Ciprofloxacin-, Cefazolin-, and Methicilin-Soaked Graphene Paper as an Antibacterial Medium Suppressing Cell Growth
Abstract
:1. Introduction
2. Results
2.1. Surface Morphology—SEM
2.2. Wettability Tests
2.3. Surface Chemistry—FTIR
2.4. Inhibition Tests
- -
- -
- -
- -
- -
- -
- -
3. Discussion
4. Materials and Methods
4.1. Materials
4.1.1. Graphene Paper
4.1.2. Antibiotics
- -
- Ciprofloxacin (Merck Life Science, Cat. No: 17850, Sigma-Aldrich, Poznań, Poland);
- -
- Cefazolin (Merck Life Science, Cat. No: PHR129, Sigma-Aldrich, Poznań, Poland);
- -
- Methicillin, sodium salt (Merck Life Science, Cat. No: 51454, Sigma-Aldrich, Poznań, Poland).
- -
- pGO—graphene paper CipW + pGO—graphene paper immersed in ciprofloxacin dissolved according to the safety data sheet in water (35 g ciprofloxacin in 1 mL of water, 105 M/L);
- -
- CipE + pGO—graphene paper immersed in ciprofloxacin dissolved according to the safety data sheet in ethanol (1.6 g ciprofloxacin in 1 mL of ethanol, 4.82 M/L);
- -
- CefW + pGO—graphene paper immersed in cefazolin dissolved according to the safety data sheet in water (20 g cefazolin in 1 mL of water, 44 M/L);
- -
- CefDMF + pGO—graphene paper immersed in cefazolin dissolved according to the safety data sheet in DMF (10 g cefazolin in 1 mL of DMF, 22 M/L);
- -
- MetW + pGO—graphene paper immersed in methicillin dissolved according to the safety data sheet in water (10 g methicillin in 2 mL of water, 13 M/L);
- -
- MetDMF + pGO—graphene paper immersed in methicillin dissolved according to the safety data sheet in DMF (20 g methicillin in 20 mL of DMF, 2.62 M/L).
4.2. Methods
4.2.1. Surface Morphology
- Scanning Electron Microscope—SEM
- An FTIR (Fourier-Transform Infrared Spectroscopy) study of the surface chemical composition was conducted.
4.2.2. Wettability Tests
4.2.3. Bacteriological Experiments
4.2.4. Imaging of Bacterial Cells
5. Conclusions
- -
- Graphene paper had a flake structure consisting of numerous layers of GO adjacent to each other;
- -
- Wettability studies showed that antibiotics dissolved in distilled water had a smaller contact angle than other solvents, such as ethanol and DMF. The smallest wetting angle (0) was characterized by solutions of antibiotics dissolved in ethanol and DMF, i.e., CipE, CefDMF, and MetDMF. In contrast, the largest wetting angle occurred in the case of the CipW solution, similar to the wetting angle of distilled water;
- -
- In contrast to pGO samples and pGO containing ciprofloxacin (CipW, CipE) and cefazolin (CefW, CefDMF), no methicillin peaks derived from the spectrum (FTIR) were observed on the surface of the graphene paper (MetW, MetDMF);
- -
- Studies of bacterial growth inhibition and the condition of fixed bacteria on the surface of pGO showed that the greatest bactericidal impact was characterized by CipW and CipE samples;
- -
- The graphene paper used for the research was characterized by a local bacteriostatic/bactericidal effect and showed potential possibilities for use as a drug carrier to inhibit bacterial growth.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Choi, W.; Lee, J. Graphene Synthesis and Applications; CRC Press: Boca Raton, FL, USA, 2012; p. 394. ISBN 9780367576868. [Google Scholar]
- Ray, S. Applications of Graphene and Graphene-Oxide based Nanomaterials; William Andrew Publishing: Norwich, NY, USA, 2015; p. 92. ISBN 0323375219. [Google Scholar]
- Nasiłowska, B.; Bogdanowicz, Z.; Sarzyński, A.; Skrzeczanowski, W.; Djas, M.; Bartosewicz, B.; Jankiewicz, B.J.; Lipińska, L.; Mierczyk, Z. The Influence of Laser Ablation Parameters on the Holes Structure of Laser Manufactured Graphene Paper Microsieves. Materials 2020, 13, 1568. [Google Scholar] [CrossRef]
- Ng, I.M.J.; Shamsi, S. Graphene Oxide (GO): A Promising Nanomaterial against Infectious Diseases Caused by Multidrug-Resistant Bacteria. Int. J. Mol. Sci. 2022, 23, 9096. [Google Scholar] [CrossRef]
- Yu, C.H.; Chen, G.Y.; Xia, M.Y.; Xie, Y.; Chi, Y.Q.; He, Z.Y.; Zhang, C.L.; Zhang, T.; Chen, Q.M.; Peng, Q. Understanding the Sheet Size-Antibacterial Activity Relationship of Graphene Oxide and the Nano-Bio Interaction-Based Physical Mechanisms. Colloids Surf. B Biointerfaces 2020, 191, 111009. [Google Scholar] [CrossRef]
- Zou, F.; Zhou, H.; Jeong, D.Y.; Kwon, J.; Eom, S.U.; Park, T.J.; Hong, S.W.; Lee, J. Wrinkled Surface-Mediated Antibacterial Activity of Graphene Oxide Nanosheets. ACS Appl. Mater. Interfaces 2017, 9, 1343–1351. [Google Scholar] [CrossRef]
- Lu, X.; Feng, X.; Werber, J.R.; Chu, C.; Zucker, I.; Kim, J.-H.; Osuji, C.O.; Elimelech, M. Enhanced Antibacterial Activity through the Controlled Alignment of Graphene Oxide Nanosheets. Proc. Natl. Acad. Sci. USA 2017, 114, E9793–E9801. [Google Scholar] [CrossRef]
- Di Giulio, M.; Zappacosta, R.; Di Lodovico, S.; Di Campli, E.; Siani, G.; Fontana, A.; Cellini, L. Antimicrobial and Antibiofilm Efficacy of Graphene Oxide against Chronic Wound Microorganisms. Antimicrob. Agents Chemother. 2018, 62, e00547-18. [Google Scholar] [CrossRef] [PubMed]
- Nasiłowska, B.; Bogdanowicz, Z.; Hincza, K.; Mierczyk, M.; Gózdz, S.; Djas, M.; Kowiorski, K.; Bombalska, B.; Kowalik, A. Graphene Oxide Aerosol Deposition and its Influence on Cancer Cells. Preliminary Results. Materials 2020, 13, 4464. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Huo, P.; Zhang, R.; Liu, B. Antibacterial Properties of Graphene-Based Nanomaterials. Nanomaterials 2019, 9, 737. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, O.N.; Shiral Fernando, K.A.; Wang, B.; Brown, N.A.; Luo, P.G.; McNamara, N.D.; Vangsness, M.; Sun, Y.P.; Bunker, C.E. Graphene oxide: A nonspecific enhancer of cellular growth. ACS Nano 2011, 5, 8100–8107. [Google Scholar] [CrossRef]
- Olborska, A.; Janas-Naze, A.; Kaczmarek, Ł.; Warga, T.; Halin, D.S.C. Antibacterial Effect of Graphene and Graphene Oxide as a Potential Material for Fiber Finishes. Autex Res. J. 2020, 20, 506–516. [Google Scholar] [CrossRef]
- Wu, X.; Tan, S.; Xing, Y.; Pu, Q.; Wu, M.; Zhao, J.X. Graphene Oxide as an Efficient Antimicrobial Nanomaterial for Eradicating Multi-Drug Resistant Bacteria In Vitro and In Vivo. Colloids Surf. B Biointerfaces 2017, 157, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Aunkor, M.T.H.; Raihan, T.; Prodhan, S.H.; Metselaar, H.S.C.; Malik, S.U.F.; Azad, A.K. Antibacterial Activity of Graphene Oxide Nanosheet against Multidrug Resistant Superbugs Isolated from Infected Patients. R. Soc. Open Sci. 2020, 7, 200640. [Google Scholar] [CrossRef] [PubMed]
- Ghanim, R.R.; Mohammad, M.R.; Hussien, A.M.A. Antibacterial Activity and Morphological Characterization of Synthesis Graphene Oxide Nanosheets by Simplified Hummer’s Method. Biosci. Biotechnol. Res. Asia 2018, 15, 627–633. [Google Scholar] [CrossRef]
- Nanda, S.S.; Yi, D.K.; Kim, K. Study of Antibacterial Mechanism of Graphene Oxide Using Raman Spectroscopy. Sci. Rep. 2016, 6, 28443. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Wu, J.; Ren, X.; Tan, X.; Hayat, T.; Alsaedi, A.; Cheng, C.; Chen, C. Impact of Graphene Oxide on the Antibacterial Activity of Antibiotics against Bacteria. Environ. Sci. Nano 2017, 4, 1016–1024. [Google Scholar] [CrossRef]
- Karahan, H.E.; Wei, L.; Goh, K.; Liu, Z.; Birer, Ö.; Dehghani, F.; Xu, C.; Wei, J.; Chen, Y. Bacterial Physiology Is a Key Modulator of the Antibacterial Activity of Graphene Oxide. Nanoscale 2016, 8, 17181–17189. [Google Scholar] [CrossRef] [PubMed]
- Jayanthi, S.; Eswar, N.K.; Satyapaul, A.S.; Chatterjee, K.; Madras, G.; Sood, A.K. Macroporous Three-Dimensional Graphene Oxide Foams for Dye Adsorption and Antibacterial Applications. RSC Adv. 2015, 6, 1231–1242. [Google Scholar] [CrossRef]
- Krishnamoorthy, K.; Umasuthan, N.; Mohan, R.; Lee, J.; Kim, S.J. Antibacterial Activity of Graphene Oxide Nanosheets. Sci. Adv. Mater. 2012, 4, 1111–1117. [Google Scholar] [CrossRef]
- Gurunathan, S.; Han, J.W.; Abdal Dayem, A.; Eppakayala, V.; Kim, J.H. Oxidative Stress-Mediated Antibacterial Activity of Graphene Oxide and Reduced Graphene Oxide in Pseudomonas Aeruginosa. Int. J. Nanomed. 2012, 7, 5901–5914. [Google Scholar] [CrossRef]
- Liu, S.; Hu, M.; Zeng, T.H.; Wu, R.; Jiang, R.; Wei, J.; Wang, L.; Kong, J.; Chen, Y. Lateral Dimension-Dependent Antibacterial Activity of Graphene Oxide Sheets. Langmuir 2012, 28, 12364–12372. [Google Scholar] [CrossRef]
- Matulewicz, K.; Kaźmierski, Ł.; Wiśniewski, M.; Roszkowski, S.; Roszkowski, K.; Kowalczyk, O.; Roy, A.; Tylkowski, B.; Bajek, A. Ciprofloxacin and Graphene Oxide Combination—New Face of a Known Drug. Materials 2020, 13, 4224. [Google Scholar] [CrossRef]
- Kalela, N.; Darpe, A.; Bijwe, J. Low pressure plasma induced surface changes of some stainless steels. Surf. Coat. Technol. 2021, 425, 127700. [Google Scholar] [CrossRef]
- Sönmez, T.; Fazeli Jadidi, M.; Kazmanli, K.; Birer, Ö.; Ürgen, M. Role of different plasma gases on the surface chemistry and wettability of RF plasma treated stainless steel. Vacuum 2016, 129, 63–73. [Google Scholar] [CrossRef]
- Nasiłowska, B.; Bogdanowicz, Z.; Kasprzycka, W.; Bombalska, A.; Mierczyk, Z. Studies on the Effect of Graphene Oxide Deposited on Gold and Nickel Microsieves on Prostate Cancer Cells DU 145. Int. J. Mol. Sci. 2022, 23, 6567. [Google Scholar] [CrossRef] [PubMed]
- Jian, Y.; Yi, W.; Zhanguo, L.; Dayi, Y.; Chunxiang, L.; Yongsheng, Y.; Jiangdong, D. 2D confinement freestanding graphene oxide composite membranes with enriched oxygen vacancies for enhanced organic contaminants removal via peroxymonosulfate activation. J. Hazard. Mater. 2021, 417, 126028. [Google Scholar]
- Zhang, W.-H.; Yin, M.-J.; Zhao, Q.; Jin, C.-G.; Wang, N.; Ji, S.; Ritt, C.L.; Elimelech, M.; An, Q.-F. Graphene oxide membranes with stable porous structure for ultrafast water transport. Nat. Nanotechnol. 2021, 16, 337–343. [Google Scholar] [CrossRef]
- Gongping, L.; Wanqin, J. Graphene oxide membrane for molecular separation: Challenges and opportunities. Sci. China Mater. 2018, 61, 1021–1026. [Google Scholar]
- Thebo, K.H.; Qian, X.; Zhang, Q.; Chen, L.; Cheng, H.-M.; Ren, W. Highly stable graphene-oxide-based membranes with superior permeability. Nat Commun. 2018, 9, 1486. [Google Scholar] [CrossRef]
- Nasiłowska, B. Tlenek grafenu—Badania wpływu na właściwości funkcjonalne materiałów. Wydaw. WAT 2023, 276. [Google Scholar]
- Talebi Bezmin Abadi, A.; Rizvanov, A.A.; Haertlé, T.; Blatt, N.L. World Health Organization Report: Current Crisis of Antibiotic Resistance. BioNanoScience 2019, 9, 778–788. [Google Scholar] [CrossRef]
- PN-EN ISO 20645:2006; Płaskie wyroby włókiennicze—Wyznaczanie aktywności antybakteryjnej—Metoda dyfuzji na płytce z agarem. ISO: Geneva, Switzerland, 2006.
- LeBel, M. Ciprofloxacin: Chemistry, Mechanism of Action, Resistance, Antimicrobial Spectrum, Pharmacokinetics, Clinical Trials, and Adverse Reactions. Pharmacother. J. Hum. Pharmacol. Drug Ther. 1988, 8, 3–30. [Google Scholar] [CrossRef] [PubMed]
- Beaudoin, T.; Yau, Y.C.W.; Stapleton, P.J.; Gong, Y.; Wang, P.W.; Guttman, D.S.; Waters, V. Staphylococcus aureus interaction with Pseudomonas aeruginosa biofilm enhances tobramycin resistance. NPJ Biofilms Microbiomes 2017, 3, 25. [Google Scholar] [CrossRef] [PubMed]
- Stapleton, P.D.; Taylor, P.W. Methicillin resistance in Staphylococcus aureus: Mechanisms and modulation. Sci Prog. 2002, 85, 57–72. [Google Scholar] [CrossRef] [PubMed]
- Papaioannidou, P.; Nitsas, V.; Mirtsou-Fidani, V. Hydrolysis of cefazolin by enzymes produced by Pseudomonas aeruginosa after exposure to ceftazidime in vitro. Vojnosanit. Pregl. 2009, 66, 785–790. [Google Scholar] [CrossRef]
- Ravikumar, V.; Mijakovic, I.; Pandit, S. Antimicrobial Activity of Graphene Oxide Contributes to Alteration of Key Stress-Related and Membrane Bound Proteins. Int. J. Nanomed. 2022, 28, 6707–6721. [Google Scholar] [CrossRef]
- Monegro, A.F.; Muppidi, V.; Regunath, H. Hospital Acquired Infections; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nasiłowska, B.; Bombalska, A.; Kutwin, M.; Lange, A.; Jaworski, S.; Narojczyk, K.; Olkowicz, K.; Bogdanowicz, Z. Ciprofloxacin-, Cefazolin-, and Methicilin-Soaked Graphene Paper as an Antibacterial Medium Suppressing Cell Growth. Int. J. Mol. Sci. 2024, 25, 2684. https://doi.org/10.3390/ijms25052684
Nasiłowska B, Bombalska A, Kutwin M, Lange A, Jaworski S, Narojczyk K, Olkowicz K, Bogdanowicz Z. Ciprofloxacin-, Cefazolin-, and Methicilin-Soaked Graphene Paper as an Antibacterial Medium Suppressing Cell Growth. International Journal of Molecular Sciences. 2024; 25(5):2684. https://doi.org/10.3390/ijms25052684
Chicago/Turabian StyleNasiłowska, Barbara, Aneta Bombalska, Marta Kutwin, Agata Lange, Sławomir Jaworski, Kamila Narojczyk, Klaudia Olkowicz, and Zdzisław Bogdanowicz. 2024. "Ciprofloxacin-, Cefazolin-, and Methicilin-Soaked Graphene Paper as an Antibacterial Medium Suppressing Cell Growth" International Journal of Molecular Sciences 25, no. 5: 2684. https://doi.org/10.3390/ijms25052684
APA StyleNasiłowska, B., Bombalska, A., Kutwin, M., Lange, A., Jaworski, S., Narojczyk, K., Olkowicz, K., & Bogdanowicz, Z. (2024). Ciprofloxacin-, Cefazolin-, and Methicilin-Soaked Graphene Paper as an Antibacterial Medium Suppressing Cell Growth. International Journal of Molecular Sciences, 25(5), 2684. https://doi.org/10.3390/ijms25052684