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Abstract: The appropriate expression and localization of cell surface cell adhesion molecules must
be tightly regulated for optimal synaptic growth and function. How neuronal plasma membrane
proteins, including cell adhesion molecules, cycle between early endosomes and the plasma mem-
brane is poorly understood. Here we show that the Drosophila homolog of the chromatin remodeling
enzymes CHD? and CHDS, Kismet, represses the synaptic levels of several cell adhesion molecules.
Neuroligins 1 and 3 and the integrins «PS2 and BPS are increased at kismet mutant synapses but
Kismet only directly regulates transcription of neuroligin 2. Kismet may therefore regulate synaptic
CAMs indirectly by activating transcription of gene products that promote intracellular vesicle traf-
ficking including endophilin B (endoB) and/or rab11. Knock down of EndoB in all tissues or neurons
increases synaptic FaslI while knock down of EndoB in kis mutants does not produce an additive
increase in FaslI. In contrast, neuronal expression of Rab11, which is deficient in kis mutants, leads
to a further increase in synaptic FasllI in kis mutants. These data support the hypothesis that Kis
influences the synaptic localization of FaslI by promoting intracellular vesicle trafficking through the
early endosome.

Keywords: synapse; Drosophila neuromuscular junction; neuroligins; integrins; Fasciclin II; endocytosis;
Endophilin B; AP-1; Rab11

1. Introduction

Synaptic function relies on the appropriate execution of processes that modify and
maintain neurotransmission, endocytosis, and protein localization. These processes are
regulated by cell adhesion molecules (CAMs), which physically link presynaptic neurons,
postsynaptic cells, and glial cells [1]. CAMs are centrally localized at synapses where
they are optimally positioned to organize neurotransmitter receptors including NMDA,
AMPA, and GABA receptors [2] and active zones [3]. Thus, CAMs not only contribute
to the localization of pre- and postsynaptic nanodomains but also to the apposition of
functional nanodomains such that presynaptic release sites are aligned with postsynaptic
receptors [4]. This alignment promotes efficient neurotransmission [5] and is disrupted in
neurodevelopmental disorders [6].

Several families of CAMs contribute to the organization of synapses including, but
not limited to, the immunoglobulin superfamily, neurexins and neuroligins, cadherins
and catenins, and integrins. CAMs are transmembrane or glycosylphosphatidylinositol
(GPI)-linked proteins that include large, glycosylated extracellular domains [7]. CAM
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signaling is activated by homophilic interactions between the same pre- and postsynaptic
CAM extracellular domain, heterophilic interactions with other CAMs, or interactions with
receptors or the extracellular matrix [8]. The intracellular domains of CAMs physically
associate with scaffolding proteins, cytoskeletal regulatory proteins, and signaling path-
ways [9]. The specific identities and combination of synaptic CAMs and their respective
downstream signaling pathways mediate synaptogenesis [10] and synaptic plasticity [11].

Synaptic CAM expression varies during development and in diseased brains. Meta-
analyses of 19 transcriptomic data sets revealed that CAMs were upregulated across
17 brain regions in individuals between 0-20 years old but downregulated in individuals
20 years old or older [12]. Multiple genome-wide association studies consistently identified
CAMs as strongly associated with Alzheimer’s [13] and Parkinson’s diseases [14] and in
autism spectrum disorders [15]. CAM pathway genes were targets of cis-regulatory single
nucleotide polymorphisms in Alzheimer’s disease patients’ temporal cortex and cerebellum
compared with controls [16]. Collectively, these studies highlight the importance of CAMs
for appropriate wiring and synaptic function in the brain. Despite this, little is known about
the mechanisms that regulate the transcription and/or synaptic localization of CAMs.

One such mechanism of CAM transcriptional regulation is via the chromatin helicase
binding domain (CHD) protein family of chromatin remodeling enzymes. Chromatin
remodeling enzymes are ATPases that change the composition of histone octamer subunits
within nucleosomes or the position of nucleosomes, thereby exposing or shielding access to
certain DNA sequences [17]. As such, CHD proteins promote transcriptional activation of
some genes and transcriptional repression of others [18]. RNA sequencing data demonstrate
that genes enriched for extrinsic to membrane and focal adhesion were differentially
expressed after Chd8 knock down in human progenitor cells [19]. Transcript levels of the
neural cell adhesion molecule (NCAM) were significantly reduced in Chd7 null embryonic
stem cells [20] and Chd8 knock down human neural progenitor cells [19] but were increased
in fully differentiated neurons derived from heterozygous Chd8 loss of function neural
progenitor cells [21].

Kismet (Kis) is the Drosophila ortholog of both CHD7 and CHDS, which, when mutated,
are causative for CHARGE syndrome [22] and implicated in autism spectrum disorders [23],
respectively. Based on their conserved structures [24], Kis likely shares transcriptional
mechanisms and targets with CHD7 and CHD8. Indeed, Kis binding is enriched in the
promoters of fasciclin I (fasII), which is the Drosophila ortholog of NCAM, neuroligins 2 and 4,
neurexin IV, and dscam?2 [25] in Drosophila intestinal stem cells. The functional consequences
of these genetic perturbations in mature neurons are unknown. Therefore, we sought to
better understand the synaptic mechanisms that regulate CAM expression and localization
in kis mutants.

We used the Drosophila neuromuscular junction (NM]J), which is structurally and
functionally similar to mammalian central nervous system glutamatergic synapses [26,27],
to examine the relationship between CHD proteins and CAM expression and localization.
This system is advantageous because the third instar NM] is a mature synapse [28] that
is amenable to genetic manipulation and transcriptional regulation is highly conserved
between flies and humans [29]. Kis restricts synaptic levels of Fasll and is important for
endocytosis [30], neurotransmission, synaptic organization, and behavior in Drosophila
larvae [31] and adults [32]. Here we show that Kis represses the synaptic localization of
several CAMs, including those of the integrin and neuroligin families, but only directly
regulates transcription of neuroligin 2. We therefore attributed the increase in synaptic CAMs
as secondary to Kis activating transcription of gene products that promote intracellular
vesicle trafficking including endophilin B (endoB) and/or rab11 [30]. Knock down of EndoB
in all tissues or neurons increases synaptic FaslI, while knock down of EndoB in kis mutants
does not produce an additive increase in Fasll. In contrast, neuronal expression of Rab11,
which is deficient in kis mutants, leads to a further increase in synaptic Fasll in kis mutants.
These data support the hypothesis that Kis influences the synaptic localization of FasII by
promoting intracellular vesicle trafficking.
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2. Results

Synaptic CAMs are critical for developmental processes including synaptogenesis,
synapse refinement, and synaptic maintenance [33]. Aberrant expression of CAMs occurs
in both neurodevelopmental disorders [15] and neurodegenerative diseases [34]. We previ-
ously demonstrated that synaptic levels of the NCAM homolog, Fasll, are increased and
the apposition of active zones relative to postsynaptic glutamate receptors is perturbed at
kis mutant NM]Js [31]. Given that multiple CAMs may be localized to the same synapse [33]
and Kis binds to regulatory regions of neuroligins (nlgs) 2 and 4 in Drosophila intestinal stem
cells [25], we sought to determine whether Kis may influence the expression of additional
CAMs at the NMJ. We used two kis mutant alleles to examine CAM expression and synap-
tic localization including the hypomorphic allele, kisk13416, and kistM27 | a null allele [35].
Because kis™?7 animals are embryonic lethal, we used larvae heterozygous for kist13416
and kis!M?7,

2.1. kis Restricts the Synaptic Localization of CAMs

Postsynaptic Nlgs bound to presynaptic Neurexins induce synaptogenesis in neuronal
and non-neuronal cells [36,37]. Nlgl specifically recruits NMDA receptors containing
GluN1, GluN2A, and GluN2B subunits in cultured hippocampal cells by interacting with
their extracellular domains [38]. This domain was required for the induction of long-
term potentiation in the CA1 region of the hippocampus [39]. In Drosophila, there is a
single presynaptic homolog of Neurexin, Neurexin-1 (Nrx-1), and four Nlg homologs [26].
Overexpression of nlgl in postsynaptic muscles of the NM]J results in an increased number
of postsynaptic boutons but reduces evoked and miniature endplate junctional currents [40]
and this phenocopies kis mutants [31]. Therefore, we examined the synaptic localization of
Nlg1 and Nlg3 in kis mutants. We used HRP, which recognizes neuronal N-glycans [41], to
label neuronal membranes in conjunction with available antibodies for Nlgs. There was
an increase in synaptic levels of both Nlg1 and Nlg3 in kis*'3#1¢ mutants and of Nlg1 in
kistM27 /kisk13416 mytants (Figure 1A,B).

To determine if the increase in Nlgl and Nlg3 may be attributed to transcriptional
regulation by Kis, we examined the transcript levels of nrx-1 and nlgs in both presynaptic
neurons and postsynaptic muscle of kis mutants. Nrx-1 and all four nlgs are expressed
in presynaptic neurons, while only nlgs1, -2, and -3 are expressed in postsynaptic muscle
(Flybase.org). There was an approximate two-fold increase in nlg2 transcripts in the
CNS but not muscle of kistM27 /kisk13416 mytants (Figure 1C). There were no other notable
changes in nrx-1 or nlg transcripts in kis mutants. We next examined Kis occupancy of cis-
regulatory sites upstream of the nlgs in third instar larval central nervous systems (CNSs)
via chromatin immunoprecipitation (ChIP) followed by qPCR. This was accomplished using
animals expressing enhanced Green Fluorescent Protein (eGFP) within the endogenous
Kis protein [42]. Kis-eGFP does not affect the localization of Kis compared with wild-type
Kis [31]. We knocked down Kis in Kis-eGFP animals by expressing UAS-kis®N4! in neurons
using the elav-Gal4 driver. Knock down of Kis-eGFP using the elav-Gal4 driver results in
an approximate 55% reduction in GFP fluorescence in the ventral nerve cord [43]. Kis was
enriched within both nlg2 transcription start sites (TSS1, TSS2) in Kis-eGFP CNSs relative
to Kis knock down (Figure 1D). Because our previous microarray data indicated that Kis
did not affect the dynamin ortholog, shibire, mRNA levels [31], we used shibire as a negative
control and confirmed that Kis is not enriched within the shibire promoter or transcription
start site.
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Figure 1. Kismet restricts the synaptic localization of Nlgs and regulates nig2 transcription. High-
resolution confocal micrographs of 6/7 NM] terminal boutons showing presynaptic motor neurons
(magenta, HRP) and either Nlgl (green, (A)) or Nlg3 (green, (B)). Scale bar = 5 um. * p < 0.05.

Right panels show quantification relative to the control, w!!!8

. (C) Nlg transcript levels in the
CNS (left) and muscle (right) of kis mutants. Points represent technical replicates of two or three
biological replicates. (D) Kismet enrichment within the promoter (pro) or transcription start sites

(TSS) of gene regions listed. Data shown represent two ChIP-qPCR biological replicates from CNS.

Integrins are a family of CAMs that bind to the extracellular matrix to regulate neuronal
cell migration during development and synaptic maturation and function [44]. At the
Drosophila NM]J, interactions between the Tenectin ligand and «PS2/BPS integrins promote
neurotransmitter release [45]. Activity-dependent addition of NM]J boutons is restricted by
interactions between postsynaptically secreted laminin A and presynaptic 3v integrins [46],
while growth of individual boutons and postsynaptic glutamate receptor localization
is enhanced by interactions between presynaptically released Shriveled and pre- and
postsynaptic BPS integrin receptors [47]. Further, knock down of Chd7 in human neural
crest-like cells led to aberrant cell migration and reduced attachment to the extracellular
matrix [48], processes mediated by integrins [44]. Therefore, we also examined synaptic
levels of «PS2 and BPS integrin receptors in kis mutants and found these integrins were
increased at the NMJ of kisk13416 and kistM27 /kisk13416 mutants (Figure 2A,B). Similar to the
Nlgs, however, kis mutants exhibited similar levels of integrin receptor transcripts in both
the CNS and muscle (Figure 2C,D).
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Figure 2. Kismet restricts the synaptic localization of xPS2 and BPS but does not influence their
transcripts. High-resolution confocal micrographs of 6/7 NM]J terminal boutons showing presynaptic
motor neurons (magenta, HRP) and either aPS2 (green, (A)) or 3PS (green, (B)). Scale bar =5 pum.
* p < 0.05. Right panels show quantification relative to the control, w!!. Integrin subunit transcript
levels in the CNS (C) or muscle (D) of kis mutants. Points represent technical replicates of two to
three biological replicates.

Collectively, our data indicate that Kis restricts the synaptic localization of Nlgl,
Nlg3, «PS2, and BPS. Of the four Nlgs and five integrins examined, Kis only directly
regulates nlg2 transcription. These data suggest that the accumulation of CAMs at kis
mutant synapses may be attributed to both direct transcriptional regulation by Kis and
indirect regulation possibly by endocytosis and vesicle trafficking [30]. To assess these
possibilities, we focused on the CAM Fasll, which also accumulates at kis mutant NMJs [31]
but is not transcriptionally regulated by Kis (Figure 2C,D, right bars). Both NCAM [49] and
Fasll [50,51] regulate synaptic plasticity in mature neurons.

2.2. Impairing Vesicle Trafficking Increases Synaptic Fasll in Wild-Type Larvae but Does Not
Change Synaptic Fasll in kis Mutants

The synaptic vesicle cycle maintains synaptic pools in mature neurons and ensures
that proteins of synaptic vesicles are appropriately sorted from those of the plasma mem-
brane [52]. Endocytosis is part of the synaptic vesicle cycle as it enables neurons to replenish
synaptic vesicles [53], maintain protein localization, and preserve the size and composi-
tion of the presynaptic membrane [54,55]. CAMs are among the cell-surface proteins
internalized via endocytosis for cellular redistribution during cell migration [56]. Kis
promotes endocytosis by regulating the expression of genes required for endocytosis and
the localization of endocytic proteins [30]. NCAM is internalized via clathrin-mediated
endocytosis [57]. Therefore, we assessed the possibility that Kis may influence FaslI local-
ization by promoting endocytosis. FasIl forms homophilic interactions at the NMJ where
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it is expressed in presynaptic motor neurons and postsynaptic muscles [50,51]. We first
examined synaptic levels of Fasll after knock down of Endophilin B (EndoB), which is a
BAR-domain-containing protein that facilitates membrane curvature [58]. Knock down
of EndoB was accomplished by expressing UAS-EndoBRNA in all cells using the Actin-5c
driver, in neurons using the elav-Gal4 driver, in postsynaptic muscle cells using the 24B-Gal4
driver, or in glial cells using the repo-Gal4 driver. Knock down of EndoB in all cells or
neurons produced an increase in synaptic Fasll (Figure 3) recapitulating the kis mutant
phenotype [31]. In contrast, knock down of EndoB in postsynaptic muscle or glia did not
change synaptic Fasll compared with outcrossed controls (Figure 3).
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Figure 3. Knock down of EndoB in all tissues or neurons increases synaptic Fasll. Left panels:
EndoB was knocked down in all tissues (using the Actinbc-Gal4 driver), in neurons (using the elav-
Gal4 driver), in postsynaptic muscle (using the 24B-Gal4 driver), or glial cells (using the repo-Gal4
driver). High-resolution confocal micrographs show terminal boutons of 6/7 NM]Js labeled with HRP
(magenta) and FaslI (green) in animals where EndoB was knocked down in all tissues or neurons.
Scale bar = 5 um. Right histogram: quantification of synaptic FaslI relative to the outcrossed control,
UAS-EndoBRNAi/y 1 < 0.05.

If EndoB and Kis function together in the same pathway, then simultaneous loss of
function of endoB and kis should not further increase synaptic levels of Fasll compared to
loss of each protein individually. EndoB was knocked down in kistM27 /jsk13416 mytants
by expressing UAS-EndoBRN4 using the drivers listed above, except we used the D42-
Gal4 driver to knock down EndoB solely in motor neurons instead of all CNS neurons.
There was no difference in synaptic Fasll when EndoB was knocked down in all tissues, in
motor neurons, or in postsynaptic muscle cells of kis!M?7 /kisk13416 mutants compared with
outcrossed controls (Figure 4A,B). These data support the hypothesis that Kis and EndoB
work together to restrict the synaptic accumulation of FaslL

EndoB affects neuronal protein trafficking by influencing the dynamics of the en-
domembrane system. Although EndoB regulates endocytosis in Drosophila oocytes [59],
it did not affect endocytosis at the NMJ. Instead, EndoB regulates autophagosome bio-
genesis at the NM]J [60]. EndoB facilitates synaptic vesicle recycling in C. elegans [61] and
is concentrated on intracellular membranes instead of the plasma membrane [62], where
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it is implicated in endosomal trafficking via association with Rab5 and Rab7 [59]. Simi-
larly, adaptor protein-1 (AP-1) complexes, which help form vesicles and select cargo [63],
contribute to synaptic vesicle recycling [64,65] and are associated with Rab5 and the early
endosome [66]. These data suggest that Kis may exhibit functional redundancy with AP-1
to restrict the localization of synaptic Fasll. To assess this possibility, we knocked down the
o subunit of AP-1, which is the subunit that binds vesicular cargo [63], in kisLM27 /kjgk13416
mutants. Similar to EndoB knock down in kistM27 /kisk13416 mytants, knock down of AP-1¢
in all tissues, in motor neurons, or in postsynaptic muscle cells of kis"M?7 /kisk1341¢ mutants
did not show an additive increase in synaptic Fasll compared with outcrossed controls
(Figure 4C). Taken together, these data suggest that Kis, EndoB, and AP-1c function in the
same pathway to restrict synaptic levels of FaslI.
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Figure 4. Knock down of EndoB in kis mutant motor neurons or muscles does not further increase

synaptic FaslI. (A) EndoB was knocked down by expressing UAS-EndoBRNA!

in all tissues (using the
Actinbc-Gal4 driver), in motor neurons (using the D42-Gal4 driver), or in postsynaptic muscle (using
the 24B-Gal4 driver) of kis mutants. High-resolution confocal micrographs depict terminal boutons of
6/7 NMJs labeled with HRP (magenta) and FaslI (green). Scale bar = 5 pm. (B) Histogram of synaptic
FaslI relative to the outcrossed control, kistM27 /+; UAS-EndoBRNAI /4 (C) Histogram of synaptic FaslI

relative to the outcrossed control, kistM27 /+: UAS-AP-10RNAi /4

2.3. Increased Rab11 Activity Promotes the Synaptic Localization of Fasll in Wild-Type Larvae and
Shows an Additive Effect in kis Mutants

The increase in Fasll at kis mutant synapses may be functionally linked to other
proteins that help organize the synapse. Rabs are a family of GTPases that coordinate
membrane trafficking between compartments of the endomembrane system [67]. Rab11
transcript levels are reduced in kis mutant CNSs [30]. Rab11 specifically traffics cargo
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between recycling endosomes and the plasma membrane [68], thereby controlling the
dynamics and concentration of membrane-associated proteins and lipids [69]. Increases in
persistently active/GTP bound Rab11 also increases the number of rat cerebellar granule
cell neuron terminals undergoing activity-dependent bulk endocytosis with NCAM present
in bulk endosomes [70]. Thus, the loss of Rab11 at the synapse of kis mutants [30] may
result in Fasll accumulation. We assessed this possibility by expressing either constitutively
active/GTP bound Rab11 (Rab1197%L) or dominant negative/inactive Rab11 (Rab115%5N)
in presynaptic motor neurons or postsynaptic muscles. While ubiquitous expression
of Rab1197% led to viable adults, ubiquitous expression of Rab115N resulted in early
larval lethality. Expression of Rab1197% in all tissues or in postsynaptic muscle alone
resulted in increased synaptic Fasll compared to outcrossed controls (Figure 5A). In contrast,
expression of Rab115°N in neurons but not muscles increased synaptic FasIl compared to
outcrossed controls (Figure 5B,C). This is contrary to kis mutants, which exhibit increased
synaptic FaslI [31] but decreased synaptic Rab11 [30].
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Figure 5. Synaptic FaslI is increased when expressing a constitutively active Rab11 in all tissues but
decreased when expressing a dominant negative Rab11 in motor neurons. (A) A constitutively active
Rab11, Rab11Q7% was expressed in all tissues (using the Actindc-Gal4 driver), in motor neurons (using
the D42-Gal4 driver), or in postsynaptic muscle (using the 24B-Gal4 driver). High-resolution confocal
micrographs depict terminal boutons of 6/7 NM]Js labeled with HRP (magenta) and FaslI (green).
Scale bar = 5 um. Histogram of synaptic FaslI relative to the outcrossed control, UAS-Rab11970L /4
** p = 0.0046. (B) Histogram of synaptic FaslI relative to the outcrossed control, UAS-Rab115?°N /4.
*p =0.011. (C) A dominant negative Rab11, Rab115%N was expressed in motor neurons (using the
D42-Gal4 driver) or in postsynaptic muscle (using the 24B-Gal4 driver). High-resolution confocal
micrographs depict terminal boutons of 6/7 NMJs labeled with HRP (magenta) and FaslI (green).
Scale bar =5 um.
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Kis mutants also exhibit deficient muscle contraction and neurotransmission [31]. To
assess whether constitutive Rab11 activity could restore locomotion in kis mutants, we
expressed Rab1197%L in all neurons of kis mutants. Drosophila larval locomotion occurs by
coordinated contractions of the dorsal and ventral body wall muscles [71], which are exe-
cuted by a CNS central pattern generator [72]. Kis"'3#1¢ heterozygous mutants expressing
Rab1197%L in neurons showed an increase in both maximum speed of movement and dis-
tance travelled (Figure 6A,B) compared with the kis‘'3#1¢ outcrossed control. Notably, the
increase in distance traveled was greater than that of the UAS outcrossed control indicating
an augmentation of locomotion.

*  UAS-Rab1197%/+ kisk13416/+; elav-Gald/+ e UAS-Rab11"7/+
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Figure 6. Expression of Rab1197%t and Rab11"T in neurons of kis heterozygous mutants increases
locomotion and synaptic FaslI levels, respectively. (A) Rab1197%" was expressed in neurons of
kisk13416 mutants using the elav-Gal4 driver. Histograms show larval crawling behavior on agar for
30 s quantified by wrMTrck and normalized to body lengths per second. Left histogram: ** p = 0.0045;
*** p = 0.0001. Right histogram: *** p < 0.0001. (B) Quantification of synaptic FaslI relative to the
outcrossed control, UAS-Rab11"T/+. * p = 0.046. Rab11 was expressed in kis"™?”/+ heterozygous

mutants by expressing UAS-Rab11°¥FP

in neurons using the elav-Gal4 driver. (C) High-resolution
confocal micrographs of 6/7 NMJ terminal boutons showing presynaptic motor neurons (magenta,

HRP) and FaslI (green). Scale bar = 5 pm.

We reasoned that expression of constitutively active or catalytically inactive Rab11
could lead to unexpected phenotypes given that these Rab11 isoforms cannot be endoge-
nously regulated. Further, CHD proteins affect the expression of hundreds to thousands of
genes [19-21,25] and differential expression of secondary targets may contribute to aberrant
Rab11 expression observed in kis mutants. Therefore, we sought to circumvent this issue
by expressing the wild-type endogenous Rab11 locus under UAS control in kis mutants.
If deficient Rab11 activity contributes to the accumulation of FasllI at kis mutant synapses,
then increasing Rab11 expression might restore synaptic levels of Fasll. Wild-type Rabl11,
UAS-Rab11"™T, was expressed in neurons of heterozygous kistM27 mutants. This resulted,
however, in increased synaptic FasIl compared to heterozygous kis"M?” mutants that do not
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express UAS-Rab11™T (Figure 6C). Our results collectively indicate that the accumulation
of Fasll in kis mutants may be due to impaired intracellular trafficking through the early
endosome but not the recycling endosome.

3. Discussion

The role of CHD proteins in neurodevelopment is well recognized [73] but how they
function in mature neurons is poorly understood. CHD proteins affect the expression of
genes and gene families required for neurodevelopment [22,23] and were identified as risk
factors for neurodegenerative diseases [19,21]. Both CHD7 and CHDS are expressed in
human adult cortical neurons [74] and regulate the expression of genes involved in cell
adhesion, neurotransmission, and synaptic plasticity [75-78]. We uncover an unexpected
role of the Drosophila homolog of CHD7 and CHDS, Kis, at the synapse. Kis may facilitate
the synaptic localization of the NCAM homolog, Fasll, by promoting intracellular vesicle
trafficking. Loss of function of kis or endoB leads to the synaptic accumulation of FaslII.
EndoB [59] and AP-10 [66] assist in early endosomal transport. The increase in FaslI at kis
mutant synapses is not augmented by knock down of EndoB or AP-1o (Figure 4). Attempt-
ing to restore Rab11 levels in kis mutants, however, increases synaptic FaslI (Figure 6C).
These data suggest that Kis, EndoB, and AP-1o may work in the same pathway to restrict
synaptic Fasll, possibly by influencing FaslI trafficking through the endomembrane system.

Similar to other synaptic proteins, the levels of cell surface CAMs must be tightly
regulated for optimal synaptic growth. While too few CAMs in the membrane can result in
retraction of the presynapse [51], too many CAMs impair the neuron’s capacity to remodel
the synapse in response to changes in activity [79], negatively affecting synaptic plastic-
ity [80]. The NCAM180 isoform is localized to synapses by diffusion from extrasynaptic
sites followed by stabilization via homophilic interactions and association with the spectrin
cytoskeleton [81]. CAM localization to the synaptic plasma membrane is also affected
by interactions with other CAMs. N-cadherin facilitates the postsynaptic accumulation
of Nlg1 in immature hippocampal neurons [82] and N-cadherin knock down in mature
hippocampal neurons results in the loss of Nlg1 from the synapse [83]. Thus, it is possible
that the increase in Nlg1 at kis mutant synapses is the result of stabilization by other CAMs
as these synapses exhibit increases in Nlg1 and Nlg3 (Figure 1A,B) and the integrins cPS2
and BPS (Figure 2A,B) in addition to FaslI [31]. This hypothesis presumes that the increase
in nlg2 also occurs at the synapse, is sufficient to stabilize other synaptic CAMs, and that
each CAM facilitates the stabilization of every other CAM at the synapse. The latter does
not occur in hippocampal neurons where the conditional knock out of 31 integrin resulted
in increased localization of Nlgs to synaptosomes but of N-cadherin to lysates [84]. Thus,
loss of 31 integrin increased the synaptic pool of Nlgs while decreasing N-cadherins.

Synaptic proteins are added to and retrieved from the synapse by cycling through
the endomembrane system [85]. Retrieval via endocytosis occurs through a variety of
mechanisms at the synapse, the best characterized of which include clathrin-mediated
and activity-dependent bulk endocytosis [86]. Kis facilitates endocytosis by regulating
expression of endocytic genes and localization of endocytic proteins, including the fission
protein, Dynamin [30]. The deficits in endocytosis in kis mutants may lead to the synaptic
retention of CAMs. It is also possible that the increase in CAMs at kis mutant synapses
limits endocytosis. Indeed, membrane tension is inversely correlated with endocytosis [87]
as clathrin-mediated endocytosis is slower at sites near substrate adhesion [88]. N-cadherin
promotes activity-dependent endocytosis in mature cortical neurons [89]. Conversely,
hippocampal nlg1 knock out neurons exhibit an increase in activity-dependent endocyto-
sis [90] and NCAM negatively regulates activity-dependent bulk endocytosis [91]. NCAM
also promotes maturation of the endocytic machinery in cultured mouse hippocampal
neurons by initially associating with the adapter protein, AP-3, and then recruiting AP-2 to
the plasma membrane [3]. Thus, the relationship between synaptic levels of CAMs and
endocytosis is more complex and likely influenced by the identity and localization of the
CAM and developmental stage of the synapse, amongst a variety of other factors.
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Itis also important to consider that Kis regulates expression of both endocytic genes [30]
and nlg2, suggesting that any relationship between synaptic levels of CAMs and endocyto-
sis may be more complex in kis mutants given these and other synaptic perturbations. The
indirect effects of CHDS are amplified later in development as the number of differentially
expressed genes identified in Chd8 heterozygous [21,92] and loss of function [93] mice
increases with age. Notably, kis mutants do not possess global perturbations in synaptic
structure and organization. While Dynamin/Shibire [30] and postsynaptic glutamate re-
ceptors [31] are mislocalized in kis mutants relative to the active zone protein, Bruchpilot,
Synapsin and Synaptotagmin, proteins required for synaptic vesicle clustering and release,
are properly localized relative to Bruchpilot [30]. We also have not detected changes in
actin structure or in synaptic or muscle levels of acetylated tubulin in kis mutants [31].

Our data support a model where Kis promotes early endosomal trafficking. It is
unknown whether the early endosome, recycling endosome, late endosome, and lyso-
some are a series of compartments that arise from maturation of one compartment into
another [94]. However, it is well established that endocytosed cargo are incorporated
into the early endosome, which first sorts the cargo, or into endosomes that form from
homotypic fusion. Rab5 serves as a marker for early endosomes, while Rab7 is a marker of
late endosomes [85]. EndoB [59,62] and AP-10 [66] are also thought to be associated with
early endosomes. Kis promotes endoB transcription and Kis binding is enriched within the
endoB promoter [30]. Knock down of EndoB in LNCaP cells, a human epithelial carcinoma
cell line, results in increased epidermal growth factor receptor signaling due to deficient
receptor endocytosis [95]. Similarly, knock down of EndoB in all tissues or presynaptic
neurons results in increased synaptic Fasll (Figure 3), suggesting that EndoB may also
regulate intracellular trafficking in neurons. These data, coupled with our results showing
that knock down of EndoB in kis mutants does not result in an additive increase in synaptic
Fasll (Figure 4A,B), indicate that Kis may regulate intracellular trafficking by transcriptional
regulation of endoB.

AP-1 also regulates intracellular trafficking by linking clathrin to intracellular cargo in
the trans-Golgi network, endosomes, and lysosomes and at the plasma membrane [96]. This
central role in intracellular trafficking is responsible for the appropriate localization of apical
and basolateral membrane proteins in epithelial cells [63]. Knock out of the ap-101B subunit
in mice impairs hippocampal spatial memory [65] and mutations in ap-102 in humans cause
mental retardation [97]. ap-1 o1B~/~ mouse cortical neurons exhibit altered trafficking of
some synaptic proteins, with some proteins mislocalized to synaptic membranes and others
localized to endolysosomes [98]. These data demonstrate the importance of AP-1 protein
sorting for neuronal function. Knock down of AP-1c in kis mutants phenocopies knock
down of EndoB in kis mutants by not producing an additive increase in synaptic Fasll
(Figure 4). The affected intracellular trafficking in kis mutants would also involve Rabs
including Rab5 and Rab?7. While we have not investigated the activity and levels of other
Rabs in kis mutants, they may also contribute to the aberrant trafficking we hypothesize
exists in kis mutants. Kis was enriched within rab5 and rab7 regulatory sites in Drosophila
intestinal stem cells [25]. In addition, CHDS8 binds to rab5b and rab5b is downregulated in
Chd8 knock down neural progenitor cells [99]. Thus, multiple lines of evidence suggest
that Kis may regulate intracellular trafficking in neurons, thereby influencing the synaptic
localization of CAMs including Fasll, neuroligins, and integrins.

It is alternatively possible that the increase in Nlg1, Nlg3 (Figure 1), the aPS2 and
BPS integrins (Figure 2), and Fasll may be the result of increased translational but not
transcriptional mechanisms. It is important to note that our data do not address the source
of the increased CAMs in kis mutants. Neurons locally translate mRNAs to quickly respond
to changes in activity [100]. Most rat hippocampal neuron synapses contain ribosomes
in vitro and the amount of synaptic translation correlates with neuronal activity [101]. The
integrin receptor mRNAs itgb1, itgh2, and itgav were preferentially translated in axons
or dendrites compared with the soma but the nigni, nign2, nlgn3, and ncam1 transcripts
showed the opposite [102]. While these data would suggest that kis mutant synapses
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may exhibit less local translation due to deficient neurotransmission [31], differences in
translational efficiency and protein stability also influence synaptic protein levels [103].
The first intron of the kis gene includes the miRNA miR-965 [104]. Although TargetScan
Fly (release 7.2) [105] does not predict that the fly transcripts for the affected CAMs in kis
mutants contain 3’ UTR sequences recognized by miR-965, it is still possible that increased
translation is responsible for the increase in CAMs observed at kis mutant synapses.

Our interpretations are also limited by the challenge of mimicking kis mutant pheno-
types in wild-type animals. As a chromatin remodeling enzyme, Kis potentially influences
the transcription of thousands of gene products [25]. Thus, as implied above, manipu-
lating gene expression and/or expression of alternative protein isoforms in a wild-type
background does not reproduce the plethora of synaptic perturbations present in kis mu-
tants. CHD?7 and CHDS are implicated in neurodevelopmental disorders [22,23], which
are characterized by aberrant expression of hundreds, if not thousands, of genes that col-
lectively regulate common molecular pathways [106]. Thus, it is important to use models
that emulate these conditions despite the challenges in data interpretation to gain a better
understanding of the synaptic underpinnings of these conditions.

4. Materials and Methods
4.1. Drosophila Stocks and Husbandry

All fly stocks were raised and maintained in a Percival DR-36NL incubator at 25 °C
with a 12 h light/dark cycle and fed Jazz Mix food (Fisher Scientific AS153). Larvae of both
sexes were used for all experiments. Most fly stocks were obtained from the Blooming-
ton Drosophila stock center including w!!!® (RRID:BDSC_3605), kis*!341¢ (RRID:BDSC_10442),
UAS-EndoBRNAT (RRID:BDSC_34935), UAS-AP-10RNA (RRID:BDSC_40895), UAS-Rab11270L
(RRID:BDSC_50783), LIAS-Rab1152°N (RRID:BDSC_23261), UIAS-Rab11"™T (RRID:BDSC_50782),
Actinbc-Gal4 (RRID:BDSC_30558), elav-Gal4 (RRID:BDSC_8760), D42-Gal4 (RRID:BDSC_8816),
24B-Gal4 (RRID:BDSC_1767), and repo-Gal4 (RRID:BDSC_7415). Kis"M?7 is described in [35].
UAS-kisRNA2 (v109414) flies were obtained from the Vienna Drosophila RNAi Center.

4.2. Chromatin Immunoprecipitation, RNA Isolation, Reverse Transcription PCR, and gPCR

CNSs were dissected in ice cold PBS from 350-600 third instar larvae of each genotype
per biological replicate. Dissected CNSs were placed in 1x PBS and stored at —80 °C.
Chromatin was sheared using a Tissue Chromatin Shearing Kit with SDS Shearing Buffer
(Covaris). Dissected CNSs were washed twice with 1x PBS, fixed in Buffer A with 1%
methanol-free formaldehyde at room temperature for five min, and then Quenching Buffer
E was applied to stop the fixation. The tissue was centrifuged at 4 °C for five min, after
which the supernatant was removed. The pelleted tissue was washed twice with ice cold
1x PBS. The Wash buffer (WB) was removed and then the tissue was homogenized for
2-3 min in 500 pL Lysis Buffer B. The latter was subsequently added to increase the volume
to 1 mL, followed by rocking incubation at 4 °C for 20 min 3 s of vortexing every 10 min.
Lysed tissue was next pelleted, resuspended in WB C, washed, and resuspended in Covaris
SDS Shearing Buffer D, which remained on the tissue for 10 min with occasional vortexing.
Chromatin was sheared after transfer to a TC 12 x 12 tube for 10 min by a Covaris
E220 Ultrasonicator. Sheared chromatin was visualized on an agarose gel containing
1.5% Ethidium Bromide (Fisher Scientific, Waltham, MA, USA) to confirm 100-600 bp
chromatin fragments. Chromatin was then immunoprecipitated using a Magna ChIP
HiSens Kit (Millipore Sigma, Burlington, MA, USA). Then, 50 pL of sheared chromatin
was incubated for three hours with coated magnetic beads bound with either rabbit x-GFP
(Abcam, ab290) or rabbit a-IgG (Abcam, ab171870). Chromatin was then eluted from
the magnetic beads and incubated in RNase A (10 mg/mL, Fisher Scientific), for 30 min
followed by incubation at 57 °C overnight in Proteinase K (10 mg/mL, Millipore). The next
day, the Proteinase K was inactivated by incubating for 15 min at 75 °C. The QIAquick PCR
Purification Kit (Qiagen, Germantown, MD, USA) was used to isolate DNA, which was
then stored at —20 °C for qPCR.
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RNA was isolated from third instar larval CNSs or muscle pelts, which were dis-
sected from males and females. Dissections were performed in Roger’s Ringer solu-
tion (135 mM NaCl, 5 mM KCl, 4 mM MgCl,*6H,0, 1.8 mM CaCl,*2H,0, 5 mM TES,
72 mM Sucrose, 2 mM glutamate, pH 7.15). CNSs and muscle pelts were placed in nuclease-
free 1.5 mL centrifuge tubes containing Invitrogen RNAlater Stabilization Solution (Fisher
Scientific AM7020) and stored at —20 °C. RNA was isolated using the Invitrogen Purelink
RNA Mini Kit (Fisher Scientific 12-183-025). RNA concentrations were obtained using an
Implen Nanophotometer N50. Each technical replicate included 30 CNSs or eight mus-
cle pelts per genotype. Two to three technical replicates were used to calculate relative
fold changes.

QPCR Primers were designed using PerlPrimer (v. 1.1.21). RT-qPCR was performed
using the iTaq Universal SYBR Green One Step Kit (Bio-Rad, 1725151, Hercules, CA, USA)
and a CFX Connect Real-Time PCR Detection System (Bio-Rad). Here, 100 ng of RNA was
used for each reaction. Two to three biological replicates each including three technical
replicates were used for data analyses. 2-AACH) yalues [107] were determined by calculating
the difference between the C(t) value of the target transcript reaction and the C(t) value for
GAPDH to obtain AC(t) for each transcript. Next, the difference between the control and
kis mutant AC(t)s was calculated and log transformed to obtain the 2-AACEH),

4.3. Immunocytochemistry

Third instar larvae were fillet dissected at room temperature in Roger’s Ringer solution
(135 mM NaCl, 5 mM KCl, 4 mM MgCl,*6H,0, 1.8 mM CaCl,*2H,0, 5 mM TES, 72 mM
Sucrose, 2 mM glutamate, pH 7.15) on Sylgard (World Precision Instruments, Sarasota, FL,
USA)-coated 60 mm dishes. The larvae were fixed for 30 min with 4% paraformaldehyde
(Fisher Scientific F79500) in 1x PBS (Midwest Scientific, QS1200, Fenton, MO, USA) or in
Bouin’s fixative (Fisher Scientific 112016, for Fasll immunolabeling only). Fixed larvae were
transferred to 1.5 mL centrifuge tubes containing PTX (1x PBS + 0.1% Triton X-100, Fisher
Scientific AAA16046AP) and washed three times for 10 min each in PTX, followed by two
30 min washes in PBTX (1x PBS + 0.1% Triton X-100 + 1% Bovine Serum Albumin, Fisher
Scientific BP1600-100). Primary antibodies were diluted in PBTX and applied overnight
at 4 °C. Primary antibodies included guinea pig «-Nlgl [40] used at 1:100, guinea pig
«-Nlg1 (a gift from Dr. Brian Mozer) used at 1:100, mouse «-FaslI (Developmental Studies
Hybridoma Bank [DSHB], 1D4) used at 1:10, mouse x-3PS (DSHB CE.6G11) used at 1:50,
and mouse x-oPS2 (DSHB CE.2C7) used at 1:100. After primary antibodies were removed,
larvae were washed three times for 10 min each in PBTX followed by two 30 min PBTX
washes. Secondary antibodies, including «-mouse FITC, a-mouse TRITC, «-rabbit FITC,
and «-guinea pig FITC, were used at 1:400 and obtained from Jackson ImmunoResearch
(West Grove, PA, USA). Cy3- and A647-HRP (Jackson ImmunoResearch) were applied at
1:125 with secondary antibodies. After 2 hours, PBTX washes were performed, including
three times for 10 min each followed by two 30 min washes. The larvae were then placed
on slides and covered with Vectashield (Vector Laboratories, H1000, Newark, CA, USA) for
subsequent imaging.

Images of 6/7 NM]Js within segments 3 or 4 were obtained using an Olympus FV1000
confocal microscope. Each experimental replicate used the same reagents for all genotypes.
Imaging parameters for experimental replicates were determined by calculating the means
of each laser intensity for control animals and applying those settings to image each
experimental animal NM]J. Approximately equal numbers of controls and experimental
animals were imaged each day. Image z-stacks were constructed using Fiji [108]. Mean
relative fluorescence intensities were calculated from z-stacks by first obtaining the synaptic
fluorescence intensity and subtracting it from the background fluorescence obtained from
an area of equal size that did not include the NMJ. All experiments included at least two
and up to four biological replicates, with 3-8 animals included per biological replicate.
Approximately equal numbers of controls and experimental animals were used for each
biological replicate. The total number of technical replicates for all immunocytochemistry
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experiments was greater than 11. The mean relative NM]J fluorescence intensity for each
larva is represented as a point on bar graphs.

4.4. Larval Locomotion

Larvae were raised in standard vials. The day of the locomotion assay, larvae were
transferred to a 100 mm plate containing 1.6% agar. Larvae were allowed to explore to
acclimate to the crawling surface and shed debris from the home vial. After one minute,
larvae were placed on a 1.6% agar arena. Locomotion was recorded for five animals at a
time for 30 s on a Canon EOS M50 camera at 29.97 frames per second. Video recordings
were analyzed using the wrMTrck plugin written by Jesper S. Pedersen for Fiji. The total
distance travelled in mm and maximum speed per second were calculated for 23-30 animals
per experimental condition.

4.5. Experimental Design and Statistical Analyses

Data analyses were performed with GraphPad Prism (v. 10.1.1). Data from experi-
ments that included a single control group were analyzed using unpaired t-tests. Data from
experiments that included more than one control group were analyzed using a one-way
ANOVA, followed by Tukey’s post hoc tests. Bartlett’s Test for homogeneity of variance
was used to assess the variances between data sets. Histogram bars in figures represent
the means and show sample sizes as individual points. Sample sizes indicate individual
larvae, except for the RT-qPCR experiments, where the points represent one technical repli-
cate. Statistical significance is represented on bar graphs as follows: * = <0.05, ** = <0.01,
*** = <0.001 with error bars representing standard error of the mean (SEM).
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