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Abstract: Hypertrophic cardiomyopathy (HCM) is a disease in which the myocardium of the heart
becomes asymmetrically thickened, malformed, disordered, and loses its normal structure and
function. Recent studies have demonstrated the significant involvement of inflammatory responses
in HCM. However, the precise role of immune-related long non-coding RNAs (lncRNAs) in the
pathogenesis of HCM remains unclear. In this study, we performed a comprehensive analysis of
immune-related lncRNAs in HCM. First, transcriptomic RNA-Seq data from both HCM patients
and healthy individuals (GSE180313) were reanalyzed thoroughly. Key HCM-related modules were
identified using weighted gene co-expression network analysis (WGCNA). A screening for immune-
related lncRNAs was conducted within the key modules using immune-related mRNA co-expression
analysis. Based on lncRNA–mRNA pairs that exhibit shared regulatory microRNAs (miRNAs), we
constructed a competing endogenous RNA (ceRNA) network, comprising 9 lncRNAs and 17 mRNAs
that were significantly correlated. Among the 26 lncRNA–mRNA pairs, only the MIR210HG–BPIFC
pair was verified by another HCM dataset (GSE130036) and the isoprenaline (ISO)-induced HCM cell
model. Furthermore, knockdown of MIR210HG increased the regulatory miRNAs and decreased the
mRNA expression of BPIFC correspondingly in AC16 cells. Additionally, the analysis of immune cell
infiltration indicated that the MIR210HG–BPIFC pair was potentially involved in the infiltration of
naïve CD4+ T cells and CD8+ T cells. Together, our findings indicate that the decreased expression of
the lncRNA–mRNA pair MIR210HG–BPIFC was significantly correlated with the pathogenesis of the
disease and may be involved in the immune cell infiltration in the mechanism of HCM.

Keywords: hypertrophic cardiomyopathy; bioinformatics analysis; immune cell infiltration;
non-coding RNAs

1. Introduction

Hypertrophic cardiomyopathy (HCM) is a disease induced by multiple conditions and
characterized by unexplained, isolated, and progressive cardiac hypertrophy [1]. Epidemio-
logical investigations estimate the population prevalence of HCM to be approximately 0.2%,
with this disease being the leading cause of sudden cardiac death among young adults and
athletes [2]. Patients with HCM display significant clinical variations, with left ventricular
hypertrophy, myofibrillar anomalies, and fibrosis being the predominant manifestations.
Myocardial hypercontractility frequently coexists with heart failure or arrhythmia. The
current therapeutic approaches for HCM include interventional surgery and drug therapy,
both of which have demonstrated a certain efficacy [3]. However, no treatment has been
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applied to reversing it in clinical practice, thus requiring the establishment of new treat-
ment strategies. Extensive investigations have consistently shown a compelling association
between infrequent immune activation, immune cell infiltration [4], and the occurrence of
cardiovascular diseases, most notably atherosclerosis, coronary heart disease, and heart
failure [5,6]. At the same time, the immune response is one of the important reasons for the
development of HCM. Numerous studies have shown that HCM patients have leukocyte
infiltration and elevated levels of inflammatory cytokines in their myocardium, which may
be key factors in the progression of HCM to the end stage of heart failure [7]. In addition,
the genetic deficiency of the key inflammatory cytokine IL-6 has been shown to alleviate
TAC-induced left ventricular dysfunction and hypertrophy [8]. IL-6, which is a typical
cytokine associated with inflammation, can also induce the differentiation of naïve T cells
into CD8+ T cells [9]. These studies collectively demonstrate the crucial role of the immune
system in the pathophysiology of left ventricular hypertrophy.

Long non-coding RNAs (lncRNAs) are RNA molecules with transcripts longer than
200 nucleotides that lack protein-coding ability. These lncRNAs competitively interact
with microRNAs (miRNAs) to hinder the degradation of target mRNA via competitive
endogenous RNA (ceRNA) regulatory mechanisms, thereby participating in various funda-
mental biological processes [10]. Recent studies have revealed the crucial role of lncRNAs
in the progression of several cardiovascular conditions, such as myocardial fibrosis, myocar-
dial hypertrophy, and atherosclerosis [11]. Several lncRNAs, including PDIA3P, TSPYL3,
LOH3CR2A, LOC401431, LOC158376, and LOC606724, have been linked to the pathogen-
esis of HCM [12]. Although some reports have linked specific lncRNAs to HCM, the
lack of genome-wide analyses and verification means that the role of immune-related
lncRNA–mRNA pairs in the progression of HCM remains unclear.

The rapid progression of whole-transcriptome analysis has led to the widespread
utilization of bioinformatics analyses in predicting disease-associated genes, elucidating
the underlying mechanisms of diseases, and exploring potential therapeutic targets [13].
In this study, we obtained the transcriptomic profiles of mRNAs and lncRNAs from pa-
tients diagnosed with HCM and healthy controls by accessing publicly available RNA-Seq
data. We employed weighted gene co-expression network analysis (WGCNA) to con-
struct a correlation network based on the training dataset, enabling us to identify two
modules associated with HCM. Additionally, we identified lncRNAs associated with the
immune system within the module, and we constructed a ceRNA network consisting
of two immune-associated lncRNAs and four immune-associated mRNAs, which were
reciprocally regulated by shared miRNAs. The correlation of the lncRNA–mRNA pair
MIR210HG–BPIFC was confirmed through verification using the validating dataset and
experiments in an HCM cell model. Knockdown of the lncRNA MIR210HG by siRNA
decreased the mRNA levels of BPIFC, with more expression of the regulatory miRNAs
and hypertrophy, which further confirmed the important role of the MIR210HG–BPIFC
pair in the pathogenesis mechanism of HCM. The analysis of immune cell infiltration
indicated that the lncRNA–mRNA pair MIR210HG–BPIFC may be involved in the infil-
tration of naïve CD4+ T cells and CD8+ T cells in HCM. Together, our findings identified
the immune-related lncRNA–mRNA pair MIR210HG–BPIFC regulating the progression
of HCM.

2. Results
2.1. Data Collection and Analysis of Differentially Expressed Genes

To investigate the potential alterations in lncRNA–mRNA pairs within the cardiac
myocytes of patients with hypertrophic cardiomyopathy (HCM), we chose the RNA-Seq
dataset GSE180313, which consists of heart samples obtained from 13 HCM patients and
7 healthy controls (Table S1). Compared to other RNA-Seq datasets for patients with
HCM, the patient samples selected in GSE180313 were identified based on histological
examination in addition to imaging, which made their HCM patient samples more reliable.
We conducted cluster tree analysis on the complete transcriptome data (Figure S1), and
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the results indicated that there were no samples that exhibited any specific characteristics
requiring exclusion. Then, we identified differentially expressed genes (DEGs) following
specific criteria (|Log2 fold change| > 1 and adjusted p-value < 0.05). The analysis identified
a total of 507 upregulated genes and 191 downregulated genes (Table S2). Figure 1A,B
display the heatmap and the volcano plot of the DEGs, respectively. These results show
that the GSE180313 dataset is reliable.
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Figure 1. Heatmap and volcano plot illustrating the DEGs identified in the GSE180313 dataset:
(A) Heatmap showing all DEGs. (B) Volcano plot. HCM: hypertrophic cardiomyopathy; CTRL:
disease-free heart; DEGs: differentially expressed genes.

2.2. Construction of Weighted Co-Expression Network and Identification of HCM-Related
Key Modules

Most biological networks are scale-free networks, which exhibit a power-law distribu-
tion. These distribution characteristics render biological networks both robust and fragile.
WGCNA employs correlation coefficient values to construct a gene co-expression network
that adheres to a scale-free network distribution. Thus, to identify crucial lncRNA–mRNA
pairs, we utilized the GSE180313 dataset to build a WGCNA network. Since the number of
DEGs was obviously not enough to build a robust network, we chose the top 5000 genes
with the highest mean absolute deviation (MAD) in the GSE180313 dataset. The pickSoft-
Threshold function from the WGCNA package was employed to confirm β = 5 (Figure 2A)
as the soft threshold. Subsequently, the WGCNA network was constructed by implement-
ing hierarchical clustering and dynamic tree-cutting functions, resulting in 17 modules,
each composed of over 50 genes (Figure 2B). To identify the modules associated with clinical
features, we calculated the correlation between each module and the clinical features, and
we generated a heatmap (Figure 2C). The heatmap reveals that the yellow module exhibits
the strongest negative correlation with HCM, while the turquoise module demonstrates
the strongest positive correlation with HCM. The gene expression patterns in the yellow
and turquoise modules are also visualized in the heatmaps (Figure 2D,E, respectively).

2.3. Construction of Immune-Related ceRNA Network

Previous studies have demonstrated that HCM patients experience inflammatory
cell infiltration and other immune responses in their myocardium. However, the pre-
cise mechanism through which the immune system contributes to the pathogenesis of
HCM requires additional investigation [14]. Therefore, we conducted further study into
the immune-related genes within pivotal modules. A list of immune-related genes was
retrieved from the Immunology Database and Analysis Portal (ImmPort), serving as a
reference for screening immune-related mRNA expression (Table S3) and immune-related
lncRNA expression (Table S4) in the turquoise and yellow modules.
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Figure 2. WGCNA for GSE180313: (A) Analysis of the scale-free index and mean connectivity was
carried out for threshold powers ranging from 1 to 20. We chose a β value of 5 as the soft threshold;
this choice led to a scale-free R2 value of 0.85. (B) Cluster dendrogram of genes in the WGCNA
network, with assigned module colors. (C) Analysis of module–clinical trait associations. Each
column represents a clinical trait, while each row represents a module. Each grid cell contains the
correlation (left) and p-value (right). The table is color-coded based on the correlation, as shown in the
color legend. The correlation coefficients range from −1 to 1, and the association is positively related
to the absolute value. (D) Heatmap of gene expression profiles in the yellow module. (E) Heatmap of
gene expression profiles in the turquoise module.

Our hypothesis posits that these immune-related lncRNA molecules function as ceR-
NAs to exert their regulatory influence. In order to validate this hypothesis, we constructed
a ceRNA network incorporating the correlation levels between lncRNA and mRNA, as
well as the predicted and experimentally confirmed miRNA–mRNA/lncRNA interac-
tions. Data regarding both predicted and experimentally validated miRNA–lncRNA and
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miRNA–mRNA interactions were gathered from the miRcode database. The selection of
lncRNA–mRNA pairs for constructing the ceRNA network had to satisfy the following
criteria: (1) the expression of lncRNA and mRNA must exhibit positive correlation (Pear-
son’s correlation coefficient > 0.75); (2) the lncRNA and mRNA must share at least one
miRNA; (3) there should be differential expression of all lncRNAs and mRNAs between
HCM and CTRL.

Based on these assumptions, we initially computed the correlation coefficient between
immune-related lncRNAs and immune-related mRNAs. By using a cutoff value of 0.75,
we identified 341 potential candidate lncRNA–mRNA pairs, comprising 41 mRNAs and
101 lncRNAs. Subsequently, we assessed whether these pairs shared miRNAs, obtaining
26 lncRNA–mRNA pairs (Table 1), which encompassed 9 lncRNAs and 17 mRNAs. Then,
we used Cytoscape to construct a preliminary network diagram (Figure 3A). Lastly, we
evaluated whether there were significant differences in the expression levels of these
lncRNAs and mRNAs between the HCM group and the CTRL group, using the Kruskal–
Wallis test (Figure 3B,C). We discovered that two lncRNAs and five mRNAs exhibited no
significant variation in expression between the two groups. Consequently, we excluded
these pairs from the analysis, resulting in the construction of a ceRNA network, composed
of 16 lncRNA–mRNA pairs. Detailed information on the interactions between lncRNAs,
miRNAs, and mRNAs within the network is shown in Table S5.

Table 1. The lncRNA–mRNA pairs with |correlation coefficient| > 0.75 in the co-expression analysis.

Immune-Related mRNA Immune-Related lncRNA Correlation Coefficient

OAS1 KTN1-AS1 0.789029469
JAK2 KTN1-AS1 0.752564718
BPIFB1 KTN1-AS1 0.858522985
RHOA TMEM72-AS1 0.758943191
NGF TMEM72-AS1 0.773519315
IL33 TMEM72-AS1 0.783806615
COLEC12 TMEM72-AS1 0.761881119
PPP4C LINC00092 0.75444876
TG C4B-AS1 0.835504137
GZMB C4B-AS1 0.791438674
NGF C4B-AS1 0.763980651
IL33 C4B-AS1 0.786158581
COLEC12 C4B-AS1 0.792932936
UBR1 C4B-AS1 0.798578035
XCR1 C4B-AS1 0.767467957
BRAF HHATL-AS1 0.855393248
JAK2 ZNF503-AS2 0.899336755
NPR3 ZNF503-AS2 0.831443126
BRAF ZNF503-AS2 0.871300503
NGF PLCXD2-AS1 0.77646062
COLEC12 PLCXD2-AS1 0.799703687
CD8B PLCXD2-AS1 0.761688487
BPIFC MIR210HG 0.799484632
FYN AC091078.1 0.780037819
TG AC091078.1 0.833008855
XCR1 AC091078.1 0.766529515
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Figure 3. Correlation test of lncRNA–mRNA pairs with disease characteristics in the GSE180313 and
GSE130036 datasets: (A) The network of immune-related ceRNAs. The red ovals are lncRNAs, the
gray triangles are miRNAs, and the blue cubes are mRNAs. (B) Expression levels of lncRNAs included



Int. J. Mol. Sci. 2024, 25, 2816 7 of 18

in the ceRNA network among the HCM and CTRL samples in the GSE180313 training dataset.
(C) Expression levels of mRNAs included in the ceRNA network among the HCM and CTRL samples
in the GSE180313 training dataset. (D) The lncRNAs included in the ceRNA network among the HCM
and CTRL samples’ expression levels in the GSE130036 validation dataset. (E) The mRNAs included
in the ceRNA network among the HCM and CTRL samples’ expression levels in the GSE130036
validation dataset. * p-Value < 0.05, ** p-value < 0.01, *** p-value < 0.001, **** p-value < 0.0001; ns:
no significance.

2.4. Validation of the Immune-Related lncRNA–mRNA Pairs

To validate the ceRNA network obtained from the above analysis, we downloaded
a new HCM dataset as a validation dataset, GSE130036, which consists of 28 samples
from HCM patients and 9 samples from healthy controls (Table S6). Initially, we examined
whether there were disparities in the expression levels of mRNAs and lncRNAs between
the HCM and CTRL samples in the GSE130036 dataset (Figure 3D,E). We found that the
lncRNAs KTN1-AS1 and TMEM72-AS1 and the mRNAs IL33 and GZMB showed differen-
tial expression levels in GSE180313, while their expression levels did not show significant
differences in GSE130036. Consequently, pairs containing them were excluded, and five
lncRNA–mRNA pairs remained. Subsequently, we conducted a correlation test on the
lncRNA–mRNA pairs (Figure 4A–C). Since the LINC00092–PPP4C pair’s correlation p-value
was non-significant (p-value = 0.22) in GSE130036 (Figure 4B), this pair was removed. The
remaining four lncRNA–mRNA pairs (ZNF503-AS2–JAK2, ZNF503-AS2–NPR3, ZNF503-
AS2–BRAF, and MIR210HG–BPIFC) and related miRNAs were used for constructing the
ceRNA network (Figure 4D).

To further validate these four lncRNA–mRNA pairs’ expression correlation, the dys-
regulation of the four lncRNA–mRNA pairs was further validated in a cardiac hypertrophy
cell model [15]. We stimulated AC16 cells with 10 µM isoprenaline (ISO) for 24 h to induce
hypertrophy in vitro. The results of actin-tracker staining (Figure 5A) and the mRNA
expression of hypertrophy-related genes Nppa and Nppb (Figure 5B) revealed that the
in vitro cardiomyocyte hypertrophy model was successfully established. Then, we detected
the expression of four lncRNA–mRNA pairs by qRT-PCR. The results showed that the
expression of all four pairs was correspondingly decreased (Figure 5C,D). In contrast, the
expression of the pairs including the lncRNA ZNF503-AS2 was increased in the training
dataset and the validation dataset. So, only the pair MIR210HG–BPIFC was consistently
correspondingly decreased in all analyses and experimental validation. Furthermore, we
detected the MIR210HG–BPIFC-related miRNA levels in a cardiomyocyte hypertrophy
model. The results showed that miR-216b, miR-24, miR-34c, etc., were increased by ISO
stimulation (Figure 5E and Figure S2A). Additionally, to further confirm the important role
of MIR210HG–BPIFC in hypertrophy, the MIR210HG was knocked down in AC16 cells by
two siRNAs (siRNA-1 and siRNA-2). The qRT-PCR results showed that the mRNA level
of BPIFC was correspondingly decreased with the knockdown of MIR210HG (Figure 5F).
At the same time, the expression of the mediating miRNAs (miR-145, miR-216b, miR-24,
miR-34c, etc.) increased compared with the siRNA-NC (Figures 5G and S2B). Interestingly,
we found that MIR210HG knockdown increased the expression levels of Nppa and Nppb
in mRNA (Figure 5H) and induced hypertrophic morphology in AC16 cells (Figure 5I).
Therefore, MIR210HG is not only a biomarker of HCM, but also regulates the expression of
BPIFC in MIR210HG–BPIFC pairs through unique miRNA and plays an important role in
the pathogenesis of cardiomyocyte hypertrophy.
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Figure 4. Validation of the immune-related ceRNA network: (A–C) Validation of correlations
of immune-related lncRNA–mRNA pairs in the GSE180313 training dataset and the GSE130036
validation dataset. The pink and green bars showed the expression levels of the indicated genes
and the blue lines indicated the linear regression line. (D) The ceRNA network confirmed by the
GSE180313 training dataset and the GSE130036 validation dataset. The red ovals are lncRNAs, the
gray triangles are miRNAs, and the blue cubes are mRNAs.
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Figure 5. Validation of the immune-related lncRNA–mRNA pairs in vitro: (A) Actin-tracker staining
results of the control and ISO groups. (B) The mRNA expression levels of Nppa and Nppb in the
control and ISO groups. (C,D) The expression levels of lncRNA–mRNA pairs in the control and ISO
groups. (E) The expression levels of MIR210HG-regulated immune-related miRNAs in the control
and ISO groups. (F) The expression levels of the MIR210HG–BPIFC pair in the siRNA-NC, siRNA-1,
and siRNA-2 groups. (G) The expression levels of MIR210HG-regulated immune-related miRNA
in the siRNA-NC, siRNA-1, and siRNA-2 groups. (H) The mRNA expression levels of Nppa and
Nppb in the siRNA-NC, siRNA-1, and siRNA-2 groups. (I) Actin-tracker staining results of the
siRNA-NC, siRNA-1, and siRNA-2 groups. * p-Value < 0.05, ** p-value < 0.01, *** p-value < 0.001,
**** p-value < 0.0001, ns: no significance. Control: normal cultured AC16 cells; ISO: ISO-induced AC16
cells; siRNA-NC: NC-FAM-induced AC16 cells; MIR210HG-siRNA-1: one of the siRNAs targeting
MIR210HG-induced AC16 cells; MIR210HG-siRNA-2: the other siRNA targeting MIR210HG-induced
AC16 cells. Scale bar = 50 µm.

2.5. Analysis of Immune Cell Infiltration

CIBERSORTx is a powerful tool that provides a detailed description of tissue composi-
tion using RNA-Seq data and is commonly used for immune cell infiltration analysis [16,17].
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To examine the composition of immune cells in HCM and explore the association between
immune cell composition and the online CIBERSORTx website, we used the reference ex-
pression matrix (LM22) generated from scRNA-Seq of 22 immune-cell types isolated from
peripheral blood to calculate the proportions of each immune-cell type in the GSE180313
dataset (Figure 6A). The results of the CIBERSORTx calculation showed a significant in-
crease in CD8+ T cells (p-value = 0.02392), along with significant decreases in naïve CD4+ T
cells (p-value = 0.0194) and resting mast cells (p-value = 0.0194), in the HCM samples of the
GSE180313 dataset (Figure 6B). The differences in the cell infiltration of mast cells and T
cells were consistent with the observations in previous studies of HCM [18].

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 11 of 19 
 

 

 

Figure 6. Analysis of immune cell infiltration: (A) The 22 immune cells’ proportions in HCM and 

CTRL samples. (B) The immune cells’ differential expression analysis in the CTRL and HCM groups. 

(C) Pearson’s correlation analysis of BPIFC and the infiltrating immune cells; statistically significant 

immune cells are marked in red, with p-values < 0.05. (D) Pearson’s correlation analysis of 

MIR210HG and the infiltrating immune cells; statistically significant immune cells are marked in 

red, with p-values < 0.05. * p-Value < 0.05, ns: no significance. 

To investigate the role of the validated lncRNA–mRNA pairs in the immune cell in-

filtration, we performed correlation analysis between the expression of four lncRNA–
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CTRL samples. (B) The immune cells’ differential expression analysis in the CTRL and HCM groups.
(C) Pearson’s correlation analysis of BPIFC and the infiltrating immune cells; statistically significant
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immune cells are marked in red, with p-values < 0.05. (D) Pearson’s correlation analysis of MIR210HG
and the infiltrating immune cells; statistically significant immune cells are marked in red, with
p-values < 0.05. * p-Value < 0.05, ns: no significance.

To investigate the role of the validated lncRNA–mRNA pairs in the immune cell
infiltration, we performed correlation analysis between the expression of four lncRNA–
mRNA pairs (ZNF503-AS2–JAK2, ZNF503-AS2–NPR3, ZNF503-AS2–BRAF, and MIR210HG–
BPIFC) and the proportion of immune cell infiltration. The expression of MIR210HG–BPIFC
showed a positive correlation with the infiltration of naïve CD4+ T cells and a negative
correlation with the infiltration of CD8+ T cells (Figure 6C,D). None of the other three pairs
were associated with changes in immune cell infiltration (Figure S3). The analysis results
suggest that the MIR210HG–BPIFC pair may regulate the progression of HCM by affecting
the composition of immune cell infiltration.

3. Discussion

In our study, we employed an integrated bioinformatics approach to analyze clinical
HCM RNA-Seq data. We identified an lncRNA–mRNA pair, MIR210HG–BPIFC, which
potentially regulates the occurrence and development of HCM, and may be involved in the
infiltration of naïve CD4+ T cells and CD8+ T cells. These findings highlight their relevance
with HCM, partially through the ceRNA network and immune cell infiltration (Figure 7).
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Figure 7. The lncRNA MIR210HG regulates the mRNA BPIFC via the miRNAs miR-216b, miR-24,
miR-34c, etc. Comparing with the normal heart, the decreased expression of lncRNA MIR210HG
prompts more binding of the mediating miRNAs (miR-145, miR-216b, miR-24, miR-34c, etc) with
the mRNA of BPIFC and induces the degradation of BPIFC, associated with the hypertrophy of
cardiomyocytes in HCM. The arrows indicated the decreased expression.

Previous studies have examined lncRNA transcription in the heart tissues of HCM
patients using microarray technology and RNA sequencing [19–21]. Some lncRNAs have
been identified as biomarkers for further analysis. The RNA-Seq dataset GSE180313
contains heart tissues from 7 control individuals and 13 HCM patients. Additionally, due
to the small number of DEGs and the fact that they did not conform to the assumptions of
WGCNA, we selected the top 5000 genes based on MAD obtained from GSE180313. We
constructed gene modules through unsupervised clustering and selected the modules most
relevant to HCM. Notably, key modules included genes such as RHOA [22] and JAK2 [23],
which have been previously reported to be associated with HCM. Previous studies have
confirmed that transcriptional regulation of JAK2 in verified cases of HCM is correlated with
increased global ventriculus sinister and cardiomyocyte nuclear JAK2 expression, as well as
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the activation of its downstream canonical target, STAT3 [24]. Also, an increasing number of
signal transduction pathways, including RHOA, have been recognized as crucial regulators
of the hypertrophic response. BRAF belongs to a small family of serine/threonine kinases
that act as RAS effectors. All three RAF family members, namely, RAF-1, BRAF, and ARAF,
are expressed in cardiac cells and promote the survival and growth of cardiomyocytes [25].
Interleukin 33 (IL-33) has been confirmed as an emerging immunological and cardiovascular
marker [26], which is also included in the key modules. Subsequently, we constructed the
immune-related ceRNA network for genes in key modules, based on validated predictions
of miRNA–mRNA/lncRNA regulation and their associated levels. In this ceRNA network,
both the lncRNA and mRNA must share at least one miRNA, and their expression must
exhibit a Pearson’s correlation coefficient greater than 0.75. We identified 26 lncRNA–
mRNA pairs through the analysis. Then, 22 pairs were excluded by correlation tests and
expression difference tests, and 4 pairs were retained: ZNF503-AS2–JAK2, ZNF503-AS2–
NPR3, ZNF503-AS2–BRAF, and MIR210HG–BPIFC.

Two candidate lncRNAs in the ceRNA network, namely, MIR210HG, and ZNF503-
AS2, were found to be related to HCM for the first time. The lncRNA MIR210HG, the
host gene encoding miR-210, is located on chromosome 21q13.3 and consists of 567 nu-
cleotides [27]. Previous studies have shown that MIR210HG acts as an oncogene and
promotes tumor progression. In endometrial cancer, MIR210HG enriched genes in the Wnt
and TGF-β/Smad3 signaling pathways, thereby enhancing the development of cancer [28].
Similarly, MIR210HG is involved in the Warburg effect of inducing tumor growth in breast
cancer [29]. We measured the expression of the tumor-related MIR210HG-linked miRNAs
and mRNAs in an ISO-induced HCM cell model. There were no significant changes in
the expression of the miRNAs miR-608, miR-503-5p, and miR-337-3p or the mRNAs FXO6,
TRAF4, and HMGA2, related to hepatoblastoma, cervical cancer, and endometrial cancer
(Figure S2C). These data suggest that the lncRNA–mRNA pair MIR210HG–BPIFC and
its regulatory miRNAs play specific roles in HCM, different from their roles in tumor
conditions. Additionally, Wu et al. found that ZNF503-AS2 could be used as an inde-
pendent prognostic biomarker for rhabdoid tumors of the kidney through univariate and
multivariate Cox analyses [30]. Furthermore, prognostic and diagnostic models for kidney
renal clear-cell carcinoma suggested that ZNF503-AS2 could be used as a prognostic and
diagnostic biomarker in patients [31], since we found that the expression levels of this
candidate lncRNA in the ceRNA network were significantly dysregulated in HCM patients.
In addition, co-expression analysis showed that these lncRNAs were strongly associated
with immune-related genes such as JAK2, NPR3, BRAF, and BPIFC. We speculate that
these two candidate lncRNAs affect immune-related genes through miRNAs, subsequently
impacting immune cells and, ultimately, contributing to the development and progression
of HCM.

Through WGCNA and co-expression analysis, several immune-associated lncRNA–
mRNA pairs were identified in HCM [13]. However, only one pair, MIR210HG–BPIFC, was
verified using an independent dataset and an in vitro model of myocardial hypertrophy in
AC16 cells. Although the differences between HCM patients and the in vitro cell model
may stem from different physiological states, we believe that the MIR210HG–BPIFC pair
is more significant and accurate. BPIFC, a protein-coding gene located on Chr 22q13, is
rarely expressed and is involved in lipid transfer and lipopolysaccharide binding [32].
Notably, it shows high expression levels in skin samples from psoriasis patients, and its
expression is abnormally elevated in inflamed psoriatic skin, suggesting its involvement in
inflammation and/or immune response [33]. Additionally, research has demonstrated the
functional roles of MIR210HG in various diseases through its interactions with different
miRNAs [29]. Therefore, it is plausible that MIR210HG–BPIFC is an important immune-
associated lncRNA–mRNA pair identified in relation to HCM. Furthermore, we confirmed
the downregulation of the MIR210HG–BPIFC pair in an ISO-induced hypertrophic car-
diomyocyte model. Interestingly, without ISO stimulation, knockdown of MIR210HG by
siRNA not only decreased the expression of BPIFC, but also induced the hypertrophy
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marker genes and cellular hypertrophic morphology. At the same time, the regulatory
miRNAs miR-145, miR-216b, miR-24, miR-34c, etc., showed moderately increased expres-
sion. These cellular experiments further confirmed the correlation of MIR210HG–BPIFC
with HCM and indicated the important role of MIR210HG–BPIFC in regulating the pro-
gression of HCM. However, the confirmation of their association was solely based on an
in vitro cardiomyocyte hypertrophy model. This study focused on the correlation between
lncRNA and mRNA, and on the association between lncRNA–mRNA pairs and HCM, thus
requiring further in vivo studies to validate the specific intervention mechanism.

We further tested our hypothesis by immune cell infiltration. Lots of studies have
demonstrated an increase in inflammatory cytokines and immune cell infiltration in the
myocardium of individuals with HCM. These findings imply that immune cells significantly
contribute to the development of HCM. Previous studies have focused on mast cells.
Mast cells were found to produce growth factors such as TGF-β and bFGF [34], along
with neurotransmitters such as histamine that trigger positive cardiac effects [35]. All of
these factors are closely related to the pathogenesis of HCM. The mast cell stabilizer was
able to reduce compulsive left ventricular remodeling in a rat model [36]. A significant
downregulation of resting mast cells was also found in our immune cell infiltration analysis.
Interestingly, we also found significant decreased infiltration of naïve CD4+ T cells and
significantly increased infiltration of CD8+ T cells, which is consistent with the conclusions
of previous studies [37]. Meanwhile, in the published case reports, there have been cases of
T-cell lymphoma complicated with HCM [37] and HCM cases after cell therapy intervention
with T cells, indicating that T cells also play an important role in the pathogenesis of HCM.
T-cell infiltration has been found in the published HCM heart single-cell data [38]. In
the cluster of T cells, the proportion of the subgroups with increased expression of CD8+

marker genes was increased, indicating that the infiltration of CD8+ T cells was increased in
HCM [38]. The expression changes of the MIR210HG–BPIFC pair were correlated with the
immune-related miRNAs in the AC16 model of cardiomyocyte hypertrophy (Figure 5E and
Figure S2A). Based on our bioinformatics analysis and experimental data, we speculated
that the decreased expression of the MIR210HG–BPIFC pair in AC16 cells may regulate
the innate immune response cytokines and affect the recruitment of naïve CD4+ T cells
and CD8+ T cells. In our study, the lncRNA–mRNA pair MIR210HG–BPIFC was found
to be highly positively correlated with naïve CD4+ T cells and negatively correlated with
CD8+ T cells. These results suggest that the inhibition of the MIR210HG–BPIFC pair may
be one of the reasons for the significantly increased infiltration of CD8+ cells in HCM. Our
data suggest that the MIR210HG–BPIFC pair is a potential biomarker for immune cell
disorder in HCM. However, the detailed molecular mechanisms are still obscured and need
further studies.

However, there are certain limitations to this study. Enhancing the availability of
clinicopathological genetic data and increasing the sample size could improve the accuracy
of disease assessment and prediction. Additionally, it is important to note that although we
validated our predicted results using the AC16 cell model, such cells do not fully represent
human beating cardiomyocytes. Therefore, further investigation using clinical samples of
human cardiomyocytes and myocardium affected by hypertrophic cardiomyopathy will be
necessary to validate the regulatory impact of immune-related lncRNA–mRNA interactions
in HCM.

4. Materials and Methods
4.1. Data Collection

The RNA-Seq datasets GSE180313 (training dataset) and GSE130036 (validation dataset)
were downloaded from the Gene Expression Omnibus (GEO) (http://www.ncbi.nlm.nih.
gov/geo/ (accessed on 26 October 2021)). GSE180313 consists of heart tissues belonging
to 13 HCM patients and 7 normal controls. GSE130036 also includes heart tissues from
28 HCM patients and 9 healthy donors. We downloaded the raw counts, in the fastq.gz
file format, of 41 HCM heart tissues and 16 healthy controls from these two databases’

http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
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expression profiling for further analysis. More details about the datasets are shown in
Tables S1 and S6, and Figure 8 illustrates the bioinformatics analysis workflow in our study.
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4.2. Data Preprocessing and DEG Screening

We used hisat2 (versions 2.1.0-4) to align multiple sets of paired-end fastq files to the
reference genome (GRCh37), sort the alignments, and convert them to the BAM format.
Then, the BAM format was used for quantifying gene expression by featureCounts (v2.0.2).
GSE180313 was chosen as the training database to identify important genes, because it was
more credible, while the GSE130036 database served as a validation set. In order to identify
the DEGs, we used the “DESeq2” package in R software (version 4.3.1) to filter out genes
with a total count of less than 1 in the gene expression matrix, and then we performed
differential analysis using the DESeq function. Finally, we identified the DEGs with the
cutoff |Log2 fold change| > 1 and adjusted p-value < 0.05.

4.3. Weighted Gene Co-Expression Network Analysis

The construction of the co-expression network was performed using the “WGCNA”
package (version 1.71) in R software (version 4.3.1), with the top 5000 genes exhibiting the
highest median absolute deviation. To determine the appropriate soft threshold (β = 5), we
utilized the pickSoftThreshold function to compute the network’s topological fit indices.
Subsequently, we applied the soft threshold (β = 5) to generate the adjacency matrix, with
a resulting R2 value of 0.85 achieved by calculating the Pearson’s correlation coefficient
between any two genes within the matrix. We performed gene module analysis using
the blockwiseModules function. To identify modules (minimum size = 30), hierarchical
clustering and dynamic tree-cutting functions were employed. Each co-expression module
was assigned a name corresponding to its color. By using the corPvalueStudent function
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and the cor function to assess the p-values and Pearson’s correlation coefficients of the
module eigengenes (MEs) in relation to the disease traits, the key modules most relevant to
HCM were identified.

4.4. Identification of Immune-Related RNAs and ceRNA Network Construction

The AnnoProbe package was used to annotate the genes from key modules, because
its annoGene function can distinguish between mRNAs and lncRNAs. We downloaded
a list of immune-related genes from the gene list resources in the Immunology Database
and Analysis Portal (ImmPort) (https://www.immport.org/ (accessed on 1 June 2022)).
Then, we identified the immune-related mRNAs and the immune-related lncRNAs by
intersecting the list from ImmPort and the genes from key modules.

The construction of the ceRNA network involved the utilization of immune-related
lncRNAs and mRNAs. To obtain interaction data between miRNAs, mRNAs, and lncRNAs,
we employed the miRcode database, which provided both predicted and experimentally
validated information. Competing lncRNA–mRNA pairs were identified by two criteria:
the existence of regulatory miRNAs shared between the lncRNA and mRNA, and a positive
correlation in the expression levels of the mRNA and lncRNA (Pearson’s correlation > 0.75).
The ceRNA network derived from these identified lncRNA–mRNA pairs was visualized
using Cytoscape 3.9.1 software.

4.5. Cell Culture and HCM Cell Model

AC16 cells were purchased from SUNNCELL. The cells were cultured in Dulbecco’s
modified Eagle’s medium (DMEM; GENOM, Hangzhou, China) supplemented with 10%
fetal bovine serum (FBS; ExCell, Suzhou, China), cultured for 24 h at 37 ◦C in a humidified
incubator under 5% CO2. ISO group cells were incubated with medium containing 10 µM
ISO [39] (MilliporeSigma, Burlington, MA, USA) for 24 h, and cells treated with PBS were
set as the control group. Two MIR210HG siRNAs were fabricated by Genechem, and
si-NC-FAM was transfected as a negative control. For transient transfection, a mixture of
siRNA (60 nM), Opti-MEM medium (ThermoFisher Scientific, Waltham, MA, USA), and
GP-transfect-Mate (Genechem, Shanghai, China) was dispensed into each well of 24-well
cell culture dishes containing AC16 cells.

4.6. Measurement of Cell Surface Area

To determine changes in cell size, cells were treated with 4% paraformaldehyde at
room temperature (RT) for 20 min, 0.1% Triton X-100 PBS was used for permeabilization,
and then actin tracker (1:100, Beyotime, Shanghai, China) was added to the cells and
incubated at RT for 1 h. Finally, Hoechst 33342 (1:100, Beyotime, Shanghai, China) was
applied to the cells at RT for 5 min. Cells were randomly selected from different groups.
Three fields per dish image were captured and imaged using a fluorescence microscope
(Keyence, BZ-X800E) at a magnification of ×40. The cell surface area was measured using
ImageJ 1.46r.

4.7. Quantitative Real-Time PCR (qRT-PCR)

Total RNA was extracted as previously described [40]. Briefly, the total RNA of the
fresh AC16 cells was extracted using TRIzol reagent (Tsingke, Beijing, China). To detect the
expression of lncRNAs and mRNAs, the HiScript III RT SuperMix for qPCR Kit (Vazyme,
Nanjing, China) was used to synthesize the cDNA with 1 µg of total RNA. Then, 6.5 µL of
50-fold-diluted cDNA, 7.5 µL of qPCR SYBR Master Mix (Vazyme, Nanjing, China) and
1 µL of 10 mM primers were mixed in a 96-well plate. The method of thermal profiling
followed the kit instructions, and 18S was used as an internal reference. To detect the
miRNAs’ expression levels, reverse transcription was performed using the miRcute Plus
miRNA First-Strand cDNA Kit (Tiangen Biotech Co., Ltd., Beijing, China), according to
the manufacturer’s instructions. U6 was used as an internal reference. For each PCR
reaction, Dissociation Curve 1.0 software (Applied Biosystems, Waltham, MA, USA) was

https://www.immport.org/
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used to analyze the dissociation curves to detect and eliminate possible primer dimers
and nonspecific amplification. The 2−∆∆Ct method was used to calculate the relative
abundance of lncRNAs, mRNAs, and miRNAs, accounting for gene-specific efficiencies
and normalized to the mean expression of the abovementioned index [41]. The primers
used in this study are listed in Table S7.

4.8. CIBERSORTx and Statistical Analysis

To investigate the disparities in immune cell composition between HCM and healthy
controls, we employed CIBERSORTx (https://cibersortx.stanford.edu/ (accessed on 16
May 2022)) to examine whole-genome expression profiles. Utilizing the LM22 signature
as a reference and conducting 1000 permutations, we determined the proportion of each
immune-cell type in the samples from both groups. We assessed the correlation between
lncRNAs/mRNAs and the proportion of immune cells using Pearson’s correlation coef-
ficients, considering a p-value < 0.05 as statistically significant. The Pearson’s correlation
coefficients were calculated using the cor function, and the p-values were calculated using
the rcorr function.

5. Conclusions

In this study, RNA-Seq datasets of heart tissues from HCM patients were investigated
to identify immune-related lncRNA–mRNA co-expression pairs. Through thorough bioin-
formatics screening and analysis, we identified an immune-related lncRNA–mRNA pair
(MIR210HG–BPIFC) that was consistently decreased in HCM, as confirmed by the analysis
of the validation dataset and experiments in an HCM cell model. Further immune cell
infiltration analysis suggested that the MIR210HG–BPIFC pair is potentially involved in
the infiltration of naïve CD4+ T cells and CD8+ T cells during the progression of HCM.
These findings not only identify decreased expression of the MIR210HG–BPIFC pair as
a novel biomarker of HCM, but also suggest that this immune-related lncRNA–mRNA
co-expression pair could be a new therapeutic target for the treatment of HCM.
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