, K.; Sugita, C.; Sugita, M.; Kondo, T.; Iwasaki, H. Cyanobacterial Daily Life with Kai-Based Circadian and Diurnal Genome-Wide Transcriptional Control in Synechococcus Elongatus. Proc. Natl. Acad. Sci. USA 2009, 106, 14168–14173. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Lahens, N.F.; Ballance, H.I.; Hughes, M.E.; Hogenesch, J.B. A Circadian Gene Expression Atlas in Mammals: Implications for Biology and Medicine. Proc. Natl. Acad. Sci. USA 2014, 111, 16219–16224. [Google Scholar] [CrossRef]
- Mure, L.S.; Le, H.D.; Benegiamo, G.; Chang, M.W.; Rios, L.; Jillani, N.; Ngotho, M.; Kariuki, T.; Dkhissi-Benyahya, O.; Cooper, H.M.; et al. Diurnal Transcriptome Atlas of a Primate across Major Neural and Peripheral Tissues. Science 2018, 359, eaao0318. [Google Scholar] [CrossRef]
- Loros, J.J. Principles of the Animal Molecular Clock Learned from Neurospora. Eur. J. Neurosci. 2020, 51, 19–33. [Google Scholar] [CrossRef]
- Patke, A.; Young, M.W.; Axelrod, S. Molecular Mechanisms and Physiological Importance of Circadian Rhythms. Nat. Rev. Mol. Cell Biol. 2020, 21, 67–84. [Google Scholar] [CrossRef]
- Halberg, F. Physiologic 24-hour periodicity; general and procedural considerations with reference to the adrenal cycle. Int. Z. Vitaminforschung Beih. 1959, 10, 225–296. [Google Scholar]
- Edery, I. Circadian Rhythms in a Nutshell. Physiol. Genom. 2000, 3, 59–74. [Google Scholar] [CrossRef] [PubMed]
- Glossop, N.R.J.; Lyons, L.C.; Hardin, P.E. Interlocked Feedback Loops within the Drosophila Circadian Oscillator. Science 1999, 286, 766–768. [Google Scholar] [CrossRef] [PubMed]
- Shearman, L.P.; Sriram, S.; Weaver, D.R.; Maywood, E.S.; Chaves, I.; Zheng, B.; Kume, K.; Lee, C.C.; Horst, G.T.J.v.d.; Hastings, M.H.; et al. Interacting Molecular Loops in the Mammalian Circadian Clock. Science 2000, 288, 1013–1019. [Google Scholar] [CrossRef] [PubMed]
- Berman-Frank, I.; Lundgren, P.; Falkowski, P. Nitrogen Fixation and Photosynthetic Oxygen Evolution in Cyanobacteria. Res. Microbiol. 2003, 154, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Johnson, C.H.; Stewart, P.L.; Egli, M. The Cyanobacterial Circadian System: From Biophysics to Bioevolution. Annu. Rev. Biophys. 2011, 40, 143–167. [Google Scholar] [CrossRef]
- Swan, J.A.; Golden, S.S.; LiWang, A.; Partch, C.L. Structure, Function, and Mechanism of the Core Circadian Clock in Cyanobacteria. J. Biol. Chem. 2018, 293, 5026–5034. [Google Scholar] [CrossRef]
- Zwicker, D.; Lubensky, D.K.; ten Wolde, P.R. Robust Circadian Clocks from Coupled Protein-Modification and Transcription-Translation Cycles. Proc. Natl. Acad. Sci. USA 2010, 107, 22540–22545. [Google Scholar] [CrossRef]
- Qin, X.; Byrne, M.; Mori, T.; Zou, P.; Williams, D.R.; Mchaourab, H.; Johnson, C.H. Intermolecular Associations Determine the Dynamics of the Circadian KaiABC Oscillator. Proc. Natl. Acad. Sci. USA 2010, 107, 14805–14810. [Google Scholar] [CrossRef]
- Tomita, J.; Nakajima, M.; Kondo, T.; Iwasaki, H. No Transcription-Translation Feedback in Circadian Rhythm of KaiC Phosphorylation. Science 2005, 307, 251–254. [Google Scholar] [CrossRef] [PubMed]
- Hosokawa, N.; Kushige, H.; Iwasaki, H. Attenuation of the Posttranslational Oscillator via Transcription–Translation Feedback Enhances Circadian-Phase Shifts in Synechococcus. Proc. Natl. Acad. Sci. USA 2013, 110, 14486–14491. [Google Scholar] [CrossRef] [PubMed]
- Nakajima, M.; Imai, K.; Ito, H.; Nishiwaki, T.; Murayama, Y.; Iwasaki, H.; Oyama, T.; Kondo, T. Reconstitution of Circadian Oscillation of Cyanobacterial KaiC Phosphorylation in Vitro. Science 2005, 308, 414–415. [Google Scholar] [CrossRef] [PubMed]
- Dunlap, J.C.; Feldman, J.F. On the Role of Protein Synthesis in the Circadian Clock of Neurospora Crassa. Proc. Natl. Acad. Sci. USA 1988, 85, 1096–1100. [Google Scholar] [CrossRef] [PubMed]
- Hurley, J.M.; Larrondo, L.F.; Loros, J.J.; Dunlap, J.C. Conserved RNA Helicase FRH Acts Nonenzymatically to Support the Intrinsically Disordered Neurospora Clock Protein FRQ. Mol. Cell 2013, 52, 832–843. [Google Scholar] [CrossRef] [PubMed]
- Cheng, P.; He, Q.; He, Q.; Wang, L.; Liu, Y. Regulation of the Neurospora Circadian Clock by an RNA Helicase. Genes Dev. 2005, 19, 234–241. [Google Scholar] [CrossRef]
- Guo, J.; Cheng, P.; Liu, Y. Functional Significance of FRH in Regulating the Phosphorylation and Stability of Neurospora Circadian Clock Protein FRQ. J. Biol. Chem. 2010, 285, 11508–11515. [Google Scholar] [CrossRef]
- Brunner, M.; Káldi, K. Interlocked Feedback Loops of the Circadian Clock of Neurospora Crassa. Mol. Microbiol. 2008, 68, 255–262. [Google Scholar] [CrossRef]
- Johnson, C.H.; Zhao, C.; Xu, Y.; Mori, T. Timing the Day: What Makes Bacterial Clocks Tick? Nat. Rev. Microbiol. 2017, 15, 232–242. [Google Scholar] [CrossRef]
- Dunlap, J.C.; Loros, J.J. Making Time: Conservation of Biological Clocks from Fungi to Animals. Microbiol. Spectr. 2017, 5, 10–1128. [Google Scholar] [CrossRef]
- Xu, X.; Yuan, L.; Yang, X.; Zhang, X.; Wang, L.; Xie, Q. Circadian Clock in Plants: Linking Timing to Fitness. J. Integr. Plant Biol. 2022, 64, 792–811. [Google Scholar] [CrossRef] [PubMed]
- Nohales, M.A.; Kay, S.A. Molecular Mechanisms at the Core of the Plant Circadian Oscillator. Nat. Struct. Mol. Biol. 2016, 23, 1061–1069. [Google Scholar] [CrossRef] [PubMed]
- McClung, C.R. The Plant Circadian Oscillator. Biology 2019, 8, 14. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Yang, J.; Zhang, Y.; Duan, C.; Liu, Q.; Huang, Z.; Xu, Y.; Zhou, L.; Xu, G. Ubiquitin-Conjugating Enzyme UBE2O Regulates Cellular Clock Function by Promoting the Degradation of the Transcription Factor BMAL1. J. Biol. Chem. 2018, 293, 11296–11309. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.; Hardin, P.E. Circadian Oscillators of Drosophila and Mammals. J. Cell Sci. 2006, 119, 4793–4795. [Google Scholar] [CrossRef] [PubMed]
- McDonald, M.J.; Rosbash, M.; Emery, P. Wild-Type Circadian Rhythmicity Is Dependent on Closely Spaced E Boxes in the Drosophila Timeless Promoter. Mol. Cell. Biol. 2001, 21, 1207–1217. [Google Scholar] [CrossRef] [PubMed]
- Brown, S.A.; Kowalska, E.; Dallmann, R. (Re)Inventing the Circadian Feedback Loop. Dev. Cell 2012, 22, 477–487. [Google Scholar] [CrossRef] [PubMed]
- Lim, C.; Allada, R. Emerging Roles for Post-Transcriptional Regulation in Circadian Clocks. Nat. Neurosci. 2013, 16, 1544–1550. [Google Scholar] [CrossRef]
- Hastings, M.H.; Maywood, E.S.; Brancaccio, M. Generation of Circadian Rhythms in the Suprachiasmatic Nucleus. Nat. Rev. Neurosci. 2018, 19, 453–469. [Google Scholar] [CrossRef]
- Park, J.; Lee, K.; Kim, H.; Shin, H.; Lee, C. Endogenous Circadian Reporters Reveal Functional Differences of PERIOD Paralogs and the Significance of PERIOD:CK1 Stable Interaction. Proc. Natl. Acad. Sci. USA 2023, 120, e2212255120. [Google Scholar] [CrossRef]
- Takahashi, J.S. Transcriptional Architecture of the Mammalian Circadian Clock. Nat. Rev. Genet. 2017, 18, 164–179. [Google Scholar] [CrossRef]
- Seo, P.J.; Mas, P. Multiple Layers of Posttranslational Regulation Refine Circadian Clock Activity in Arabidopsis. Plant Cell 2014, 26, 79–87. [Google Scholar] [CrossRef]
- Xu, X.; Yuan, L.; Xie, Q. The Circadian Clock Ticks in Plant Stress Responses. Stress Biol. 2022, 2, 15. [Google Scholar] [CrossRef] [PubMed]
- Hayama, R.; Sarid-Krebs, L.; Richter, R.; Fernández, V.; Jang, S.; Coupland, G. PSEUDO RESPONSE REGULATORs Stabilize CONSTANS Protein to Promote Flowering in Response to Day Length. EMBO J. 2017, 36, 904–918. [Google Scholar] [CrossRef]
- Jabbur, M.L.; Johnson, C.H. Spectres of Clock Evolution: Past, Present, and Yet to Come. Front. Physiol. 2021, 12, 815847. [Google Scholar] [CrossRef] [PubMed]
- Lowrey, P.L.; Shimomura, K.; Antoch, M.P.; Yamazaki, S.; Zemenides, P.D.; Ralph, M.R.; Menaker, M.; Takahashi, J.S. Positional Syntenic Cloning and Functional Characterization of the Mammalian Circadian Mutation Tau. Science 2000, 288, 483–491. [Google Scholar] [CrossRef] [PubMed]
- Cha, J.; Chang, S.-S.; Huang, G.; Cheng, P.; Liu, Y. Control of WHITE COLLAR Localization by Phosphorylation Is a Critical Step in the Circadian Negative Feedback Process. EMBO J. 2008, 27, 3246–3255. [Google Scholar] [CrossRef]
- Marzoll, D.; Serrano, F.E.; Diernfellner, A.C.R.; Brunner, M. Neurospora Casein Kinase 1a Recruits the Circadian Clock Protein FRQ via the C-terminal Lobe of Its Kinase Domain. FEBS Lett. 2022, 596, 1881–1891. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Stevenson, E.-L.; Dunlap, J.C. Functional Analysis of 110 Phosphorylation Sites on the Circadian Clock Protein FRQ Identifies Clusters Determining Period Length and Temperature Compensation. G3 2023, 13, jkac334. [Google Scholar] [CrossRef]
- Baker, C.L.; Kettenbach, A.N.; Loros, J.J.; Gerber, S.A.; Dunlap, J.C. Quantitative Proteomics Reveals a Dynamic Interactome and Phase-Specific Phosphorylation in the Neurospora Circadian Clock. Mol. Cell 2009, 34, 354–363. [Google Scholar] [CrossRef]
- Tang, C.-T.; Li, S.; Long, C.; Cha, J.; Huang, G.; Li, L.; Chen, S.; Liu, Y. Setting the Pace of the Neurospora Circadian Clock by Multiple Independent FRQ Phosphorylation Events. Proc. Natl. Acad. Sci. USA 2009, 106, 10722–10727. [Google Scholar] [CrossRef]
- Chen, X.; Liu, X.; Gan, X.; Li, S.; Ma, H.; Zhang, L.; Wang, P.; Li, Y.; Huang, T.; Yang, X.; et al. Differential Regulation of Phosphorylation, Structure, and Stability of Circadian Clock Protein FRQ Isoforms. J. Biol. Chem. 2023, 299, 104597. [Google Scholar] [CrossRef] [PubMed]
- Larrondo, L.F.; Olivares-Yañez, C.; Baker, C.L.; Loros, J.J.; Dunlap, J.C. Circadian Rhythms. Decoupling Circadian Clock Protein Turnover from Circadian Period Determination. Science 2015, 347, 1257277. [Google Scholar] [CrossRef] [PubMed]
- Querfurth, C.; Diernfellner, A.; Heise, F.; Lauinger, L.; Neiss, A.; Tataroglu, Ö.; Brunner, M.; Schafmeier, T. Posttranslational Regulation of Neurospora Circadian Clock by CK1a-Dependent Phosphorylation. Cold Spring Harb. Symp. Quant. Biol. 2007, 72, 177–183. [Google Scholar] [CrossRef]
- Diernfellner, A.C.R.; Brunner, M. Phosphorylation Timers in the Neurospora Crassa Circadian Clock. J. Mol. Biol. 2020, 432, 3449–3465. [Google Scholar] [CrossRef] [PubMed]
- Aronson, B.D.; Johnson, K.A.; Dunlap, J.C. Circadian Clock Locus Frequency: Protein Encoded by a Single Open Reading Frame Defines Period Length and Temperature Compensation. Proc. Natl. Acad. Sci. USA 1994, 91, 7683–7687. [Google Scholar] [CrossRef] [PubMed]
- Ruoff, P.; Loros, J.J.; Dunlap, J.C. The Relationship between FRQ-Protein Stability and Temperature Compensation in the Neurospora Circadian Clock. Proc. Natl. Acad. Sci. USA 2005, 102, 17681–17686. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Garceau, N.Y.; Loros, J.J.; Dunlap, J.C. Thermally Regulated Translational Control of FRQ Mediates Aspects of Temperature Responses in the Neurospora Circadian Clock. Cell 1997, 89, 477–486. [Google Scholar] [CrossRef]
- Anand, S.N.; Maywood, E.S.; Chesham, J.E.; Joynson, G.; Banks, G.T.; Hastings, M.H.; Nolan, P.M. Distinct and Separable Roles for Endogenous CRY1 and CRY2 within the Circadian Molecular Clockwork of the Suprachiasmatic Nucleus, as Revealed by the Fbxl3Afh Mutation. J. Neurosci. 2013, 33, 7145–7153. [Google Scholar] [CrossRef]
- He, Q.; Cha, J.; He, Q.; Lee, H.-C.; Yang, Y.; Liu, Y. CKI and CKII Mediate the FREQUENCY-Dependent Phosphorylation of the WHITE COLLAR Complex to Close the Neurospora Circadian Negative Feedback Loop. Genes Dev. 2006, 20, 2552–2565. [Google Scholar] [CrossRef]
- Querfurth, C.; Diernfellner, A.C.R.; Gin, E.; Malzahn, E.; Höfer, T.; Brunner, M. Circadian Conformational Change of the Neurospora Clock Protein FREQUENCY Triggered by Clustered Hyperphosphorylation of a Basic Domain. Mol. Cell 2011, 43, 713–722. [Google Scholar] [CrossRef]
- Hu, Y.; Liu, X.; Lu, Q.; Yang, Y.; He, Q.; Liu, Y.; Liu, X. FRQ-CK1 Interaction Underlies Temperature Compensation of the Neurospora Circadian Clock. mBio 2021, 12, e0142521. [Google Scholar] [CrossRef] [PubMed]
- Huang, G.; Chen, S.; Li, S.; Cha, J.; Long, C.; Li, L.; He, Q.; Liu, Y. Protein Kinase A and Casein Kinases Mediate Sequential Phosphorylation Events in the Circadian Negative Feedback Loop. Genes Dev. 2007, 21, 3283–3295. [Google Scholar] [CrossRef] [PubMed]
- Morales, Y.; Olsen, K.J.; Bulcher, J.M.; Johnson, S.J. Structure of Frequency-Interacting RNA Helicase from Neurospora Crassa Reveals High Flexibility in a Domain Critical for Circadian Rhythm and RNA Surveillance. PLoS ONE 2018, 13, e0196642. [Google Scholar] [CrossRef]
- Conrad, K.S.; Hurley, J.M.; Widom, J.; Ringelberg, C.S.; Loros, J.J.; Dunlap, J.C.; Crane, B.R. Structure of the Frequency-interacting RNA Helicase: A Protein Interaction Hub for the Circadian Clock. EMBO J. 2016, 35, 1707–1719. [Google Scholar] [CrossRef] [PubMed]
- He, Q. FWD1-Mediated Degradation of FREQUENCY in Neurospora Establishes a Conserved Mechanism for Circadian Clock Regulation. EMBO J. 2003, 22, 4421–4430. [Google Scholar] [CrossRef]
- Cheng, P.; Yang, Y.; Liu, Y. Interlocked Feedback Loops Contribute to the Robustness of the Neurospora Circadian Clock. Proc. Natl. Acad. Sci. USA 2001, 98, 7408–7413. [Google Scholar] [CrossRef]
- Lee, K.; Loros, J.J.; Dunlap, J.C. Interconnected Feedback Loops in the Neurospora Circadian System. Science 2000, 289, 107–110. [Google Scholar] [CrossRef]
- Cheng, P.; Yang, Y.; Gardner, K.H.; Liu, Y. PAS Domain-Mediated WC-1/WC-2 Interaction Is Essential for Maintaining the Steady-State Level of WC-1 and the Function of Both Proteins in Circadian Clock and Light Responses of Neurospora. Mol. Cell. Biol. 2002, 22, 517–524. [Google Scholar] [CrossRef]
- Schafmeier, T.; Diernfellner, A.; Schäfer, A.; Dintsis, O.; Neiss, A.; Brunner, M. Circadian Activity and Abundance Rhythms of the Neurospora Clock Transcription Factor WCC Associated with Rapid Nucleo–Cytoplasmic Shuttling. Genes Dev. 2008, 22, 3397–3402. [Google Scholar] [CrossRef]
- Denault, D.L.; Loros, J.J.; Dunlap, J.C. WC-2 Mediates WC-1-FRQ Interaction within the PAS Protein-Linked Circadian Feedback Loop of Neurospora. EMBO J. 2001, 20, 109–117. [Google Scholar] [CrossRef] [PubMed]
- Schafmeier, T.; Haase, A.; Káldi, K.; Scholz, J.; Fuchs, M.; Brunner, M. Transcriptional Feedback of Neurospora Circadian Clock Gene by Phosphorylation-Dependent Inactivation of Its Transcription Factor. Cell 2005, 122, 235–246. [Google Scholar] [CrossRef] [PubMed]
- Schafmeier, T.; Káldi, K.; Diernfellner, A.; Mohr, C.; Brunner, M. Phosphorylation-Dependent Maturation of Neurospora Circadian Clock Protein from a Nuclear Repressor toward a Cytoplasmic Activator. Genes Dev. 2006, 20, 297–306. [Google Scholar] [CrossRef] [PubMed]
- Huang, G.; He, Q.; Guo, J.; Cha, J.; Liu, Y. The Ccr4-Not Protein Complex Regulates the Phase of the Neurospora Circadian Clock by Controlling WHITE COLLAR Protein Stability and Activity. J. Biol. Chem. 2013, 288, 31002–31009. [Google Scholar] [CrossRef] [PubMed]
- Shi, M.; Collett, M.; Loros, J.J.; Dunlap, J.C. FRQ-Interacting RNA Helicase Mediates Negative and Positive Feedback in the Neurospora Circadian Clock. Genetics 2010, 184, 351–361. [Google Scholar] [CrossRef] [PubMed]
- Hong, C.I.; Ruoff, P.; Loros, J.J.; Dunlap, J.C. Closing the Circadian Negative Feedback Loop: FRQ-Dependent Clearance of WC-1 from the Nucleus. Genes Dev. 2008, 22, 3196–3204. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Shu, H.; Cheng, P.; Chen, S.; Wang, L.; Liu, Y. Light-Independent Phosphorylation of WHITE COLLAR-1 Regulates Its Function in the Neurospora Circadian Negative Feedback Loop. J. Biol. Chem. 2005, 280, 17526–17532. [Google Scholar] [CrossRef]
- Wang, B.; Kettenbach, A.N.; Zhou, X.; Loros, J.J.; Dunlap, J.C. The Phospho-Code Determining Circadian Feedback Loop Closure and Output in Neurospora. Mol. Cell 2019, 74, 771–784.e3. [Google Scholar] [CrossRef]
- Sancar, G.; Sancar, C.; Brunner, M.; Schafmeier, T. Activity of the Circadian Transcription Factor White Collar Complex Is Modulated by Phosphorylation of SP-motifs. FEBS Lett. 2009, 583, 1833–1840. [Google Scholar] [CrossRef]
- Harms, E.; Kivimäe, S.; Young, M.W.; Saez, L. Posttranscriptional and Posttranslational Regulation of Clock Genes. J. Biol. Rhythm. 2004, 19, 361–373. [Google Scholar] [CrossRef]
- Lauinger, L.; Diernfellner, A.; Falk, S.; Brunner, M. The RNA Helicase FRH Is an ATP-Dependent Regulator of CK1a in the Circadian Clock of Neurospora Crassa. Nat. Commun. 2014, 5, 3598. [Google Scholar] [CrossRef] [PubMed]
- Collart, M.A.; Panasenko, O.O. The Ccr4–Not Complex. Gene 2012, 492, 42–53. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.M.; Hammarén, H.M.; Savitski, M.M.; Baek, S.H. Control of Protein Stability by Post-Translational Modifications. Nat. Commun. 2023, 14, 201. [Google Scholar] [CrossRef] [PubMed]
- Miller, S.; Hirota, T. Pharmacological Interventions to Circadian Clocks and Their Molecular Bases. J. Mol. Biol. 2020, 432, 3498–3514. [Google Scholar] [CrossRef] [PubMed]
- Dikic, I. Proteasomal and Autophagic Degradation Systems. Annu. Rev. Biochem. 2017, 86, 193–224. [Google Scholar] [CrossRef] [PubMed]
- Deshaies, R.J. SCF and Cullin/Ring H2-Based Ubiquitin Ligases. Annu. Rev. Cell Dev. Biol. 1999, 15, 435–467. [Google Scholar] [CrossRef] [PubMed]
- Ko, H.W.; Jiang, J.; Edery, I. Role for Slimb in the Degradation of Drosophila Period Protein Phosphorylated by Doubletime. Nature 2002, 420, 673–678. [Google Scholar] [CrossRef]
- Grima, B.; Lamouroux, A.; Chélot, E.; Papin, C.; Limbourg-Bouchon, B.; Rouyer, F. The F-Box Protein Slimb Controls the Levels of Clock Proteins Period and Timeless. Nature 2002, 420, 178–182. [Google Scholar] [CrossRef]
- Chiu, J.C.; Vanselow, J.T.; Kramer, A.; Edery, I. The Phospho-Occupancy of an Atypical SLIMB-Binding Site on PERIOD That Is Phosphorylated by DOUBLETIME Controls the Pace of the Clock. Genes Dev. 2008, 22, 1758–1772. [Google Scholar] [CrossRef]
- Wei, N.; Serino, G.; Deng, X. The COP9 Signalosome: More than a Protease. Trends Biochem. Sci. 2008, 33, 592–600. [Google Scholar] [CrossRef]
- Wang, J.; Hu, Q.; Chen, H.; Zhou, Z.; Li, W.; Wang, Y.; Li, S.; He, Q. Role of Individual Subunits of the Neurospora Crassa CSN Complex in Regulation of Deneddylation and Stability of Cullin Proteins. PLoS Genet. 2010, 6, e1001232. [Google Scholar] [CrossRef]
- Zhou, Z.; Wang, Y.; Cai, G.; He, Q. Neurospora COP9 Signalosome Integrity Plays Major Roles for Hyphal Growth, Conidial Development, and Circadian Function. PLoS Genet. 2012, 8, e1002712. [Google Scholar] [CrossRef]
- Li, L.; Nelson, C.J.; Trösch, J.; Castleden, I.; Huang, S.; Millar, A.H. Protein Degradation Rate in Arabidopsis thaliana Leaf Growth and Development. Plant Cell 2017, 29, 207–228. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Geng, R.; Gallenstein, R.A.; Somers, D.E. The F-Box Protein ZEITLUPE Controls Stability and Nucleocytoplasmic Partitioning of GIGANTEA. Dev. Camb. Engl. 2013, 140, 4060–4069. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.-M.; Feke, A.; Li, M.-W.; Adamchek, C.; Webb, K.; Pruneda-Paz, J.; Bennett, E.J.; Kay, S.A.; Gendron, J.M. Decoys Untangle Complicated Redundancy and Reveal Targets of Circadian Clock F-Box Proteins. Plant Physiol. 2018, 177, 1170–1186. [Google Scholar] [CrossRef] [PubMed]
- Más, P.; Kim, W.-Y.; Somers, D.E.; Kay, S.A. Targeted Degradation of TOC1 by ZTL Modulates Circadian Function in Arabidopsis thaliana. Nature 2003, 426, 567–570. [Google Scholar] [CrossRef] [PubMed]
- Kiba, T.; Henriques, R.; Sakakibara, H.; Chua, N.-H. Targeted Degradation of PSEUDO-RESPONSE REGULATOR5 by an SCFZTL Complex Regulates Clock Function and Photomorphogenesis in Arabidopsis thaliana. Plant Cell 2007, 19, 2516–2530. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.-Y.; Fujiwara, S.; Suh, S.-S.; Kim, J.; Kim, Y.; Han, L.; David, K.; Putterill, J.; Nam, H.G.; Somers, D.E. ZEITLUPE Is a Circadian Photoreceptor Stabilized by GIGANTEA in Blue Light. Nature 2007, 449, 356–360. [Google Scholar] [CrossRef]
- Lee, C.-M.; Li, M.-W.; Feke, A.; Liu, W.; Saffer, A.M.; Gendron, J.M. GIGANTEA Recruits the UBP12 and UBP13 Deubiquitylases to Regulate Accumulation of the ZTL Photoreceptor Complex. Nat. Commun. 2019, 10, 3750. [Google Scholar] [CrossRef]
- Huang, H.; Alvarez, S.; Bindbeutel, R.; Shen, Z.; Naldrett, M.J.; Evans, B.S.; Briggs, S.P.; Hicks, L.M.; Kay, S.A.; Nusinow, D.A. Identification of Evening Complex Associated Proteins in Arabidopsis by Affinity Purification and Mass Spectrometry. Mol. Cell. Proteom. 2016, 15, 201–217. [Google Scholar] [CrossRef]
- Yu, J.-W.; Rubio, V.; Lee, N.-Y.; Bai, S.; Lee, S.-Y.; Kim, S.-S.; Liu, L.; Zhang, Y.; Irigoyen, M.L.; Sullivan, J.A.; et al. COP1 and ELF3 Control Circadian Function and Photoperiodic Flowering by Regulating GI Stability. Mol. Cell 2008, 32, 617–630. [Google Scholar] [CrossRef] [PubMed]
- Seo, H.S.; Watanabe, E.; Tokutomi, S.; Nagatani, A.; Chua, N.-H. Photoreceptor Ubiquitination by COP1 E3 Ligase Desensitizes Phytochrome A Signaling. Genes Dev. 2004, 18, 617–622. [Google Scholar] [CrossRef] [PubMed]
- Hayama, R.; Yang, P.; Valverde, F.; Mizoguchi, T.; Furutani-Hayama, I.; Vierstra, R.D.; Coupland, G. Ubiquitin Carboxyl-Terminal Hydrolases Are Required for Period Maintenance of the Circadian Clock at High Temperature in Arabidopsis. Sci. Rep. 2019, 9, 17030. [Google Scholar] [CrossRef] [PubMed]
- Siepka, S.M.; Yoo, S.-H.; Park, J.; Song, W.; Kumar, V.; Hu, Y.; Lee, C.; Takahashi, J.S. Circadian Mutant Overtime Reveals F-Box Protein FBXL3 Regulation of Cryptochrome and Period Gene Expression. Cell 2007, 129, 1011–1023. [Google Scholar] [CrossRef]
- Busino, L.; Bassermann, F.; Maiolica, A.; Lee, C.; Nolan, P.M.; Godinho, S.I.H.; Draetta, G.F.; Pagano, M. SCFFbxl3 Controls the Oscillation of the Circadian Clock by Directing the Degradation of Cryptochrome Proteins. Science 2007, 316, 900–904. [Google Scholar] [CrossRef]
- Godinho, S.I.H.; Maywood, E.S.; Shaw, L.; Tucci, V.; Barnard, A.R.; Busino, L.; Pagano, M.; Kendall, R.; Quwailid, M.M.; Romero, M.R.; et al. The After-Hours Mutant Reveals a Role for Fbxl3 in Determining Mammalian Circadian Period. Science 2007, 316, 897–900. [Google Scholar] [CrossRef] [PubMed]
- Masuda, S.; Narasimamurthy, R.; Yoshitane, H.; Kim, J.K.; Fukada, Y.; Virshup, D.M. Mutation of a PER2 Phosphodegron Perturbs the Circadian Phosphoswitch. Proc. Natl. Acad. Sci. USA 2020, 117, 10888–10896. [Google Scholar] [CrossRef] [PubMed]
- Gallego, M.; Virshup, D.M. Post-Translational Modifications Regulate the Ticking of the Circadian Clock. Nat. Rev. Mol. Cell Biol. 2007, 8, 139–148. [Google Scholar] [CrossRef]
- Liu, J.; Zou, X.; Gotoh, T.; Brown, A.M.; Jiang, L.; Wisdom, E.L.; Kim, J.K.; Finkielstein, C.V. Distinct Control of PERIOD2 Degradation and Circadian Rhythms by the Oncoprotein and Ubiquitin Ligase MDM2. Sci. Signal. 2018, 11, eaau0715. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Zheng, S.; Qian, Y.; Zhou, Y.; Dai, H.; Liang, Y.; He, Y.; Gao, R.; Lv, H.; Zhang, J.; et al. Restored UBE2C Expression in Islets Promotes β-Cell Regeneration in Mice by Ubiquitinating PER1. Cell. Mol. Life Sci. 2023, 80, 226. [Google Scholar] [CrossRef]
- Yoo, S.-H.; Mohawk, J.A.; Siepka, S.M.; Shan, Y.; Huh, S.K.; Hong, H.-K.; Kornblum, I.; Kumar, V.; Koike, N.; Xu, M.; et al. Competing E3 Ubiquitin Ligases Govern Circadian Periodicity by Degradation of CRY in Nucleus and Cytoplasm. Cell 2013, 152, 1091–1105. [Google Scholar] [CrossRef] [PubMed]
- Hirano, A.; Yumimoto, K.; Tsunematsu, R.; Matsumoto, M.; Oyama, M.; Kozuka-Hata, H.; Nakagawa, T.; Lanjakornsiripan, D.; Nakayama, K.I.; Fukada, Y. FBXL21 Regulates Oscillation of the Circadian Clock through Ubiquitination and Stabilization of Cryptochromes. Cell 2013, 152, 1106–1118. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Hirota, T.; Han, X.; Cho, H.; Chong, L.-W.; Lamia, K.; Liu, S.; Atkins, A.R.; Banayo, E.; Liddle, C.; et al. Circadian Amplitude Regulation via FBXW7-Targeted REV-ERBα Degradation. Cell 2016, 165, 1644–1657. [Google Scholar] [CrossRef] [PubMed]
- Lecker, S.H.; Goldberg, A.L.; Mitch, W.E. Protein Degradation by the Ubiquitin-Proteasome Pathway in Normal and Disease States. J. Am. Soc. Nephrol. 2006, 17, 1807–1819. [Google Scholar] [CrossRef] [PubMed]
- Kubra, S.; Zhang, H.; Si, Y.; Gao, X.; Wang, T.; Pan, L.; Li, L.; Zhong, N.; Fu, J.; Zhang, B.; et al. REGγ Regulates Circadian Clock by Modulating BMAL1 Protein Stability. Cell Death Discov. 2021, 7, 335. [Google Scholar] [CrossRef] [PubMed]
- He, C. Chaperone-Mediated Autophagy on the Clock. Nat. Cell Biol. 2021, 23, 1220–1221. [Google Scholar] [CrossRef] [PubMed]
- Juste, Y.R.; Kaushik, S.; Bourdenx, M.; Aflakpui, R.; Bandyopadhyay, S.; Garcia, F.; Diaz, A.; Lindenau, K.; Tu, V.; Krause, G.J.; et al. Reciprocal Regulation of Chaperone-Mediated Autophagy and the Circadian Clock. Nat. Cell Biol. 2021, 23, 1255–1270. [Google Scholar] [CrossRef]
- Toledo, M.; Batista-Gonzalez, A.; Merheb, E.; Aoun, M.L.; Tarabra, E.; Feng, D.; Sarparanta, J.; Merlo, P.; Botrè, F.; Schwartz, G.J.; et al. Autophagy Regulates the Liver Clock and Glucose Metabolism by Degrading CRY1. Cell Metab. 2018, 28, 268–281.e4. [Google Scholar] [CrossRef]
- Yang, M.; Chen, P.; Liu, J.; Zhu, S.; Kroemer, G.; Klionsky, D.J.; Lotze, M.T.; Zeh, H.J.; Kang, R.; Tang, D. Clockophagy Is a Novel Selective Autophagy Process Favoring Ferroptosis. Sci. Adv. 2019, 5, eaaw2238. [Google Scholar] [CrossRef]
- He, C.; Klionsky, D.J. Regulation Mechanisms and Signaling Pathways of Autophagy. Annu. Rev. Genet. 2009, 43, 67–93. [Google Scholar] [CrossRef]
- Vitaterna, M.H.; King, D.P.; Chang, A.-M.; Kornhauser, J.M.; Lowrey, P.L.; McDonald, J.D.; Dove, W.F.; Pinto, L.H.; Turek, F.W.; Takahashi, J.S. Mutagenesis and Mapping of a Mouse Gene, Clock, Essential for Circadian Behavior. Science 1994, 264, 719–725. [Google Scholar] [CrossRef] [PubMed]
- Jeong, K.; He, B.; Nohara, K.; Park, N.; Shin, Y.; Kim, S.; Shimomura, K.; Koike, N.; Yoo, S.-H.; Chen, Z. Dual Attenuation of Proteasomal and Autophagic BMAL1 Degradation in ClockΔ19/+ Mice Contributes to Improved Glucose Homeostasis. Sci. Rep. 2015, 5, 12801. [Google Scholar] [CrossRef] [PubMed]
- Höltje, J.V. Bacterial Lysozymes. EXS 1996, 75, 65–74. [Google Scholar] [CrossRef] [PubMed]
- Becker, S.H.; Darwin, K.H. Bacterial Proteasomes: Mechanistic and Functional Insights. Microbiol. Mol. Biol. Rev. 2017, 81, e00036-16. [Google Scholar] [CrossRef] [PubMed]
- Ashida, H.; Sasakawa, C. Bacterial E3 Ligase Effectors Exploit Host Ubiquitin Systems. Curr. Opin. Microbiol. 2017, 35, 16–22. [Google Scholar] [CrossRef] [PubMed]
- Reischl, S.; Kramer, A. Kinases and Phosphatases in the Mammalian Circadian Clock. FEBS Lett. 2011, 585, 1393–1399. [Google Scholar] [CrossRef]
- Tataroğlu, Ö.; Schafmeier, T. Of Switches and Hourglasses: Regulation of Subcellular Traffic in Circadian Clocks by Phosphorylation. EMBO Rep. 2010, 11, 927–935. [Google Scholar] [CrossRef]
- Diernfellner, A.C.R.; Querfurth, C.; Salazar, C.; Höfer, T.; Brunner, M. Phosphorylation Modulates Rapid Nucleocytoplasmic Shuttling and Cytoplasmic Accumulation of Neurospora Clock Protein FRQ on a Circadian Time Scale. Genes Dev. 2009, 23, 2192–2200. [Google Scholar] [CrossRef]
- Iitaka, C.; Miyazaki, K.; Akaike, T.; Ishida, N. A Role for Glycogen Synthase Kinase-3β in the Mammalian Circadian Clock. J. Biol. Chem. 2005, 280, 29397–29402. [Google Scholar] [CrossRef]
- Kinoshita, C.; Miyazaki, K.; Ishida, N. Chronic Stress Affects PERIOD2 Expression through Glycogen Synthase Kinase-3β Phosphorylation in the Central Clock. NeuroReport 2012, 23, 98–102. [Google Scholar] [CrossRef]
- Diernfellner, A.C.R.; Schafmeier, T. Phosphorylations: Making the Neurospora crassa Circadian Clock Tick. FEBS Lett. 2011, 585, 1461–1466. [Google Scholar] [CrossRef] [PubMed]
- Kweon, S.H.; Lee, J.; Lim, C.; Choe, J. High-Amplitude Circadian Rhythms in Drosophila Driven by Calcineurin-Mediated Post-Translational Control of Sarah. Genet. 2018, 209, 815–828. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, P.; Hardin, P.E. An RNAi Screen To Identify Protein Phosphatases That Function Within the Drosophila Circadian Clock. G3 Genes Genomes Genet. 2016, 6, 4227–4238. [Google Scholar] [CrossRef] [PubMed]
- Tataroglu, O.; Emery, P. The Molecular Ticks of the Drosophila Circadian Clock. Curr. Opin. Insect Sci. 2015, 7, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Baruah, D.; Marak, C.N.K.; Roy, A.; Gohain, D.; Kumar, A.; Das, P.; Borkovich, K.A.; Tamuli, R. Multiple Calcium Signaling Genes Play a Role in the Circadian Period of Neurospora Crassa. FEMS Microbiol. Lett. 2023, 370, fnad044. [Google Scholar] [CrossRef]
- Marzoll, D.; Serrano, F.E.; Shostak, A.; Schunke, C.; Diernfellner, A.C.R.; Brunner, M. Casein Kinase 1 and Disordered Clock Proteins Form Functionally Equivalent, Phospho-Based Circadian Modules in Fungi and Mammals. Proc. Natl. Acad. Sci. USA 2022, 119, e2118286119. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Cheng, P.; Liu, Y. Regulation of the Neurospora Circadian Clock by Casein Kinase II. Genes Dev. 2002, 16, 994–1006. [Google Scholar] [CrossRef] [PubMed]
- Uehara, T.N.; Mizutani, Y.; Kuwata, K.; Hirota, T.; Sato, A.; Mizoi, J.; Takao, S.; Matsuo, H.; Suzuki, T.; Ito, S.; et al. Casein Kinase 1 Family Regulates PRR5 and TOC1 in the Arabidopsis Circadian Clock. Proc. Natl. Acad. Sci. USA 2019, 116, 11528–11536. [Google Scholar] [CrossRef]
- Knippschild, U.; Gocht, A.; Wolff, S.; Huber, N.; Löhler, J.; Stöter, M. The Casein Kinase 1 Family: Participation in Multiple Cellular Processes in Eukaryotes. Cell. Signal. 2005, 17, 675–689. [Google Scholar] [CrossRef]
- Li, S.-S.; Dong, Y.-H.; Liu, Z.-P. Recent Advances in the Development of Casein Kinase 1 Inhibitors. Curr. Med. Chem. 2021, 28, 1585–1604. [Google Scholar] [CrossRef]
- Price, J.L.; Blau, J.; Rothenfluh, A.; Abodeely, M.; Kloss, B.; Young, M.W. Double-Time Is a Novel Drosophila Clock Gene That Regulates PERIOD Protein Accumulation. Cell 1998, 94, 83–95. [Google Scholar] [CrossRef] [PubMed]
- Edery, I.; Zwiebel, L.J.; Dembinska, M.E.; Rosbash, M. Temporal Phosphorylation of the Drosophila Period Protein. Proc. Natl. Acad. Sci. USA 1994, 91, 2260–2264. [Google Scholar] [CrossRef] [PubMed]
- Duvall, L.B.; Taghert, P.H. Circadian Rhythms: Biological Clocks Work in Phospho-Time. Curr. Biol. 2011, 21, R305–R307. [Google Scholar] [CrossRef] [PubMed]
- Yu, Q.; Jacquier, A.C.; Citri, Y.; Hamblen, M.; Hall, J.C.; Rosbash, M. Molecular Mapping of Point Mutations in the Period Gene That Stop or Speed up Biological Clocks in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 1987, 84, 784–788. [Google Scholar] [CrossRef] [PubMed]
- Konopka, R.J.; Benzer, S. Clock Mutants of Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 1971, 68, 2112–2116. [Google Scholar] [CrossRef] [PubMed]
- Baylies, M.K.; Bargiello, T.A.; Jackson, F.R.; Young, M.W. Changes in Abundance or Structure of the per Gene Product Can Alter Periodicity of the Drosophila Clock. Nature 1987, 326, 390–392. [Google Scholar] [CrossRef] [PubMed]
- Kloss, B.; Price, J.L.; Saez, L.; Blau, J.; Rothenfluh, A.; Wesley, C.S.; Young, M.W. The Drosophila Clock Gene Double-Time Encodes a Protein Closely Related to Human Casein Kinase Iε. Cell 1998, 94, 97–107. [Google Scholar] [CrossRef]
- Kloss, B.; Rothenfluh, A.; Young, M.W.; Saez, L. Phosphorylation of PERIOD Is Influenced by Cycling Physical Associations of DOUBLE-TIME, PERIOD, and TIMELESS in the Drosophila Clock. Neuron 2001, 30, 699–706. [Google Scholar] [CrossRef]
- Top, D.; Harms, E.; Syed, S.; Adams, E.L.; Saez, L. GSK-3 and CK2 Kinases Converge on Timeless to Regulate the Master Clock. Cell Rep. 2016, 16, 357–367. [Google Scholar] [CrossRef]
- Szabó, Á.; Papin, C.; Zorn, D.; Ponien, P.; Weber, F.; Raabe, T.; Rouyer, F. The CK2 Kinase Stabilizes CLOCK and Represses Its Activity in the Drosophila Circadian Oscillator. PLoS Biol. 2013, 11, e1001645. [Google Scholar] [CrossRef]
- Smith, E.M.; Lin, J.-M.; Meissner, R.-A.; Allada, R. Dominant-Negative CK2alpha Induces Potent Effects on Circadian Rhythmicity. PLoS Genet. 2008, 4, e12. [Google Scholar] [CrossRef]
- Martinek, S.; Inonog, S.; Manoukian, A.S.; Young, M.W. A Role for the Segment Polarity Gene Shaggy/GSK-3 in the Drosophila Circadian Clock. Cell 2001, 105, 769–779. [Google Scholar] [CrossRef] [PubMed]
- Ko, H.W.; Kim, E.Y.; Chiu, J.; Vanselow, J.T.; Kramer, A.; Edery, I. A Hierarchical Phosphorylation Cascade That Regulates the Timing of PERIOD Nuclear Entry Reveals Novel Roles for Proline-Directed Kinases and GSK-3β/SGG in Circadian Clocks. J. Neurosci. 2010, 30, 12664–12675. [Google Scholar] [CrossRef]
- Yu, W.; Houl, J.H.; Hardin, P.E. NEMO Kinase Contributes to Core Period Determination by Slowing the Pace of the Drosophila Circadian Oscillator. Curr. Biol. 2011, 21, 756–761. [Google Scholar] [CrossRef]
- Chiu, J.C.; Ko, H.W.; Edery, I. NEMO/NLK Phosphorylates PERIOD to Initiate a Time-Delay Phosphorylation Circuit That Sets Circadian Clock Speed. Cell 2011, 145, 357–370. [Google Scholar] [CrossRef] [PubMed]
- Kivimäe, S.; Saez, L.; Young, M.W. Activating PER Repressor through a DBT-Directed Phosphorylation Switch. PLoS Biol. 2008, 6, e183. [Google Scholar] [CrossRef] [PubMed]
- Cyran, S.A.; Yiannoulos, G.; Buchsbaum, A.M.; Saez, L.; Young, M.W.; Blau, J. The Double-Time Protein Kinase Regulates the Subcellular Localization of the Drosophila Clock Protein Period. J. Neurosci. 2005, 25, 5430–5437. [Google Scholar] [CrossRef]
- Nawathean, P.; Rosbash, M. The Doubletime and CKII Kinases Collaborate to Potentiate Drosophila PER Transcriptional Repressor Activity. Mol. Cell 2004, 13, 213–223. [Google Scholar] [CrossRef]
- Muskus, M.J.; Preuss, F.; Fan, J.-Y.; Bjes, E.S.; Price, J.L. Drosophila DBT Lacking Protein Kinase Activity Produces Long-Period and Arrhythmic Circadian Behavioral and Molecular Rhythms. Mol. Cell. Biol. 2007, 27, 8049–8064. [Google Scholar] [CrossRef]
- Hurley, J.M.; Jankowski, M.S.; Santos, H.D.L.; Crowell, A.M.; Fordyce, S.B.; Zucker, J.D.; Kumar, N.; Purvine, S.O.; Robinson, E.W.; Shukla, A.; et al. Circadian Proteomic Analysis Uncovers Mechanisms of Post-Transcriptional Regulation in Metabolic Pathways. Cell Syst. 2018, 7, 613–626.e5. [Google Scholar] [CrossRef]
- Gorl, M. A PEST-like Element in FREQUENCY Determines the Length of the Circadian Period in Neurospora Crassa. EMBO J. 2001, 20, 7074–7084. [Google Scholar] [CrossRef] [PubMed]
- Kelliher, C.M.; Lambreghts, R.; Xiang, Q.; Baker, C.L.; Loros, J.J.; Dunlap, J.C. PRD-2 Directly Regulates Casein Kinase I and Counteracts Nonsense-Mediated Decay in the Neurospora Circadian Clock. eLife 2020, 9, e64007. [Google Scholar] [CrossRef] [PubMed]
- Ni, W.; Xu, S.-L.; González-Grandío, E.; Chalkley, R.J.; Huhmer, A.F.R.; Burlingame, A.L.; Wang, Z.-Y.; Quail, P.H. PPKs Mediate Direct Signal Transfer from Phytochrome Photoreceptors to Transcription Factor PIF3. Nat. Commun. 2017, 8, 15236. [Google Scholar] [CrossRef] [PubMed]
- Fish, K.J.; Cegielska, A.; Getman, M.E.; Landes, G.M.; Virshup, D.M. Isolation and Characterization of Human Casein Kinase I∊ (CKI), a Novel Member of the CKI Gene Family. J. Biol. Chem. 1995, 270, 14875–14883. [Google Scholar] [CrossRef] [PubMed]
- Dey, J.; Carr, A.-J.F.; Cagampang, F.R.A.; Semikhodskii, A.S.; Loudon, A.S.I.; Hastings, M.H.; Maywood, E.S. The Tau Mutation in the Syrian Hamster Differentially Reprograms the Circadian Clock in the SCN and Peripheral Tissues. J. Biol. Rhythm. 2005, 20, 99–110. [Google Scholar] [CrossRef] [PubMed]
- Ralph, M.R.; Menaker, M. A Mutation of the Circadian System in Golden Hamsters. Science 1988, 241, 1225–1227. [Google Scholar] [CrossRef] [PubMed]
- Meng, Q.-J.; Logunova, L.; Maywood, E.S.; Gallego, M.; Lebiecki, J.; Brown, T.M.; Sládek, M.; Semikhodskii, A.S.; Glossop, N.R.J.; Piggins, D.; et al. Setting Clock Speed in Mammals: The CK1ε Tau Mutation in Mice Accelerates the Circadian Pacemaker by Selectively Destabilizing PERIOD Proteins. Neuron 2013, 58, 78–88. [Google Scholar] [CrossRef]
- Loudon, A.S.I.; Meng, Q.J.; Maywood, E.S.; Bechtold, D.A.; Boot-Handford, R.P.; Hastings, M.H. The Biology of the Circadian Ck1ε Tau Mutation in Mice and Syrian Hamsters: A Tale of Two Species. Cold Spring Harb. Symp. Quant. Biol. 2007, 72, 261–271. [Google Scholar] [CrossRef]
- An, Y.; Yuan, B.; Xie, P.; Gu, Y.; Liu, Z.; Wang, T.; Li, Z.; Xu, Y.; Liu, Y. Decoupling PER Phosphorylation, Stability and Rhythmic Expression from Circadian Clock Function by Abolishing PER-CK1 Interaction. Nat. Commun. 2022, 13, 3991. [Google Scholar] [CrossRef]
- Liu, Y.; Loros, J.; Dunlap, J.C. Phosphorylation of the Neurospora Clock Protein FREQUENCY Determines Its Degradation Rate and Strongly Influences the Period Length of the Circadian Clock. Proc. Natl. Acad. Sci. USA 2000, 97, 234–239. [Google Scholar] [CrossRef]
- Yang, Y.; Cheng, P.; He, Q.; Wang, L.; Liu, Y. Phosphorylation of FREQUENCY Protein by Casein Kinase II Is Necessary for the Function of the Neurospora Circadian Clock. Mol. Cell. Biol. 2003, 23, 6221–6228. [Google Scholar] [CrossRef] [PubMed]
- Mehra, A.; Shi, M.; Baker, C.L.; Colot, H.V.; Loros, J.J.; Dunlap, J.C. A Role for Casein Kinase 2 in the Mechanism Underlying Circadian Temperature Compensation. Cell 2009, 137, 749–760. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.-M.; Rinke, R.; Korbmacher, C. Stimulation of the Epithelial Sodium Channel (ENaC) by cAMP Involves Putative ERK Phosphorylation Sites in the C Termini of the Channel’s β- and γ-Subunit. J. Biol. Chem. 2006, 281, 9859–9868. [Google Scholar] [CrossRef] [PubMed]
- Maier, B.; Wendt, S.; Vanselow, J.T.; Wallach, T.; Reischl, S.; Oehmke, S.; Schlosser, A.; Kramer, A. A Large-Scale Functional RNAi Screen Reveals a Role for CK2 in the Mammalian Circadian Clock. Genes Dev. 2009, 23, 708–718. [Google Scholar] [CrossRef] [PubMed]
- Tamaru, T.; Hirayama, J.; Isojima, Y.; Nagai, K.; Norioka, S.; Takamatsu, K.; Sassone-Corsi, P. CK2α Phosphorylates BMAL1 to Regulate the Mammalian Clock. Nat. Struct. Mol. Biol. 2009, 16, 446–448. [Google Scholar] [CrossRef] [PubMed]
- Portolés, S.; Más, P. Altered Oscillator Function Affects Clock Resonance and Is Responsible for the Reduced Day-length Sensitivity of CKB4 Overexpressing Plants. Plant J. 2007, 51, 966–977. [Google Scholar] [CrossRef] [PubMed]
- Sugano, S.; Andronis, C.; Green, R.M.; Wang, Z.-Y.; Tobin, E.M. Protein Kinase CK2 Interacts with and Phosphorylates the Arabidopsis Circadian Clock-Associated 1 Protein. Proc. Natl. Acad. Sci. USA 1998, 95, 11020–11025. [Google Scholar] [CrossRef]
- Perales, M.; Portolés, S.; Más, P. The Proteasome-dependent Degradation of CKB4 Is Regulated by the Arabidopsis Biological Clock. Plant J. 2006, 46, 849–860. [Google Scholar] [CrossRef]
- Daniel, X.; Sugano, S.; Tobin, E.M. CK2 Phosphorylation of CCA1 Is Necessary for Its Circadian Oscillator Function in Arabidopsis. Proc. Natl. Acad. Sci. USA 2004, 101, 3292–3297. [Google Scholar] [CrossRef]
- Hirota, T.; Lewis, W.G.; Liu, A.C.; Lee, J.W.; Schultz, P.G.; Kay, S.A. A Chemical Biology Approach Reveals Period Shortening of the Mammalian Circadian Clock by Specific Inhibition of GSK-3β. Proc. Natl. Acad. Sci. USA 2008, 105, 20746–20751. [Google Scholar] [CrossRef]
- Sahar, S.; Zocchi, L.; Kinoshita, C.; Borrelli, E.; Sassone-Corsi, P. Regulation of BMAL1 Protein Stability and Circadian Function by GSK3β-Mediated Phosphorylation. PLoS ONE 2010, 5, e8561. [Google Scholar] [CrossRef] [PubMed]
- Kwon, I.; Lee, J.; Chang, S.H.; Jung, N.C.; Lee, B.J.; Son, G.H.; Kim, K.; Lee, K.H. BMAL1 Shuttling Controls Transactivation and Degradation of the CLOCK/BMAL1 Heterodimer. Mol. Cell. Biol. 2006, 26, 7318–7330. [Google Scholar] [CrossRef] [PubMed]
- Harada, Y.; Sakai, M.; Kurabayashi, N.; Hirota, T.; Fukada, Y. Ser-557-Phosphorylated mCRY2 Is Degraded upon Synergistic Phosphorylation by Glycogen Synthase Kinase-3β. J. Biol. Chem. 2005, 280, 31714–31721. [Google Scholar] [CrossRef] [PubMed]
- Yin, L.; Wang, J.; Klein, P.S.; Lazar, M.A. Nuclear Receptor Rev-Erbalpha Is a Critical Lithium-Sensitive Component of the Circadian Clock. Science 2006, 311, 1002–1005. [Google Scholar] [CrossRef] [PubMed]
- Spengler, M.L.; Kuropatwinski, K.K.; Schumer, M.; Antoch, M. A Serine Cluster Mediates BMAL1-Dependent CLOCK Phosphorylation and Degradation. Cell Cycle 2009, 8, 4138–4146. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Zheng, X.; Hu, W.; Bian, S.; Zhang, Z.; Tao, D.; Liu, Y.; Ma, Y. Cancer/Testis Antigen PIWIL2 Suppresses Circadian Rhythms by Regulating the Stability and Activity of BMAL1 and CLOCK. Oncotarget 2017, 8, 54913–54924. [Google Scholar] [CrossRef] [PubMed]
- Lipton, J.O.; Yuan, E.D.; Boyle, L.M.; Ebrahimi-Fakhari, D.; Kwiatkowski, E.; Nathan, A.; Güttler, T.; Davis, F.; Asara, J.M.; Sahin, M. The Circadian Protein BMAL1 Regulates Translation in Response to S6K1-Mediated Phosphorylation. Cell 2015, 161, 1138–1151. [Google Scholar] [CrossRef]
- Gao, P.; Yoo, S.-H.; Lee, K.-J.; Rosensweig, C.; Takahashi, J.S.; Chen, B.P.; Green, C.B. Phosphorylation of the Cryptochrome 1 C-Terminal Tail Regulates Circadian Period Length. J. Biol. Chem. 2013, 288, 35277–35286. [Google Scholar] [CrossRef]
- Brenna, A.; Albrecht, U. Phosphorylation and Circadian Molecular Timing. Front. Physiol. 2020, 11, 612510. [Google Scholar] [CrossRef]
- Gery, S.; Komatsu, N.; Baldjyan, L.; Yu, A.; Koo, D.; Koeffler, H.P. The Circadian Gene Per1 Plays an Important Role in Cell Growth and DNA Damage Control in Human Cancer Cells. Mol. Cell 2006, 22, 375–382. [Google Scholar] [CrossRef]
- Pregueiro, A.M.; Liu, Q.; Baker, C.L.; Dunlap, J.C.; Loros, J.J. The Neurospora Checkpoint Kinase 2: A Regulatory Link between the Circadian and Cell Cycles. Science 2006, 313, 644–649. [Google Scholar] [CrossRef] [PubMed]
- Lamia, K.A.; Sachdeva, U.M.; DiTacchio, L.; Williams, E.C.; Alvarez, J.G.; Egan, D.F.; Vasquez, D.S.; Juguilon, H.; Panda, S.; Shaw, R.J.; et al. AMPK Regulates the Circadian Clock by Cryptochrome Phosphorylation and Degradation. Science 2009, 326, 437–440. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Cheng, P.; Zhi, G.; Liu, Y. Identification of a Calcium/Calmodulin-Dependent Protein Kinase That Phosphorylates the Neurospora Circadian Clock Protein FREQUENCY. J. Biol. Chem. 2001, 276, 41064–41072. [Google Scholar] [CrossRef] [PubMed]
- Kwak, Y.; Jeong, J.; Lee, S.; Park, Y.-U.; Lee, S.-A.; Han, D.-H.; Kim, J.-H.; Ohshima, T.; Mikoshiba, K.; Suh, Y.-H.; et al. Cyclin-Dependent Kinase 5 (Cdk5) Regulates the Function of CLOCK Protein by Direct Phosphorylation. J. Biol. Chem. 2013, 288, 36878–36889. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; He, Q.; Cheng, P.; Wrage, P.; Yarden, O.; Liu, Y. Distinct Roles for PP1 and PP2A in the Neurospora Circadian Clock. Genes Dev. 2004, 18, 255–260. [Google Scholar] [CrossRef] [PubMed]
- Klemz, S.; Wallach, T.; Korge, S.; Rosing, M.; Klemz, R.; Maier, B.; Fiorenza, N.C.; Kaymak, I.; Fritzsche, A.K.; Herzog, E.D.; et al. Protein Phosphatase 4 Controls Circadian Clock Dynamics by Modulating CLOCK/BMAL1 Activity. Genes Dev. 2021, 35, 1161–1174. [Google Scholar] [CrossRef] [PubMed]
- Parvathy, S.T.; Udayasuriyan, V.; Bhadana, V. Codon Usage Bias. Mol. Biol. Rep. 2022, 49, 539–565. [Google Scholar] [CrossRef]
- Hurley, J.M.; Dunlap, J.C. A Fable of Too Much Too Fast. Nature 2013, 495, 57–58. [Google Scholar] [CrossRef]
- Zhou, M.; Guo, J.; Cha, J.; Chae, M.; Chen, S.; Barral, J.M.; Sachs, M.S.; Liu, Y. Non-Optimal Codon Usage Affects Expression, Structure and Function of Clock Protein FRQ. Nature 2013, 495, 111–115. [Google Scholar] [CrossRef]
- Fu, J.; Murphy, K.A.; Zhou, M.; Li, Y.H.; Lam, V.H.; Tabuloc, C.A.; Chiu, J.C.; Liu, Y. Codon Usage Affects the Structure and Function of the Drosophila Circadian Clock Protein PERIOD. Genes Dev. 2016, 30, 1761–1775. [Google Scholar] [CrossRef]
- Xu, Y.; Ma, P.; Shah, P.; Rokas, A.; Liu, Y.; Johnson, C.H. Non-Optimal Codon Usage Is a Mechanism to Achieve Circadian Clock Conditionality. Nature 2013, 495, 116–120. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Wang, T.; Fu, J.; Xiao, G.; Liu, Y. Nonoptimal Codon Usage Influences Protein Structure in Intrinsically Disordered Regions. Mol. Microbiol. 2015, 97, 974–987. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, Y.; Li, Z.; Xiong, S.; Sun, C.; Li, B.; Wu, S.A.; Lyu, J.; Shi, X.; Yang, L.; Chen, Y.; et al. Circadian Clocks Are Modulated by Compartmentalized Oscillating Translation. Cell 2023, 186, 3245–3260.e23. [Google Scholar] [CrossRef] [PubMed]
- Pelham, J.F.; Dunlap, J.C.; Hurley, J.M. Intrinsic Disorder Is an Essential Characteristic of Components in the Conserved Circadian Circuit. Cell Commun. Signal. 2020, 18, 181. [Google Scholar] [CrossRef] [PubMed]
- Zhu, K.; Celwyn, I.J.; Guan, D.; Xiao, Y.; Wang, X.; Hu, W.; Jiang, C.; Cheng, L.; Casellas, R.; Lazar, M.A. An Intrinsically Disordered Region Controlling Condensation of a Circadian Clock Component and Rhythmic Transcription in the Liver. Mol. Cell 2023, 83, 3457–3469.e7. [Google Scholar] [CrossRef] [PubMed]
- Xia, K.; Li, S.; Yang, Y.; Shi, X.; Zhao, B.; Lv, L.; Xin, Z.; Kang, J.; Ren, P.; Wu, H. Cryptochrome 2 Acetylation Attenuates Its Antiproliferative Effect in Breast Cancer. Cell Death Dis. 2023, 14, 250. [Google Scholar] [CrossRef] [PubMed]
- Hanover, J.A.; Krause, M.W.; Love, D.C. The Hexosamine Signaling Pathway: O-GlcNAc Cycling in Feast or Famine. Biochim. Biophys. Acta 2010, 1800, 80–95. [Google Scholar] [CrossRef]
- Kim, E.Y.; Jeong, E.H.; Park, S.; Jeong, H.-J.; Edery, I.; Cho, J.W. A Role for O -GlcNAcylation in Setting Circadian Clock Speed. Genes Dev. 2012, 26, 490–502. [Google Scholar] [CrossRef]
- Li, Y.H.; Liu, X.; Vanselow, J.T.; Zheng, H.; Schlosser, A.; Chiu, J.C. O-GlcNAcylation of PERIOD Regulates Its Interaction with CLOCK and Timing of Circadian Transcriptional Repression. PLOS Genet. 2019, 15, e1007953. [Google Scholar] [CrossRef]
- Li, M.-D.; Ruan, H.-B.; Hughes, M.E.; Lee, J.-S.; Singh, J.P.; Jones, S.P.; Nitabach, M.N.; Yang, X. O-GlcNAc Signaling Entrains the Circadian Clock by Inhibiting BMAL1/CLOCK Ubiquitination. Cell Metab. 2013, 17, 303–310. [Google Scholar] [CrossRef]
- Kaasik, K.; Kivimäe, S.; Allen, J.J.; Chalkley, R.J.; Huang, Y.; Baer, K.; Kissel, H.; Burlingame, A.L.; Shokat, K.M.; Ptáček, L.J.; et al. Glucose Sensor O-GlcNAcylation Coordinates with Phosphorylation to Regulate Circadian Clock. Cell Metab. 2013, 17, 291–302. [Google Scholar] [CrossRef] [PubMed]
- Hart, G.W. How Sugar Tunes Your Clock. Cell Metab. 2013, 17, 155–156. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Tian, H.; Yu, Z.; Zhao, H.; Li, W.; Sang, D.; Lin, K.; Cui, Y.; Liao, M.; Xu, Z.; et al. A Highland-Adaptation Mutation of the Epas1 Protein Increases Its Stability and Disrupts the Circadian Clock in the Plateau Pika. Cell Rep. 2022, 39, 110816. [Google Scholar] [CrossRef] [PubMed]
- Yagita, K.; Yamaguchi, S.; Tamanini, F.; Horst, G.T.J.V.D.; Hoeijmakers, J.H.J.; Yasui, A.; Loros, J.J.; Dunlap, J.C.; Okamura, H. Dimerization and Nuclear Entry of mPER Proteins in Mammalian Cells. Genes Dev. 2000, 14, 1353–1363. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Hirano, A.; Hsu, P.-K.; Jones, C.R.; Sakai, N.; Okuro, M.; McMahon, T.; Yamazaki, M.; Xu, Y.; Saigoh, N.; et al. A PERIOD3 Variant Causes a Circadian Phenotype and Is Associated with a Seasonal Mood Trait. Proc. Natl. Acad. Sci. USA 2016, 113, E1536–E1544. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Mahesh, G.; Yu, W.; Hardin, P.E. CLOCK Stabilizes CYCLE to Initiate Clock Function in Drosophila. Proc. Natl. Acad. Sci. USA 2017, 114, 10972–10977. [Google Scholar] [CrossRef] [PubMed]
- Malzahn, E.; Ciprianidis, S.; Káldi, K.; Schafmeier, T.; Brunner, M. Photoadaptation in Neurospora by Competitive Interaction of Activating and Inhibitory LOV Domains. Cell 2010, 142, 762–772. [Google Scholar] [CrossRef] [PubMed]
- Xue, Y.; Chiu, J.C.; Zhang, Y. SUR-8 Interacts with PP1-87B to Stabilize PERIOD and Regulate Circadian Rhythms in Drosophila. PLoS Genet. 2019, 15, e1008475. [Google Scholar] [CrossRef] [PubMed]
- Berthier, A.; Vinod, M.; Porez, G.; Steenackers, A.; Alexandre, J.; Yamakawa, N.; Gheeraert, C.; Ploton, M.; Maréchal, X.; Dubois-Chevalier, J.; et al. Combinatorial Regulation of Hepatic Cytoplasmic Signaling and Nuclear Transcriptional Events by the OGT/REV-ERBα Complex. Proc. Natl. Acad. Sci. USA 2018, 115, E11033–E11042. [Google Scholar] [CrossRef]
- Hardin, P.E. Molecular Genetic Analysis of Circadian Timekeeping in Drosophila. Adv. Genet. 2011, 74, 141–173. [Google Scholar] [CrossRef]
- Hunter-Ensor, M.; Ousley, A.; Sehgal, A. Regulation of the Drosophila Protein Timeless Suggests a Mechanism for Resetting the Circadian Clock by Light. Cell 1996, 84, 677–685. [Google Scholar] [CrossRef] [PubMed]
- Peschel, N.; Chen, K.F.; Szabo, G.; Stanewsky, R. Light-Dependent Interactions between the Drosophila Circadian Clock Factors Cryptochrome, Jetlag, and Timeless. Curr. Biol. 2009, 19, 241–247. [Google Scholar] [CrossRef] [PubMed]
- Hara, T.; Koh, K.; Combs, D.J.; Sehgal, A. Post-Translational Regulation and Nuclear Entry of TIMELESS and PERIOD Are Affected in New Timeless Mutant. J. Neurosci. 2011, 31, 9982–9990. [Google Scholar] [CrossRef] [PubMed]
- Talora, C.; Franchi, L.; Linden, H.; Ballario, P.; Macino, G. Role of a White Collar-1-White Collar-2 Complex in Blue-Light Signal Transduction. EMBO J. 1999, 18, 4961–4968. [Google Scholar] [CrossRef] [PubMed]
- Valverde, F.; Mouradov, A.; Soppe, W.; Ravenscroft, D.; Samach, A.; Coupland, G. Photoreceptor Regulation of CONSTANS Protein in Photoperiodic Flowering. Science 2004, 303, 1003–1006. [Google Scholar] [CrossRef] [PubMed]
- Shalitin, D.; Yang, H.; Mockler, T.C.; Maymon, M.; Guo, H.; Whitelam, G.C.; Lin, C. Regulation of Arabidopsis Cryptochrome 2 by Blue-Light-Dependent Phosphorylation. Nature 2002, 417, 763–767. [Google Scholar] [CrossRef] [PubMed]
- Srikanta, S.B.; Cermakian, N. To Ub or Not to Ub: Regulation of Circadian Clocks by Ubiquitination and Deubiquitination. J. Neurochem. 2021, 157, 11–30. [Google Scholar] [CrossRef]
- Wang, X.; Ma, L. Unraveling the Circadian Clock in Arabidopsis. Plant Signal Behav. 2013, 8, e23014. [Google Scholar] [CrossRef]
- Lee, C.; Etchegaray, J.-P.; Cagampang, F.R.A.; Loudon, A.S.I.; Reppert, S.M. Posttranslational Mechanisms Regulate the Mammalian Circadian Clock. Cell 2001, 107, 855–867. [Google Scholar] [CrossRef]
- Besing, R.C.; Paul, J.R.; Hablitz, L.M.; Rogers, C.O.; Johnson, R.L.; Young, M.E.; Gamble, K.L. Circadian Rhythmicity of Active GSK3 Isoforms Modulates Molecular Clock Gene Rhythms in the Suprachiasmatic Nucleus. J. Biol. Rhythms 2015, 30, 155–160. [Google Scholar] [CrossRef]
- Fujiwara, S.; Wang, L.; Han, L.; Suh, S.-S.; Salomé, P.A.; McClung, C.R.; Somers, D.E. Post-Translational Regulation of the Arabidopsis Circadian Clock through Selective Proteolysis and Phosphorylation of Pseudo-Response Regulator Proteins. J. Biol. Chem. 2008, 283, 23073–23083. [Google Scholar] [CrossRef]
- Kim, W.-Y.; Geng, R.; Somers, D.E. Circadian Phase-Specific Degradation of the F-Box Protein ZTL Is Mediated by the Proteasome. Proc. Natl. Acad. Sci. USA 2003, 100, 4933–4938. [Google Scholar] [CrossRef] [PubMed]
- Murakami-Kojima, M.; Nakamichi, N.; Yamashino, T.; Mizuno, T. The APRR3 Component of the Clock-Associated APRR1/TOC1 Quintet Is Phosphorylated by a Novel Protein Kinase Belonging to the WNK Family, the Gene for Which Is Also Transcribed Rhythmically in Arabidopsis thaliana. Plant Cell Physiol. 2002, 43, 675–683. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.-H.; Xiong, J.-M.; Zhu, Y.-Y.; Zhang, X.-D.; Wu, W.-J.; Zhou, L.; Zhuang, J.-H.; Xu, X.-H. WNK3-PER1 Interactions Regulate the Circadian Rhythm in the Suprachiasmatic Nucleus in Rats. Am. J. Transl. Res. 2022, 14, 1001–1009. [Google Scholar] [PubMed]
- Sathyanarayanan, S.; Zheng, X.; Xiao, R.; Sehgal, A. Posttranslational Regulation of Drosophila PERIOD Protein by Protein Phosphatase 2A. Cell 2004, 116, 603–615. [Google Scholar] [CrossRef] [PubMed]
- Imai, K.; Nishiwaki, T.; Kondo, T.; Iwasaki, H. Circadian Rhythms in the Synthesis and Degradation of a Master Clock Protein KaiC in Cyanobacteria. J. Biol. Chem. 2004, 279, 36534–36539. [Google Scholar] [CrossRef] [PubMed]
- Ruoff, P.; Vinsjevik, M.; Monnerjahn, C.; Rensing, L. The Goodwin Oscillator: On the Importance of Degradation Reactions in the Circadian Clock. J. Biol. Rhythms 1999, 14, 469–479. [Google Scholar] [CrossRef]
- Dunlap, J.C.; Loros, J.J.; Colot, H.V.; Mehra, A.; Belden, W.J.; Shi, M.; Hong, C.I.; Larrondo, L.F.; Baker, C.L.; Chen, C.-H.; et al. A Circadian Clock in Neurospora: How Genes and Proteins Cooperate to Produce a Sustained, Entrainable, and Compensated Biological Oscillator with a Period of about a Day. Cold Spring Harb. Symp. Quant. Biol. 2007, 72, 57–68. [Google Scholar] [CrossRef]
- Colot, H.V.; Loros, J.J.; Dunlap, J.C. Temperature-Modulated Alternative Splicing and Promoter Use in the Circadian Clock Gene Frequency. Mol. Biol. Cell 2005, 16, 5563–5571. [Google Scholar] [CrossRef]
- Diernfellner, A.C.R.; Schafmeier, T.; Merrow, M.W.; Brunner, M. Molecular Mechanism of Temperature Sensing by the Circadian Clock of Neurospora crassa. Genes Dev. 2005, 19, 1968–1973. [Google Scholar] [CrossRef]
- Narasimamurthy, R.; Virshup, D.M. The Phosphorylation Switch That Regulates Ticking of the Circadian Clock. Mol. Cell 2021, 81, 1133–1146. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Chen, A.; Caicedo-Casso, A.; Cui, G.; Du, M.; He, Q.; Lim, S.; Kim, H.J.; Hong, C.I.; Liu, Y. FRQ-CK1 Interaction Determines the Period of Circadian Rhythms in Neurospora. Nat. Commun. 2019, 10, 4352. [Google Scholar] [CrossRef] [PubMed]
- Kurien, P.; Hsu, P.-K.; Leon, J.; Wu, D.; McMahon, T.; Shi, G.; Xu, Y.; Lipzen, A.; Pennacchio, L.A.; Jones, C.R.; et al. TIMELESS Mutation Alters Phase Responsiveness and Causes Advanced Sleep Phase. Proc. Natl. Acad. Sci. USA 2019, 116, 12045–12053. [Google Scholar] [CrossRef]
- Yildirim, E.; Chiu, J.C.; Edery, I. Identification of Light-Sensitive Phosphorylation Sites on PERIOD That Regulate the Pace of Circadian Rhythms in Drosophila. Mol. Cell. Biol. 2016, 36, 855–870. [Google Scholar] [CrossRef] [PubMed]
- Hastings, J.W.; Sweeney, B.M. On the Mechanism of Temperature Independence in a Biological Clock. Proc. Natl. Acad. Sci. USA 1957, 43, 804–811. [Google Scholar] [CrossRef] [PubMed]
- Gardner, G.F.; Feldman, J.F. Temperature Compensation of Circadian Period Length in Clock Mutants of Neurospora crassa. Plant Physiol. 1981, 68, 1244–1248. [Google Scholar] [CrossRef] [PubMed]
- Isojima, Y.; Nakajima, M.; Ukai, H.; Fujishima, H.; Yamada, R.G.; Masumoto, K.; Kiuchi, R.; Ishida, M.; Ukai-Tadenuma, M.; Minami, Y.; et al. CKIepsilon/Delta-Dependent Phosphorylation Is a Temperature-Insensitive, Period-Determining Process in the Mammalian Circadian Clock. Proc. Natl. Acad. Sci. USA 2009, 106, 15744–15749. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Kim, J.K.; Eng, G.W.L.; Forger, D.B.; Virshup, D.M. A Period2 Phosphoswitch Regulates and Temperature Compensates Circadian Period. Mol. Cell 2015, 60, 77–88. [Google Scholar] [CrossRef]
- Duffy, J.F.; Czeisler, C.A. Age-Related Change in the Relationship between Circadian Period, Circadian Phase, and Diurnal Preference in Humans. Neurosci. Lett. 2002, 318, 117–120. [Google Scholar] [CrossRef]
- Badura, L.; Swanson, T.; Adamowicz, W.; Adams, J.; Cianfrogna, J.; Fisher, K.; Holland, J.; Kleiman, R.; Nelson, F.; Reynolds, L.; et al. An Inhibitor of Casein Kinase I Epsilon Induces Phase Delays in Circadian Rhythms under Free-Running and Entrained Conditions. J. Pharmacol. Exp. Ther. 2007, 322, 730–738. [Google Scholar] [CrossRef]
- Zhang, L.; Abraham, D.; Lin, S.-T.; Oster, H.; Eichele, G.; Fu, Y.-H.; Ptáček, L.J. PKCγ Participates in Food Entrainment by Regulating BMAL1. Proc. Natl. Acad. Sci. USA 2012, 109, 20679–20684. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Li, L.; Yan, J.; Zhang, Y.; Ma, X.; Li, Y.; Yuan, Y.; Yang, X.; Yang, L.; Guo, J. The Resonance and Adaptation of Neurospora Crassa Circadian and Conidiation Rhythms to Short Light-Dark Cycles. J. Fungi 2021, 8, 27. [Google Scholar] [CrossRef] [PubMed]
- Bechtold, D.A.; Gibbs, J.E.; Loudon, A.S.I. Circadian Dysfunction in Disease. Trends Pharmacol. Sci. 2010, 31, 191–198. [Google Scholar] [CrossRef] [PubMed]
- Philpott, J.M.; Freeberg, A.M.; Park, J.; Lee, K.; Ricci, C.G.; Hunt, S.R.; Narasimamurthy, R.; Segal, D.H.; Robles, R.; Cai, Y.; et al. PERIOD Phosphorylation Leads to Feedback Inhibition of CK1 Activity to Control Circadian Period. Mol. Cell 2023, 83, 1677–1692.e8. [Google Scholar] [CrossRef] [PubMed]
- Toh, K.L.; Jones, C.R.; He, Y.; Eide, E.J.; Hinz, W.A.; Virshup, D.M.; Ptácek, L.J.; Fu, Y.H. An hPer2 Phosphorylation Site Mutation in Familial Advanced Sleep Phase Syndrome. Science 2001, 291, 1040–1043. [Google Scholar] [CrossRef] [PubMed]
- Shanware, N.P.; Hutchinson, J.A.; Kim, S.H.; Zhan, L.; Bowler, M.J.; Tibbetts, R.S. Casein Kinase 1-Dependent Phosphorylation of Familial Advanced Sleep Phase Syndrome-Associated Residues Controls PERIOD 2 Stability. J. Biol. Chem. 2011, 286, 12766–12774. [Google Scholar] [CrossRef] [PubMed]
- Vanselow, K.; Vanselow, J.T.; Westermark, P.O.; Reischl, S.; Maier, B.; Korte, T.; Herrmann, A.; Herzel, H.; Schlosser, A.; Kramer, A. Differential Effects of PER2 Phosphorylation: Molecular Basis for the Human Familial Advanced Sleep Phase Syndrome (FASPS). Genes Dev. 2006, 20, 2660–2672. [Google Scholar] [CrossRef]
- Moore-Ede, M.C. Physiology of the Circadian Timing System: Predictive versus Reactive Homeostasis. Am. J. Physiol. 1986, 250, R737–R752. [Google Scholar] [CrossRef]
- Hirano, A.; Braas, D.; Fu, Y.; Ptáček, L.J. FAD Regulates CRYPTOCHROME Protein Stability and Circadian Clock in Mice. Cell Rep. 2017, 19, 255–266. [Google Scholar] [CrossRef]
- Hirano, A.; Shi, G.; Jones, C.R.; Lipzen, A.; Pennacchio, L.A.; Xu, Y.; Hallows, W.C.; McMahon, T.; Yamazaki, M.; Ptáček, L.J.; et al. A Cryptochrome 2 Mutation Yields Advanced Sleep Phase in Humans. eLife 2016, 5, e16695. [Google Scholar] [CrossRef]
- Hirota, T.; Lee, J.W.; Lewis, W.G.; Zhang, E.E.; Breton, G.; Liu, X.; Garcia, M.; Peters, E.C.; Etchegaray, J.-P.; Traver, D.; et al. High-Throughput Chemical Screen Identifies a Novel Potent Modulator of Cellular Circadian Rhythms and Reveals CKIα as a Clock Regulatory Kinase. PLoS Biol. 2010, 8, e1000559. [Google Scholar] [CrossRef] [PubMed]
- Hirota, T.; Lee, J.W.; St. John, P.C.; Sawa, M.; Iwaisako, K.; Noguchi, T.; Pongsawakul, P.Y.; Sonntag, T.; Welsh, D.K.; Brenner, D.A.; et al. Identification of Small Molecule Activators of Cryptochrome. Science 2012, 337, 1094–1097. [Google Scholar] [CrossRef]
- Chen, Z.; Yoo, S.-H.; Park, Y.-S.; Kim, K.-H.; Wei, S.; Buhr, E.; Ye, Z.-Y.; Pan, H.-L.; Takahashi, J.S. Identification of Diverse Modulators of Central and Peripheral Circadian Clocks by High-Throughput Chemical Screening. Proc. Natl. Acad. Sci. USA 2012, 109, 101–106. [Google Scholar] [CrossRef] [PubMed]
- Menculini, G.; Verdolini, N.; Murru, A.; Pacchiarotti, I.; Volpe, U.; Cervino, A.; Steardo, L.; Moretti, P.; Vieta, E.; Tortorella, A. Depressive Mood and Circadian Rhythms Disturbances as Outcomes of Seasonal Affective Disorder Treatment: A Systematic Review. J. Affect. Disord. 2018, 241, 608–626. [Google Scholar] [CrossRef] [PubMed]
- Schnell, A.; Sandrelli, F.; Ranc, V.; Ripperger, J.A.; Brai, E.; Alberi, L.; Rainer, G.; Albrecht, U. Mice Lacking Circadian Clock Components Display Different Mood-Related Behaviors and Do Not Respond Uniformly to Chronic Lithium Treatment. Chronobiol. Int. 2015, 32, 1075–1089. [Google Scholar] [CrossRef] [PubMed]
- Melo, M.C.A.; Abreu, R.L.C.; Linhares Neto, V.B.; De Bruin, P.F.C.; De Bruin, V.M.S. Chronotype and Circadian Rhythm in Bipolar Disorder: A Systematic Review. Sleep Med. Rev. 2017, 34, 46–58. [Google Scholar] [CrossRef] [PubMed]
- Undurraga, J.; Sim, K.; Tondo, L.; Gorodischer, A.; Azua, E.; Tay, K.H.; Tan, D.; Baldessarini, R.J. Lithium Treatment for Unipolar Major Depressive Disorder: Systematic Review. J. Psychopharmacol. 2019, 33, 167–176. [Google Scholar] [CrossRef] [PubMed]
- Rohr, K.E.; McCarthy, M.J. The Impact of Lithium on Circadian Rhythms and Implications for Bipolar Disorder Pharmacotherapy. Neurosci. Lett. 2022, 786, 136772. [Google Scholar] [CrossRef]
- Snitow, M.E.; Bhansali, R.S.; Klein, P.S. Lithium and Therapeutic Targeting of GSK-3. Cells 2021, 10, 255. [Google Scholar] [CrossRef]
- Li, J.; Lu, W.-Q.; Beesley, S.; Loudon, A.S.I.; Meng, Q.-J. Lithium Impacts on the Amplitude and Period of the Molecular Circadian Clockwork. PLoS ONE 2012, 7, e33292. [Google Scholar] [CrossRef]
- Jolma, I.W.; Falkeid, G.; Bamerni, M.; Ruoff, P. Lithium Leads to an Increased FRQ Protein Stability and to a Partial Loss of Temperature Compensation in the Neurospora Circadian Clock. J. Biol. Rhythm. 2006, 21, 327–334. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Zhou, Z.; Guo, J. The Function, Regulation, and Mechanism of Protein Turnover in Circadian Systems in Neurospora and Other Species. Int. J. Mol. Sci. 2024, 25, 2574. https://doi.org/10.3390/ijms25052574
Zhang H, Zhou Z, Guo J. The Function, Regulation, and Mechanism of Protein Turnover in Circadian Systems in Neurospora and Other Species. International Journal of Molecular Sciences. 2024; 25(5):2574. https://doi.org/10.3390/ijms25052574
Chicago/Turabian StyleZhang, Haoran, Zengxuan Zhou, and Jinhu Guo. 2024. "The Function, Regulation, and Mechanism of Protein Turnover in Circadian Systems in Neurospora and Other Species" International Journal of Molecular Sciences 25, no. 5: 2574. https://doi.org/10.3390/ijms25052574
APA StyleZhang, H., Zhou, Z., & Guo, J. (2024). The Function, Regulation, and Mechanism of Protein Turnover in Circadian Systems in Neurospora and Other Species. International Journal of Molecular Sciences, 25(5), 2574. https://doi.org/10.3390/ijms25052574