Synergy between PEDF and Doxorubicin in Breast Cancer Cells: Effects on Metastatic and Metabolic Pathways
Abstract
:1. Introduction
2. Results
2.1. Effects of PEDF, Dox, and Their Combination on Cell Viability
2.2. Effects of PEDF, Dox, and Their Combination on Glucose Uptake
2.3. Effects of PEDF, Dox, and Their Combination on Tumour Cell Migration
2.4. Effects of PEDF, Dox, and Their Combination on Metastatic Markers
2.5. Modulation of Metabolic Markers by PEDF, Dox, and Their Combination
3. Discussion
4. Materials and Methods
4.1. Reagents
4.2. Cell Culture
4.3. Cell Viability
4.4. Glucose Uptake
4.5. Spheroid-Based Migration Assay
4.6. Immunocytochemistry
4.7. Statistical Analyses
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ferlay, J.; Ervik, M.; Lam, F.; Colombet, M.; Mery, L.; Piñeros, M.; Znaor, A.; Soerjomataram, I.; Bray, F. Global cancer observatory: Cancer today. Lyon Fr. Int. Agency Res. Cancer 2018, 3, 2019. [Google Scholar]
- Turashvili, G.; Brogi, E. Tumor heterogeneity in breast cancer. Front. Med. 2017, 4, 227. [Google Scholar] [CrossRef] [PubMed]
- Sørlie, T.; Perou, C.M.; Tibshirani, R.; Aas, T.; Geisler, S.; Johnsen, H.; Hastie, T.; Eisen, M.B.; Van De Rijn, M.; Jeffrey, S.S. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc. Natl. Acad. Sci. USA 2001, 98, 10869–10874. [Google Scholar] [CrossRef]
- Fan, M.; Chambers, T.C. Role of mitogen-activated protein kinases in the response of tumor cells to chemotherapy. Drug Resist. Updates 2001, 4, 253–267. [Google Scholar] [CrossRef]
- Lee, E.-R.; Kim, J.-Y.; Kang, Y.-J.; Ahn, J.-Y.; Kim, J.-H.; Kim, B.-W.; Choi, H.-Y.; Jeong, M.-Y.; Cho, S.-G. Interplay between PI3K/Akt and MAPK signaling pathways in DNA-damaging drug-induced apoptosis. Biochim. Biophys. Acta (BBA) Mol. Cell Res. 2006, 1763, 958–968. [Google Scholar] [CrossRef]
- Bahrami, A.; Khazaei, M.; Shahidsales, S.; Hassanian, S.M.; Hasanzadeh, M.; Maftouh, M.; Ferns, G.A.; Avan, A. The therapeutic potential of PI3K/Akt/mTOR inhibitors in breast cancer: Rational and progress. J. Cell. Biochem. 2018, 119, 213–222. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Sun, M.M.; Zhang, G.G.; Yang, J.; Chen, K.S.; Xu, W.W.; Li, B. Targeting PI3K/Akt signal transduction for cancer therapy. Signal Transduct. Target. Ther. 2021, 6, 425. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Minden, A. Current molecular combination therapies used for the treatment of breast cancer. Int. J. Mol. Sci. 2022, 23, 11046. [Google Scholar] [CrossRef]
- Mohajeri, M.; Sahebkar, A. Protective effects of curcumin against doxorubicin-induced toxicity and resistance: A review. Crit. Rev. Oncol. Hematol. 2018, 122, 30–51. [Google Scholar] [CrossRef]
- Abooshahab, R.; Al-Salami, H.; Dass, C.R. The increasing role of pigment epithelium-derived factor in metastasis: From biological importance to a promising target. Biochem. Pharmacol. 2021, 193, 114787. [Google Scholar] [CrossRef]
- Tacar, O.; Indumathy, S.; Tan, M.L.; Baindur-Hudson, S.; Friedhuber, A.M.; Dass, C.R. Cardiomyocyte apoptosis vs autophagy with prolonged doxorubicin treatment: Comparison with osteosarcoma cells. J. Pharm. Pharmacol. 2015, 67, 231–243. [Google Scholar] [CrossRef]
- Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature 2012, 490, 61–70. [Google Scholar] [CrossRef]
- Kruger, D.T.; Opdam, M.; Sanders, J.; van der Noort, V.; Boven, E.; Linn, S.C. Hierarchical clustering of PI3K and MAPK pathway proteins in breast cancer intrinsic subtypes. Apmis 2020, 128, 298–307. [Google Scholar] [CrossRef]
- Fitzgerald, D.P.; Subramanian, P.; Deshpande, M.; Graves, C.; Gordon, I.; Qian, Y.; Snitkovsky, Y.; Liewehr, D.J.; Steinberg, S.M.; Paltán-Ortiz, J.D. Opposing Effects of Pigment Epithelium–Derived Factor on Breast Cancer Cell versus Neuronal Survival: Implication for Brain Metastasis and Metastasis-Induced Brain Damage. Cancer Res. 2012, 72, 144–153. [Google Scholar] [CrossRef] [PubMed]
- Zhou, D.; Cheng, S.-Q.; Ji, H.-F.; Wang, J.-S.; Xu, H.-T.; Zhang, G.-Q.; Pang, D. Evaluation of protein pigment epithelium-derived factor (PEDF) and microvessel density (MVD) as prognostic indicators in breast cancer. J. Cancer Res. Clin. Oncol. 2010, 136, 1719–1727. [Google Scholar] [CrossRef] [PubMed]
- Jones, I.C.; Carnagarin, R.; Armstrong, J.; Lin, D.P.; Baxter-Holland, M.; Elahy, M.; Dass, C.R. Pigment Epithelium-Derived Factor: Inhibition of Phosphorylation of Insulin Receptor (IR)/IR Substrate (IRS), Osteogeneration from Adipocytes, and Increased Levels Due to Doxorubicin Exposure. Pharmaceutics 2023, 15, 1960. [Google Scholar] [CrossRef]
- Kciuk, M.; Gielecińska, A.; Mujwar, S.; Kołat, D.; Kałuzińska-Kołat, Ż.; Celik, I.; Kontek, R. Doxorubicin—An Agent with Multiple Mechanisms of Anticancer Activity. Cells 2023, 12, 659. [Google Scholar] [CrossRef]
- Carvalho, C.; Santos, R.X.; Cardoso, S.; Correia, S.; Oliveira, P.J.; Santos, M.S.; Moreira, P.I. Doxorubicin: The good, the bad and the ugly effect. Curr. Med. Chem. 2009, 16, 3267–3285. [Google Scholar] [CrossRef] [PubMed]
- Engelman, J.A.; Luo, J.; Cantley, L.C. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat. Rev. Genet. 2006, 7, 606–619. [Google Scholar] [CrossRef]
- Brufsky, A.M.; Dickler, M.N. Estrogen receptor-positive breast cancer: Exploiting signaling pathways implicated in endocrine resistance. Oncologist 2018, 23, 528–539. [Google Scholar] [CrossRef]
- Gatenby, R.A.; Gillies, R.J. Why do cancers have high aerobic glycolysis? Nat. Rev. Cancer 2004, 4, 891–899. [Google Scholar] [CrossRef]
- Warburg, O. On the origin of cancer cells. Science 1956, 123, 309–314. [Google Scholar] [CrossRef]
- Abooshahab, R.; Hooshmand, K.; Luna, G.; Al-Salami, H.; Dass, C.R. Metabolomics Profiling Reveals the Role of PEDF in Triple-Negative Breast Cancer Cell MDA-MB-231 under Glycaemic Loading. Pharmaceutics 2023, 15, 543. [Google Scholar] [CrossRef]
- Dwyer, A.R.; Truong, T.H.; Kerkvliet, C.P.; Paul, K.V.; Kabos, P.; Sartorius, C.A.; Lange, C.A. Insulin receptor substrate-1 (IRS-1) mediates progesterone receptor-driven stemness and endocrine resistance in oestrogen receptor+ breast cancer. Br. J. Cancer 2021, 124, 217–227. [Google Scholar] [CrossRef]
- Świderska, E.; Strycharz, J.; Wróblewski, A.; Szemraj, J.; Drzewoski, J.; Śliwińska, A. Role of PI3K/AKT pathway in insulin-mediated glucose uptake. In Blood Glucose Levels; IntechOpen: London, UK, 2018; Volume 1, pp. 37–47. [Google Scholar]
- Chen, L.; Zhang, S.S.-M.; Barnstable, C.J.; Tombran-Tink, J. PEDF induces apoptosis in human endothelial cells by activating p38 MAP kinase dependent cleavage of multiple caspases. Biochem. Biophys. Res. Commun. 2006, 348, 1288–1295. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.G.; Ai, Y.W.; Yu, L.L.; Zhou, X.D.; Liu, J.; Li, J.H.; Xu, X.M.; Liu, S.; Chen, J.; Liu, F. Phosphoinositide 3-kinase/Akt pathway plays an important role in chemoresistance of gastric cancer cells against etoposide and doxorubicin induced cell death. Int. J. Cancer 2008, 122, 433–443. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Fu, J.; Li, Z.; Jiang, N.; Chen, Y.; Peng, J. The landscape of PDK1 in breast cancer. Cancers 2022, 14, 811. [Google Scholar] [CrossRef] [PubMed]
- Whitaker, R.H.; Cook, J.G. Stress relief techniques: p38 MAPK determines the balance of cell cycle and apoptosis pathways. Biomolecules 2021, 11, 1444. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Li, N.; Xiang, R.; Sun, P. Emerging roles of the p38 MAPK and PI3K/AKT/mTOR pathways in oncogene-induced senescence. Trends Biochem. Sci. 2014, 39, 268–276. [Google Scholar] [CrossRef] [PubMed]
- Kucuksayan, H.; Akca, H. The crosstalk between p38 and Akt signaling pathways orchestrates EMT by regulating SATB2 expression in NSCLC cells. Tumor Biol. 2017, 39, 1010428317706212. [Google Scholar] [CrossRef] [PubMed]
- Esposito, A.; Klüppel, M.; Wilson, B.M.; Meka, S.R.; Spagnoli, A. CXCR4 mediates the effects of IGF-1R signaling in rodent bone homeostasis and fracture repair. Bone 2023, 166, 116600. [Google Scholar] [CrossRef]
- Mahmood, N.; Mihalcioiu, C.; Rabbani, S.A. Multifaceted role of the urokinase-type plasminogen activator (uPA) and its receptor (uPAR): Diagnostic, prognostic, and therapeutic applications. Front. Oncol. 2018, 8, 24. [Google Scholar] [CrossRef]
- Petersen, S.V.; Valnickova, Z.; Enghild, J.J. Pigment-epithelium-derived factor (PEDF) occurs at a physiologically relevant concentration in human blood: Purification and characterization. Biochem. J. 2003, 374, 199–206. [Google Scholar] [CrossRef]
- Ek, E.T.; Dass, C.R.; Contreras, K.G.; Choong, P.F. PEDF-derived synthetic peptides exhibit antitumor activity in an orthotopic model of human osteosarcoma. J. Orthop. Res. 2007, 25, 1671–1680. [Google Scholar] [CrossRef] [PubMed]
- Filiz, G.; Dass, C.R. Reduction in tumour cell invasion by pigment epithelium-derived factor is mediated by membrane type-1 matrix metalloproteinase downregulation. Pharm. Int. J. Pharm. Sci. 2012, 67, 1010–1014. [Google Scholar]
- Lou, P.J.; Lai, P.S.; Shieh, M.J.; MacRobert, A.J.; Berg, K.; Bown, S.G. Reversal of doxorubicin resistance in breast cancer cells by photochemical internalization. Int. J. Cancer 2006, 119, 2692–2698. [Google Scholar] [CrossRef] [PubMed]
- Aniogo, E.C.; George, B.P.A.; Abrahamse, H. In vitro combined effect of Doxorubicin and sulfonated zinc Phthalocyanine–mediated photodynamic therapy on MCF-7 breast cancer cells. Tumor Biol. 2017, 39, 1010428317727278. [Google Scholar] [CrossRef]
- Brook, N.; Gill, J.; Dharmarajan, A.; Chan, A.; Dass, C.R. NFκB-Mediated Mechanisms Drive PEDF Expression and Function in Pre-and Post-Menopausal Oestrogen Levels in Breast Cancer. Int. J. Mol. Sci. 2022, 23, 15641. [Google Scholar] [CrossRef]
Markers | MDA-MB-231 (a p-Values) | MCF-7 (a p-Values) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
PEDF vs. Ctr | Dox vs. Ctr | Dox+PEDF vs. Ctr | PEDF vs. Dox | Dox+PEDF vs. PEDF | Dox+PEDF vs. Dox | PEDF vs. Ctr | Dox vs. Ctr | Dox+PEDF vs. Ctr | PEDF vs. Dox | Dox+PEDF vs. PEDF | Dox+PEDF vs. Dox | |
uPAR | ↓ 0.009 ** | ↓<0.0001 **** | <0.0001 | 0.0818 | ↓ 0.007 ** | 0.7712 | 0.1236 | ↓ 0.0151 * | ↓ 0.0108 * | 0.8155 | 0.7490 | 0.9993 |
uPA | ↓ 0.0194 * | ↓ 0.0046 ** | ↓ 0.0033 ** | 0.9538 | 0.9225 | 0.9995 | ↓ <0.0001 **** | ↓ <0.0001 **** | ↓ <0.0001 **** | 0.4310 | 0.3292 | 0.9977 |
CXCR4 | ↓ <0.0001 **** | ↓ <0.0001 **** | ↓ <0.0001 **** | 0.5185 | 0.2966 | 0.9783 | ↓ 0.0002 *** | ↓ <0.0001 **** | ↓ <0.0001 **** | 0.7086 | 0.2313 | 0.8282 |
MT1-MMP | ↓ <0.0001 **** | ↓ <0.0001 **** | ↓ <0.0001 **** | ↓ <0.0001 **** | ↓ <0.0001 **** | 0.0528 | ↓ <0.0001 **** | ↓ <0.0001 **** | ↓ <0.0001 **** | ↓ <0.0001 **** | ↓ <0.0001 **** | 0.8348 |
TNF-α | ↓ 0.0002 *** | ↓ 0.0001 **** | ↓ <0.0001 **** | 0.9983 | 0.1776 | 0.2364 | ↓ <0.0001 **** | ↓ <0.0001 *** | ↓ <0.0001 **** | ↓ 0.0041 ** | ↓ <0.001 ** | 0.9438 |
Markers | MDA-MB-231 (a p-Values) | MCF-7 (a p-Values) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
PEDF vs. Ctr | Dox vs. Ctr | Dox+PEDF vs. Ctr | PEDF vs. Dox | Dox+PEDF vs. PEDF | Dox+PEDF vs. Dox | PEDF vs. Ctr | Dox vs. Ctr | Dox+PEDF vs. Ctr | PEDF vs. Dox | Dox+PEDF vs. PEDF | Dox+PEDF vs. Dox | |
P-IRS1 | ↑ <0.0001 **** | 0.8694 | 0.5480 | ↑ <0.0001 **** | ↓ <0.0001 **** | 0.9428 | 0.1742 | ↓ 0.0135 * | 0.9885 | ↑ <0.0001 **** | 0.0888 | ↑ 0.0325 * |
IRS-1 | ↓ 0.0257 * | ↓ 0.0003 *** | ↓ <0.0001 **** | 0.4634 | 0.2837 | 0.9875 | ↓ <0.0001 **** | ↓ <0.0001 **** | ↓ <0.0001 **** | ↑ 0.0008 *** | ↓ <0.0001 **** | 0.1379 |
p-PDK1 | ↓ 0.0003 *** | ↓ <0.0001 **** | ↓ <0.0001 **** | 0.8601 | ↓ 0.0001 *** | ↓ 0.0016 ** | ↓ <0.0001 **** | ↓ <0.0001 **** | ↓ <0.0001 **** | ↑ <0.0001 **** | ↓ <0.0001 **** | 0.6118 |
P38-MAPK | ↑ <0.0001 **** | 0.8148 | ↑ 0.0217 * | ↑ <0.0001 **** | ↓ 0.0222 * | 0.1727 | ↑ <0.0001 **** | ↑ 0.0269 * | ↑ <0.0001 **** | ↑ 0.0059 ** | ↑ <0.0001 **** | ↑ <0.0001 **** |
p-AKT | ↓ <0.0001 **** | ↓ <0.0001 **** | ↓ <0.0001 **** | 0.4964 | 0.2897 | 0.9823 | ↓ 0.0045 ** | ↓ <0.0001 **** | ↓ <0.0001 **** | ↑ 0.0339 * | ↓ <0.0001 **** | ↓ 0.0010 *** |
AKT | 0.8869 | ↓ 0.0286 * | ↓ 0.0011 ** | 0.1554 | ↓ 0.0103 * | 0.6964 | 0.0603 | ↑ <0.0001 **** | ↑ <0.0001 **** | ↓ <0.0001 **** | ↑ <0.0001 **** | ↓ <0.0001 **** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abooshahab, R.; Al-Salami, H.; Dass, C.R. Synergy between PEDF and Doxorubicin in Breast Cancer Cells: Effects on Metastatic and Metabolic Pathways. Int. J. Mol. Sci. 2024, 25, 2755. https://doi.org/10.3390/ijms25052755
Abooshahab R, Al-Salami H, Dass CR. Synergy between PEDF and Doxorubicin in Breast Cancer Cells: Effects on Metastatic and Metabolic Pathways. International Journal of Molecular Sciences. 2024; 25(5):2755. https://doi.org/10.3390/ijms25052755
Chicago/Turabian StyleAbooshahab, Raziyeh, Hani Al-Salami, and Crispin R. Dass. 2024. "Synergy between PEDF and Doxorubicin in Breast Cancer Cells: Effects on Metastatic and Metabolic Pathways" International Journal of Molecular Sciences 25, no. 5: 2755. https://doi.org/10.3390/ijms25052755
APA StyleAbooshahab, R., Al-Salami, H., & Dass, C. R. (2024). Synergy between PEDF and Doxorubicin in Breast Cancer Cells: Effects on Metastatic and Metabolic Pathways. International Journal of Molecular Sciences, 25(5), 2755. https://doi.org/10.3390/ijms25052755