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Abstract: Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic inflammation
affecting up to 2.0% of adults around the world. The molecular background of RA has not yet been
fully elucidated, but RA is classified as a disease in which the genetic background is one of the most
significant risk factors. One hallmark of RA is impaired DNA repair observed in patient-derived
peripheral blood mononuclear cells (PBMCs). The aim of this study was to correlate the phenotype
defined as the efficiency of DNA double-strand break (DSB) repair with the genotype limited to a
single-nucleotide polymorphism (SNP) of DSB repair genes. We also analyzed the expression level of
key DSB repair genes. The study population contained 45 RA patients and 45 healthy controls. We
used a comet assay to study DSB repair after in vitro exposure to bleomycin in PBMCs from patients
with rheumatoid arthritis. TaqMan SNP Genotyping Assays were used to determine the distribution
of SNPs and the Taq Man gene expression assay was used to assess the RNA expression of DSB
repair-related genes. PBMCs from patients with RA had significantly lower bleomycin-induced DNA
lesion repair efficiency and we identified more subjects with inefficient DNA repair in RA compared
with the control (84.5% vs. 24.4%; OR 41.4, 95% CI, 4.8–355.01). Furthermore, SNPs located within the
RAD50 gene (rs1801321 and rs1801320) increased the OR to 53.5 (95% CI, 4.7–613.21) while rs963917
and rs3784099 (RAD51B) to 73.4 (95% CI, 5.3–1011.05). These results were confirmed by decision tree
(DT) analysis (accuracy 0.84; precision 0.87, and specificity 0.86). We also found elevated expression
of RAD51B, BRCA1, and BRCA2 in PBMCs isolated from RA patients. The findings indicated that
impaired DSB repair in RA may be related to genetic variations in DSB repair genes as well as their
expression levels. However, the mechanism of this relation, and whether it is direct or indirect, needs
to be elucidated.

Keywords: rheumatoid arthritis; comet assay; DNA double-strand break; DNA repair; single-nucleotide
polymorphism; RAD50; RAD51B
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1. Introduction

Rheumatoid arthritis (RA) is a chronic, inflammatory, and autoimmune rheumatic
disease characterized by an improper autoimmune response. RA affects about 2% of the
population worldwide. The likelihood of developing RA increases with age, but the disease
can develop at any age [1]. Women are much more likely to suffer from RA than men, a
discrepancy that attempts to link to hormonal disorders, although there is no convincing
evidence for this. Other factors related to the development of RA include environmental
factors such as air pollution, lifestyle, including smoking, and genetic factors [2]. The
latter are believed to be the main contributors to the development of the disease mainly
associated with the human leukocyte antigen (HLA) locus; however, other genes are also
involved [3]. Genome-wide association studies (GWAS) have not only identified genetic
elements as risk factors for the development of RA but have also shown significant variation
between ethnic groups [4]. It is generally accepted that some of the genetic factors of RA
are common to the human population; nevertheless, other studies show variation [5–7].

The molecular basis of RA is complex. The immune system of individuals with RA
produces antibodies targeting multiple proteins that undergo a variety of post-translational
modifications. This heterogeneity of the antibodies suggests multiple metabolic abnormali-
ties within peripheral blood mononuclear cells (PBMCs). These abnormalities, as we and
other authors have previously demonstrated, involve, among other processes, the PBMC
response to DNA damage, including DNA repair [8–12]. PBMCs isolated from subjects with
RA are characterized by greater sensitivity to DNA damage agents than healthy subjects.
Furthermore, the kinetics of repairing oxidative DNA damage and DNA double-strand
breaks (DSBs) are impaired. The reason for these abnormalities in the repair of oxidative
DNA damage is the altered expression and occurrence of different allelic forms of genes
encoding repair proteins [13]. Changes in DSB repair are attempted to be associated with
reduced expression of the key protein ATM [9]. To date, analysis of the function of DSB
repair in RA has been rather superficial—carried out either on a small study sample or non-
Caucasian ethnic groups and without analysis of the genetic background. Taking these facts
into account, in the present study, we analyze the efficiency of DSB repair in a Caucasian
population in correlation with the genotype, limited to the occurrence of single-nucleotide
polymorphisms (SNPs) in the DSB repair genes. We confirmed the phenotype-genotype
correlation using machine learning methods and also analyzed changes in the expression
of key DSB repair genes at the mRNA level in PBMCs isolated from subjects with RA.

2. Results
2.1. Characteristics of the Study Population

There were no significant differences in the distributions of age, sex, and smoking
status between cases and controls. The mean duration of the disease was 14.9 ± 14.5 years
(from 1 to 75 years). Twenty-three patients were currently (for at least one month before
blood collection) receiving disease modifying anti-rheumatic drugs (DMARDs), including
methotrexate and/or sulfasalazine, and twenty-two patients did not receive DMARDS
within the last month. Glucocorticosteroids (GCS) were used for the treatment of twenty-
two patients. Nine patients did not have rheumatoid factor levels (positive in 36 cases). We
detected an anticyclic citrullinated peptide antibody (aCCP) in 32 patients. Additionally,
we determined the level of C-reactive protein (CRP) (16.2 ± 20.5 g/dL). Disease activity
has also been also assessed based on the disease activity score 28-joint count C-reactive
protein (DAS28)-CRP score (DAS <1.7 was defined as remission—3 patients, DAS > 1.7 and
<2.6 was defined as low disease activity—15 patients, and DAS28 above 5.1 as high disease
activity—27 patients). All controls had CRPs within normal limits and no chronic disease
with inflammatory background (Table 1).
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Table 1. Characteristics of the study population.

Parameters RA Patients n = 45 Control Group n = 45

sex F-32 M-13 F-37 M-8
age 58.27 ± 13.45 years 54.73 ± 15.50

smoking 10 2
disease duration 14.55 ± 13.12 years

remission yes 4; no 41
CRP 18.26 ± 22.02
ESR 28.33 ± 23.20
RF 220.38 ± 333.60

ACPA 1169.36 ± 4291.60

treatment

Methotrexate 17/45
Sulfasalazine 4/45

No DMARDs 22/45
Glucocorticosteroids 22/45

CRP: C-reactive protein; ESR: erythrocyte sedimentation rate; RF: rheumatoid factor; ACPA: anti-citrullinated
peptide antibodies; GCS: glucocorticosteroids; F: female; M: male.

2.2. Differences in DNA RepEff between RA Patients and Controls

PBMCs isolated from RA patients had a significantly lower efficiency of bleomycin-
induced DNA lesion repair as presented on Figure 1 (<0.0001). The median of RepEff in the
control group was 78 vs. 46 calculated in the RA group. The Hodges–Lehmann estimation
of the location shift was 26.33.
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Figure 1. Distribution of individual DNA repair lesions induced by bleomycin efficiency in peripheral
blood mononuclear cells (PBMCs) isolated from 45 healthy controls (green) and 45 rheumatoid
arthritis (RA, blue) patients. Data are presented as medians. Differences between groups were
analyzed using the U Mann–Whitney rank sum test analysis, **** means p < 0.0001.

Moreover, we identified more subjects with marginally efficient and inefficient DNA
repair in RA as compared with the controls (43 vs. 22; Table 2).

Table 2. Efficiency of the repair of DNA lesions (RepEff) that induced by bleomycin in peripheral
blood mononuclear cells (PBMCs) isolated from 45 healthy controls and 45 rheumatoid arthritis (RA)
patients. The efficiency was calculated as follows: The DNA damage measured immediately after
exposure to bleomycin was set as 100% of DNA damage. Next, the percentage of the repaired DNA
after 120 min was measured.

RepEff Percentage of Total Repair Controls (n = 45) RA (n = 45)

Group 1
Highly efficient DNA repair >83.4 12 (26.8%) 1 (2.2%)
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Table 2. Cont.

RepEff Percentage of Total Repair Controls (n = 45) RA (n = 45)

Group 2
Efficient DNA repair 78.7–83.3 11 (24.4%) 1 (2.2%)

Group 3
Marginally efficient DNA repair 65.1–78.6 11 (24.4%) 5 (11.1%)

Group 4
No DNA repair <65 11 (24.4%) 38 (84.5%)

2.3. The Allele and Genotypes of Key BER Genes in RA Patients and Controls

The RA and control groups were almost similar in the genotype distribution of com-
mon polymorphisms located in key DNA double-strand break genes (Table 3). Using
univariate logistic regression, we found an association of the two SNPs of the RAD51
(rs1801320, rs1801321) and RAD51B (rs963917, rs3784099) genes with RA. Regarding the
aims of this manuscript, we paid special attention to these SNPs in regard to the correlation
of the phenotype (RepEff) with the genotype (SNPs).

Table 3. The allele and genotype frequency of the common polymorphisms located in key DNA
double-strand break repair-related genes in control and rheumatoid arthritis (RA) groups.

Polymorphism/Gene Genotype Control RA OR (95% CI)

rs3218536/XRCC2
C/C 3 (6.7%) 1 (2.2%) 1.00
C/T 41 (91.1%) 43 (95.6%) 3.15 (0.31–31.49)
T/T 1 (2.2%) 1 (2.2%) 3.00 (0.08–107.45)

rs1801320/RAD51
G/G 32 (71.1%) 19 (40.0%) 1.00
G/C 2 (4.4%) 8 (17.8%) 6.74 (1.29–35.08)
C/C 11 (24.4%) 18 (42.2%) 2.75 (1.07–7.06)

rs7180135/RAD51
G/G 5 (11.1%) 4 (8.9%) 1.00
A/G 22 (48.9%) 31 (68.9%) 1.76 (0.42–7.31)
A/A 18 (40%) 10 (22.2%) 0.69 (0.15–3.19)

rs45549040/RAD51
A/A 41 (91.1%) 43 (95.6%) 1.00
A/C 3 (6.7%) 0 (0%) 0.00 (0.00-NA)
C/C 1 (2.2%) 2 (4.4%) 1.91 (0.17–21.84)

rs1801321/RAD51
G/G 17 (37.8%) 7 (15.6%) 1.00
G/T 9 (20%) 11 (24.4%) 2.97 (0.85–10.31)
T/T 19 (42.2%) 27 (60%) 3.45 (1.20–9.94)

rs2619681/RAD51
C/C 30 (66.7%) 30 (66.7%) 1.00
C/T 13 (28.9%) 13 (28.9%) 1.00 (0.40–2.51)
T/T 2 (4.4%) 2 (4.4%) 1.00 (0.13–7.57)

rs963917/RAD51B
G/G 12 (26.7%) 26 (57.8%) 1.00
A/G 23 (51.1%) 17 (37.8%) 0.34 (0.13–0.86)
A/A 10 (22.2%) 2 (4.4%) 0.09 (0.02–0.49)

rs963918/RAD51B
C/C 7 (15.6%) 5 (11.1%) 1.00
C/T 17 (37.8%) 26 (57.8%) 2.14 (0.58–7.86)
T/T 21 (46.7%) 14 (31.1%) 0.93 (0.25–3.54)

rs3784099/RAD51B
G/G 30 (66.7%) 20 (44.4%) 1.00
A/G 11 (24.4%) 23 (51.1%) 3.14 (1.26–7.83)
A/A 4 (8.9%) 2 (4.4%) 0.75 (0.13–4.49)

rs10483813/RAD51B
T/T 34 (75.6%) 33 (73.3%) 1.00
A/T 8 (17.8%) 11 (24.4%) 1.42 (0.51–3.96)
A/A 3 (6.7%) 1 (2.2%) 0.34 (0.03–3.47)

rs1042522/TP53
C/C 21 (46.7%) 26 (57.8%) 1.00
C/G 11 (24.4%) 14 (31.1%) 1.03 (0.39–2.73)
G/G 13 (28.9%) 5 (11.1%) 0.31 (0.10–1.01)
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Table 3. Cont.

Polymorphism/Gene Genotype Control RA OR (95% CI)

rs1051669/RAD52
C/C 31 (68.9%) 25 (55.6%) 1.00
C/T 14 (31.1%) 19 (42.2%) 1.68 (0.71–4.01)
T/T 0 (0%) 1 (2.2%) NA (0.00–NA)

rs2155209/MRE11A
T/T 15 (33.3%) 15 (33.3%) 1.00
C/T 19 (42.2%) 26 (57.8%) 1.37 (0.54–3.46)
C/C 11 (24.4%) 4 (8.9%) 0.36 (0.09–1.40)

rs132774/XRCC6
G/G 20 (44.4%) 16 (35.6%) 1.00
C/G 13 (28.9%) 18 (40%) 1.73 (0.66–4.57)
C/C 12 (26.7%) 11 (24.4%) 1.15 (0.40–3.27)

rs207906/XRCC5
G/G 33 (73.3%) 29 (64.4%) 1.00
A/G 8 (17.8%) 12 (26.7%) 1.71 (0.61–4.75)
A/A 4 (8.9%) 4 (8.9%) 1.14 (0.26–4.96)

rs7003908/PRKDC
A/A 14 (31.1%) 10 (22.2%) 1.00
A/C 27 (60%) 25 (55.6%) 1.30 (0.49–3.44)
C/C 4 (8.9%) 10 (22.2%) 3.50 (0.85–14.41)

rs861539/XRCC3
G/G 33 (73.3%) 39 (86.7%) 1.00
A/G 4 (8.9%) 1 (2.2%) 0.21 (0.02–1.99)
A/A 8 (17.8%) 5 (11.1%) 0.53 (0.16–1.77)

Bold indicates statistically significant results; NA—not determined.

2.4. Associations between RepEff (Phenotype) and DSB SNPs (Genotype) and RA

To estimate RA risk, the relative RepEff was grouped into the quartile values of the
controls (Table 2). The crude ORs for RA risk associated with the relative RepEff in the
second group, third group and fourth group were 1.1 (95% CI, 0.06–19.6), 5.45 (95% CI,
0.55–54.28) and 41.5 (95% CI, 4.84–355), compared with the first group (highly efficient
DNA repair). After adjusting for the SNPs rs1801321, rs1801321, rs963917, and rs10483813,
in the multivariate logistic regression analysis, the ORs of the RepEff increased in the fourth
group corresponding to the no repair phenotype (Table 4). We have also tested possible
correlations between RepEff and the clinical parameters of RA like DAS, RF, aCCP, and
CRP; however, no correlations were found.

Table 4. Multivariate logistic regression analysis of the efficiency of the repair of DNA lesions induced
by bleomycin and common polymorphisms located in DNA double-strand break repair-related genes
in the control and rheumatoid arthritis (RA) groups.

Factor Adjusted for OR (95% CI)

RepEff N/A 41.4 (4.8–355.01)
rs1801320 42.52 (4.4–408.2)
rs1801321 44.93 (5.05–399.83)
rs963917 69.7 (5.9–816.8)

rs10483813 57.4 (4.7–698.5)
rs1801321 and rs1801320 (RAD51) 53.5 (4.7–613.21)
rs963917 and rs3784099 (RAD51B) 73.4 (5.3–1011.05)

2.5. Differences in DSB Gene mRNA and miR-155 Expression Levels between RA Patients
and Controls

We also observed the deregulation of the expression level of DSB genes in RA as
opposed to the controls. A significant statistical difference in the level of gene expression
was calculated for the RAD51B, BRCA1, and BRCA2 genes. The RA group shows higher
gene expression levels in RAD51B, BRCA1, and BRCA2 than the control group (median of
0.00213 vs. 0.0069; 0.004 vs. 0.008; 0.00057 vs. 0.001; p < 0.05). No difference between the
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RA and control groups was found in the expression of RAD51, ATM, PRKDC, and H2AX;
however, we noticed a lowered trend in the level of H2AX mRNA (0.046 vs. 0037, Figure 2).
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Figure 2. Comparison of the expression levels in peripheral blood mononuclear cells (PBMCs) of
the key DNA double strands break repair genes (A) RAD51B, (B) BRCA1, (C) BRCA2, (D) RAD51,
(E) ATM, (F) PRKDC, and (G) γ -H2AX) between the controls (green) n = 45 and patients with
rheumatoid arthritis (blue) n = 45. Data are presented as medians. Differences between the groups
were analyzed using the Mann–Whitney rank sum test analysis, * means p < 0.05.
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2.6. Decision Tree (DT) Analysis

To identify the most important inputs for the DT classifier, which ensures the highest
accuracy in recognizing RA patients, we applied a sequential feature selection procedure.
It operates in two variants: forward and backward. Sequential forward feature selection
(SFS) gradually adds one feature at a time to the selected subset, while sequential backward
feature selection (SBS) gradually eliminates the features that contribute the least to the
model’s performance from the initial set. Both variants explore different combinations of
features and aim to find a subset of features that enhances the model’s predictive ability
while avoiding the inclusion of irrelevant or redundant features that may introduce noise
or overfitting. Because SFS and SBS employ a greedy algorithm working in opposite
directions, they usually lead to different results.

Figure 3 illustrates the process of searching the feature space using SFS and SBS. Note
that SFS indicated x_1 (RepEff) as the most relevant feature, achieving an accuracy of 0.8000
when used as the sole feature in the DT model. In this case, DT uses only one node and
can be expressed using the following simple decision rule: if x_1 = 3 then ŷ = 1 else ŷ = 0.
By adding x_10 to the model, the accuracy increases to 0.8222. The resulting decision rule
becomes: if x_1 = 3 then ŷ = 1 else (if x_10 = 1 then ŷ = 1 else ŷ = 0). Further, adding x_11
leads to an accuracy of 0.8444. The tree for this case is depicted in the left panel of Figure 3.
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Figure 3. Accuracy of the DT classifier in the successive steps of SFS ((a) left panel) and SBS ((b) right
panel).

The results obtained from SBS show rather low accuracy when all 30 features are
included in the model (Acc = 0.6889). However, by progressively eliminating certain
features (x_2, x_3, . . ., x_29), as illustrated in Figure 3, the accuracy gradually improves to
0.8556. Removing subsequent features, x_5, x_7, . . ., x_28, does not negatively impact the
accuracy. Finally, the features shown in Table 5 were selected. The tree constructed using
these features is shown in the right panel of Figure 4.

Table 5. SNP features selected using SFS and SBS.

SNP Features Selected by SFS SNP Features Selected by SBS

x1 RepEff x1 RepEff
x10 RAD51_rs1801320-RNG x4 OGG1_rs1052133-RNG
x11 RAD51B_rs963917-RNG x9 RAD51_rs1801321-RNG

x10 RAD51_rs1801320-RNG
x11 RAD51B_rs963917-RNG
x25 PRKDC_rs7003908-RNG
x26 TDG_rs4135054-RNG
x30 XRCC3_rs861539-RNG
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For comparison, Figure 5 shows the feature importance estimated using three standard
methods. Chi2 examines whether each feature is independent of a response variable by
using individual chi-square tests. The output score, –ln(p), is based on the p-value of the
test statistic and expresses a strength of the relationship between the corresponding feature
and the response variable. The minimum redundancy maximum relevance algorithm
(MRMR) identifies an optimal set of features that are mutually dissimilar yet effectively
represent the response variable. ReliefF feature scoring relies on detecting differences in
feature values among nearest neighbor instance pairs. The algorithm penalizes features that
yield different values for neighbors of the same class and rewards features with different
values for neighbors of different classes. Unlike Chi2, MRMR and ReliefF are sensitive to
feature interactions.
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As shown in Figure 5, all three methods highlight x1 as the most important feature,
aligning with the selections made by SFS and SBS. Additionally, x11, chosen using both
SFS and SBS, receives high importance scores across all algorithms. However, x22, which
obtains a high importance score in Chi2, MRMR, and ReliefF, was not selected using the
sequential methods. In general, the results obtained from Chi2, MRMR, and ReliefF lack
consistency and may not be definitive. It is important to note that SFS and SBS evaluate
features within the context of a specific model, whereas Chi2, MRMR, and ReliefF do not
consider the predictive model in their assessments.

Table 6 provides a comparison of DT performance using different input configurations:
only x1, all available features, features selected by SFS, and features selected by SBS.
The performance metrics were determined using leave-one-out cross-validation. The DT
hyperparameters were determined through preliminary experiments and set as follows:
split criterion—Gini’s diversity index and maximum number of splits—20. The results
in Table 6 highlight the significant discriminative power of x1 as a standalone feature.
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When augmented with the features selected by sequential selection algorithms, the model’s
discriminative ability is further enhanced. However, it is important to note that including
all available features diminishes the model’s accuracy. This clearly suggests that many of
these features lack relevant information and should be eliminated from the model.

Table 6. Performance of DT with different input configurations.

DT Inputs TP FP FN TN Accuracy Precision Sensitivity Specificity F1 Score

x1 38 7 11 34 0.8000 0.8444 0.7755 0.8293 0.8085
x1, . . . , x30 27 18 10 35 0.6889 0.6000 0.7297 0.6604 0.6585

Selected by SFS 39 6 8 37 0.8444 0.8667 0.8298 0.8605 0.8478
Selected by SBS 37 8 5 40 0.8556 0.8222 0.8810 0.8333 0.8506

3. Materials and Methods
3.1. Study Groups

The study group included 45 patients diagnosed with RA hospitalized at the Department
of Rheumatology, Medical University of Lodz, and in the outpatient clinic. A total of
45 healthy subjects without symptoms of chronic inflammatory conditions and cancer history
in their closest relatives were selected as the control group. All RA patients met the European
League Against Rheumatism/American College of Rheumatology (EULAR/ACR) 2010
diagnostic criteria for RA. The study was conducted according to the guidelines of the
Declaration of Helsinki and approved by the Institutional Bioethics Committee of the Medical
University of Lodz (Lodz, Poland) (no. RNN/07/18/KE, approved date: 16 January 2018)
and informed consent was obtained from all subjects involved in the study.

3.2. PBMC Isolation

PBMCs were isolated from 9 mL of the peripheral blood of the study group in a density
gradient using Lymphosep (Biowest, Nuaillé, France). Blood diluted 1:1 in PBS was gently
applied to the Lymphosep and centrifuged for 15 min (400× g) at room temperature. The
collected PBMCs (1 × 105) were washed 2 times in PBS.

3.3. Comet Assay

Assessment of endogenous DNA lesions as well as DNA lesions resulting from the
exposure of PBMCs to bleomycin and DNA repair effectiveness analyses were performed
using alkaline single-cell gel electrophoresis (comet assay). PBMCs treated with 25 µM
bleomycin 30 min at 37 ◦C were suspended in low melting point (LMP) agarose (Sigma-
Aldrich Corp., St. Louis, MO, USA) and applied to slides coated with normal melting point
NMP agarose (Sigma-Aldrich Corp., St. Louis, MO, USA). To study DNA repair, the cells
were allowed to recover for 120 min in fresh medium before suspension in LMP agarose.
The prepared slides were incubated in the lysis buffer at pH 10 (2.5 m NaCl, 10 mm Tris,
100 mm EDTA) with 1% TritonX-100 (Sigma-Aldrich Corp., St. Louis, MO, USA) for 1 h at
4 ◦C. After the incubation, slides were left in development buffer (300 mm NaOH, 1 mm
EDTA) for 20 min at 4 ◦C. The preparations were then electrophoresed in an electrophoresis
buffer (30-mMNaOH, 1 mm EDTA) under the following conditions: 17 V, 32 mA, 20 min,
RT. Slides were rinsed 3× with distilled water and fluorescently stained with DAPI. The
stained “comets” were analyzed using a fluorescence microscope Nikon CI-L plus (Nikon,
Tokyo, Japan) with Lucia software v.6.70 (Laboratory Imaging, Prague, Czech).

The individual DNA repair efficiency was calculated as shown previously [13]. Briefly,
we subtracted the percentage of DNA damage measured after 120 min of repair from the
initial damage score set as 100%. Then, we set the repair ranks based on the repair efficiency
quartiles of the control group. Quartile 4 means highly efficient DNA repair, quartile
3 efficient repair, quartile 2 marginally efficient DNA repair and quartile 1 no repair.
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3.4. DNA Isolation

DNA was isolated from the peripheral blood of RA patients and controls using the
GeneMatrix Blood DNA purification Kit (EURx, Gdansk, Poland). The peripheral blood of
patients was lysed in the presence of a buffer containing proteinase K and chaotropic salts.
Ethanol was then added to selectively bind the DNA to the membrane in the spin-column.
After a short centrifugation, the DNA was bound to the membrane, while unbound impurities
remained in the column effluent. In the next step, the samples were washed two times using
wash buffer to remove the remaining contaminants from the membrane containing the DNA.
Purified DNA was eluted with a low-salt buffer containing Tris-EDTA. The concentration and
purity of the obtained DNA were evaluated spectrophotometrically by measuring absorbance
at 260/280 nm on Synergy HT spectrophotometer (BioTek, Hong Kong, China).

3.5. Determination of SNPs

The polymorphic variant frequency of DSB repair-related genes (Table 7): XRCC2
(rs3218536), RAD51 (rs1801320, rs7180135, rs45549040, rs1801321, and rs2619681), RAD51B
(rs963917, rs963918, rs3784099, and rs10483813), TP53 (rs1042522), RAD52 (rs1051669),
MRE11A (rs2155209), XRCC6 (rs132774), XRCC5 (rs207906), PRKDC (rs7003908), and
XRCC3 (rs861539) was assessed using TaqMan® SNP Genotyping Assays and the TaqMan
Universal Master Mix II, No UNG (Applied Biosystems, Foster City, CA, USA). The 20 µL
total volume of the PCR reaction contained: 4 µL 5× HOT FIREPol® Probe qPCR Mix (Solis,
Tartu, Estonia), 1 µL 20× TaqMan SNP primers, 1 µL DNA (100 ng), and 14 µL RNA-free
water. PCR reactions were performed under the following conditions: polymerase activa-
tion (10 min, 95 ◦C), 30 cycles of denaturation (15 s, 95 ◦C, 30) and hybridization/extension
(60 s, 60 ◦C). Genotype analysis was performed on the Bio-Rad CFX96 system (BioRad,
Hercules, CA, USA).

Table 7. Single-nucleotide polymorphisms analyzed in this study.

SNP (Gene Name) Pathway Chromosome Positions Allele Minor Allele Frequency

Case Control

rs3218536 (XRCC2) DSB 7 152648922 C/T 0.5 0.48
rs1801320 (RAD51) HR 15 40695330 G/C 0.49 0.33
rs7180135 (RAD51) HR 15 40731896 A/G 0.43 0.36
rs45549040 (RAD51) HR 15 40732091 A/C 0.04 0.06
rs1801321 (RAD51) HR 15 40695367 G/T 0.28 0.48
rs2619681 (RAD51) HR 15 40696823 C/T 0.19 0.19
rs963917 (RAD51B) HR 14 68595606 A/G 0.23 0.48
rs963918 (RAD51B) HR 14 68595397 C/T 0.4 0.34
rs3784099 (RAD51B) HR 14 68283210 A/G 0.3 0.21
rs10483813 (RAD51B) HR 14 68564567 A/T 0.14 0.16
rs1042522 (TP53) DSB 17 7676154 C/G 0.27 0.41
rs1051669 (RAD52) DSB 12 913286 C/T 0.23 0.16
rs2155209 (MRE11A) DSB 11 94417624 C/T 0.38 0.46
rs132774 (XRCC6) NHEJ 22 41635949 C/G 0.44 0.41
rs207906 (XRCC5) NHEJ 2 216148178 A/G 0.22 0.18
rs7003908 (PRKDC) NHEJ 8 47858141 A/C 0.5 0.39
rs861539 (XRCC3) HR 14 103699416 A/G 0.12 0.22

DSB Repair: double-strand break repair; HR: homologous recombination: NHEJ: non-homologous end joining.

3.6. RNA Expression of DSB Repair-Related Genes

We performed Taq Man gene expression assay (Thermo Fisher Scientific Inc., Waltham,
MA, USA) to assess the expression profile of seven genes associated with DSB, respectively:
BRCA2 (Hs01037416_m1), BRCA1 (Hs02387156_m1), ATM (Hs01112362_m1), RAD51B
(Hs01568761_m1), RAD51 (Hs00947967_m1), PRKDC (Hs01016091_g1), and H2AFX (Hs0157
3336_s1). We used RPLP1 (Hs02926887_g1) as a reference gene. The 10 µL total reaction
volume was 10 µL including: 1 µL cDNA, 1 µL Primers, 5 µL 2× TaqMan®Universal
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Master Mix II, No UNG and 3 µL Nuclease free water. The conditions for the reaction were
prepared according to the manufacturer’s protocol for the TaqMan®Universal Master Mix
II, no UNG: polymerase activation (10 min, 95 ◦C), 30 cycles of denaturation (15 s, 95 ◦C),
and annealing/extension (60 s, 60 ◦C). The qPCR reaction was performed in the Bio-Rad
CFX96 system (BioRad, Hercules, CA, USA). Gene expression was calculated in relation to
that of the reference genes (∆Ct sample = Ct target gene − Ct reference gene). Following,
the relative mRNA expression was evaluated as a fold = 2−∆Ct sample. Expression status
was determined from the data regarding the expression value of the analyzed gene in the
control patient population.

3.7. Statistical Analysis

The normal distribution of continuous variables was analyzed using the Shapiro–
Wilk test. Descriptive data are expressed as median ± range according to lack of normal
distribution. For the comparison of two groups (RA patients and healthy controls) the
U Mann–Whitney rank sum test was used. The Hodges–Lehmann method was used to
estimate the location shift. Multinomial logistic regression analyses were performed to
calculate odds ratios (ORs) and 95% confidence intervals (CIs) for the effects of DNA
repair status and other variables on RA. All variables included in the final multivariate
models were determined to be independent by assessing their collinearity. Genotypes of
DNA repair genes, were included as independent variables in univariate and multivariate
multinomial logistic regression analyses. Only matching variables and factors that altered
the ORs by 10% were included in the final multivariate models. The quality of the models
was determined using the Hosmer–Lemeshow test. All statistical analyses were performed
using TIBCO Statistica 13.3 (Palo Alto, CA, USA). In all tests, p value < 0.05 was used.

3.8. Decision Tree

A decision tree (DT) model is used in this study to recognize RA patients based on
repair efficacy (RepEff) and genetic data, i.e., 29 SNP genes listed in Table 7. We define a
sample representing a single patient or control as a tuple of 30 features, x = (x1, . . . , x30),
where x1 is RepEff and x2, . . . , x30 correspond to the successive SNP genes. All the features
are treated as categorical. We consider N = 90 samples of two equinumerous classes: RA
and healthy. The output of the tree can is y = 0 (healthy) or y = 1 (RA).

The DT classifier is a powerful yet conceptually simple non-parametric algorithm that
effectively partitions the feature space into smaller regions by recursively selecting the
feature that offers the maximum information gain at each node. One of the key advantages
of DT is its interpretability, allowing us to understand the underlying decision-making
process. Moreover, this algorithm is versatile, capable of handling both numerical and
categorical data, making it suitable for a wide range of applications.

We utilize the CART (classification and regression tree) implementation of the DT
algorithm, as proposed by Breiman. The process of constructing a tree involves recursively
partitioning a dataset into subsets based on the values of features. At each node, the
algorithm selects the best feature to split the data, employing an impurity measure like
the Gini index or entropy. This selection process is repeated recursively until a stopping
criterion is met, such as reaching a predefined maximum number of splits. The resulting
tree can then be utilized to predict the class of new samples by traversing from the root
node to a leaf node corresponding to the predicted class. DT can be easily interpreted as a
collection of simple rules that humans can readily understand.

The final decision of the DT classifier can be expressed as follows:

ŷ = ∑
l∈L

label(l)I(x ∈ l)

where L represents the set of leaves, function label(l) assigns a label to a leaf l based on
the subset of samples that reached that leaf, and function I(x ∈ l) returns 1 when sample x
reaches the specific leaf l, and 0 otherwise.
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Typically, the label assigned by function label(l) is the majority class within the subset
that reached leaf l. The tests performed on the features in each node in our case has the
following form: xj = vj, where j is the feature index selected individually for each node,
and vj is a value selected from the domain of the j-th feature (e.g., A/A).

4. Discussion

This study appears to be the first to find a correlation between the less efficient repair
of DSBs in PBMCs from patients with RA and SNPs within the RAD51 and RAD51B genes.
The results on less efficient DSB repair are consistent with others [9–11] and appear in RA,
and higher endogenous DSB levels were also found in PBMCs isolated from patients with
systemic sclerosis and systemic lupus erythematosus (SLE) [14,15]. Human cells repair
DSBs by nonhomologous end joining (NHEJ) or homologous recombination (HR) and their
variants [16]. The selection of the appropriate system depends on many factors and is
initiated by DNA end resection that creates single-stranded DNA overhangs. The initiation
of the HR system is dependent on RAD51 and its paralogs blocking the availability of
DNA overhangs for NHEJ proteins [17]. RAD51B also has a different role in the repair
of DSBs. It transduces the signal about DSBs to effector kinases like ATM, ATR, or DNA-
PK and promotes the repair process [18]. RAD51B polymorphisms were associated with
rheumatoid arthritis and erosion in patients with rheumatoid arthritis patients [19,20]. It
seems that the allelic diversity of RAD51 and RAD51B may influence their role in the repair
of DSBs and contribute to less efficient repair. We have also shown that RAD51B expression
is elevated in PBMCs isolated from subjects with RA. RAD51B interacts with other RAD51
paralogs to form a complex whose role in DSB repair is to stabilize protein foci in DNA
overhangs. Given our limited knowledge of how RAD51 paralogs function, it is difficult to
definitively determine the potential mechanism underlying the decreased efficiency of DSB
repair when RAD51B is overexpressed. However, increased levels of one paralog can alter
the delicate balance of the RAD51 paralog complex and contribute to the destabilization of
repair protein foci. We also observed the overexpression of BRCA1 and BRCA2. Both are
known tumor suppressor genes, and the overexpression of some transcription variants is
connected with delayed DSB repair [21]. In contrast to earlier findings by Shao et al. [9],
these results suggest that ATM expression is not down-regulated in RA. There may be
two reasons for this discrepancy. First, Shao et al. [9] analyzed the expression only in T
lymphocytes. Second, they had a completely different ethnic composition of the study
group, where more than 70% of the subjects were African American.

There are two potential hypotheses that explain the disruption of repair processes
in RA. The first is related to chronic inflammation and associated oxidative stress [22].
Oxidative stress causes an increase in reactive oxygen species in the cell and increases
the number of mutations in repair genes, for example, TP53 [23], resulting in decreased
repair efficiency. The second hypothesis is related to a faster immune ageing process in
RA [24]. This results in the classic ageing T cell phenotype, which exhibits all the features
of ageing metabolism, including reduced DNA repair efficiency. The two hypotheses are
not mutually exclusive. They are coupled by a process called inflammaging, when ageing
is accompanied by low-grade chronic inflammation [25]. Our results perfectly fit both
hypotheses, since genetic background understood by the presence of allelic forms of DNA
repair genes can stimulate both the ageing process (through inefficient DNA repair) and
increase the mutation rate through deficiency in repairing oxidative DNA lesions as a
consequence of chronic stress. Another possible explanation for the potential impact of
inefficient double-strand break repair caused by the abnormal expression of DNA repair
genes and their genetic variation on the development of RA is the generation of diversity in
adaptive immunity known as V(D)J recombination [26]. The NHEJ system and the RAD51
protein are involved in this process [27,28]. In summary, it involves the introduction of
DNA breaks within the receptor and immunoglubin genes and their unfaithful repair.
Errors in V(D)J recombination can lead to induction of genotoxic stress and accelerate the
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ageing of T cells. T cell ageing is now recognised as a risk determinant in autoimmune
syndromes, including RA and is associated with the progression of RA [29].

5. Conclusions

The results of this study suggest that genetic variations in RAD51 and RAD51B genes
contribute to the delayed/marginally efficient DSB repair phenotype in RA. We based our
conclusion on logistic regression and confirmed it using machine learning and decision
trees. Our study has some limitations. Although the SBS method identified four candidates
in which SNPs can modulate DNA repair processes, in our opinion, more repetitive studies
should be conducted on a larger study sample to confirm these relationships. Furthermore,
functional work on the RAD51 SNP should be performed. It is important to functionally
characterize the genetic variants of RAD51 and to find the biological mechanisms underly-
ing the associations to assess the RAD51 SNP as a prognostic and/or predictive biomarker
in RA. Potential clinical applications include helping to identify an individual’s risk of RA
and adjusting treatment for RA based on each patient’s unique molecular profile. In our
opinion, profiling patients with RA for DNA repair deficiency is particularly important
for the earlier detection of individuals who may be at risk of developing lymphomas as a
consequence of RA and deficient DNA repair. For this reason, future studies should cover
a broader time frame taking into account the DNA repair profile of RA patients and follow
them in terms of any cancer occurrence. Further studies should also be conducted on other
than Caucasian ethnic groups to answer the question of whether the phenotype–genotype
relationships we have found are a common feature of the human race or whether they are
limited to the Caucasian ethnic group.
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