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Abstract: Macrophage metalloelastase or matrix metalloproteinase-12 (MMP12) is a macrophage-
specific proteolytic enzyme involved in the physiopathology of many inflammatory diseases, includ-
ing inflammatory bowel disease. Although previously published data suggested that the modulation
of MMP12 in macrophages could be a determinant for the development of intestinal inflammation,
scarce information is available on the mechanisms underlying the regulation of MMP12 expression
in those phagocytes. Therefore, in this study, we aimed to delineate the association of MMP12 with
inflammatory bowel disease and the molecular events leading to the transcriptional control of this
metalloproteinase. For that, we used publicly available transcriptional data. Also, we worked with the
RAW 264.7 macrophage cell line for functional experiments. Our results showed a strong association
of MMP12 expression with the severity of inflammatory bowel disease and the response to relevant
biological therapies. In vitro assays revealed that the inhibition of mechanistic target of rapamycin
complex 1 (mTORC1) and the stimulation of the AMP-activated protein kinase (AMPK) signaling
pathway potentiated the expression of Mmp12. Additionally, AMPK and mTOR required a functional
downstream glycolytic pathway to fully engage with Mmp12 expression. Finally, the pharmacological
inhibition of MMP12 abolished the expression of the proinflammatory cytokine Interleukin-6 (Il6) in
macrophages. Overall, our findings provide a better understanding of the mechanistic regulation of
MMP12 in macrophages and its relationship with inflammation.

Keywords: metalloprotease; ulcerative colitis; macrophages; inflammation

1. Introduction

Inflammatory bowel disease (IBD) is a group of chronic and relapsing inflammatory
disorders that generally include Crohn’s disease (CD) and ulcerative colitis (UC). Although
the exact triggering cause of IBD is unknown, it is assumed to result from a complex interac-
tion among the genetic background, environmental factors, dysbiosis of the microbiota, and
a disrupted mucosal immune response [1]. In recent decades, the latter has been the subject
of a plethora of research studies. In fact, most of the effective IBD therapies are designed
to control several main routes involved in the dysregulated activation and infiltration of
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immune cells. However, these treatments present certain deficiencies, and more knowledge
of the precise mechanisms controlling aberrant inflammatory responses is still necessary.

Matrix metalloproteinases (MMPs) are endopeptidases characterized by the presence
of a zinc ion in their catalytic domain. The members of this family of proteins are generally
subdivided based on differences in domain composition and substrate preference in collagenases,
gelatinases, elastases, stromelysins, matrilysins, membrane-type MMPs, and other MMPs [2,3].
These are the main enzymes responsible for the remodeling of the extracellular matrix (ECM),
although MMPs also play a major role in many other physiological and pathological processes,
such as angiogenesis, wound healing, and inflammation [2–4]. Indeed, intestinal inflamed
tissues frequently present altered MMP expression [5–7]. Moreover, these proteins can control
the activity of relevant cytokines and chemokines [8–10], thereby impacting leukocyte migration
during the development of intestinal inflammation [11,12].

Matrix metalloproteinase-12 (MMP12), which is also called macrophage metalloe-
lastase, is a macrophage-specific proteolytic enzyme that degrades different substrates
(elastin, laminin, type-IV collagen, fibronectin, and casein) [13]. The JAK/STAT, SOCS or
PI3K signaling pathways regulate the expression of this enzyme [14–16], and in general,
MMP12 is pivotal for macrophage functions, since macrophages from Mmp12−/− mice
presented impaired migratory capacity both in vitro and in vivo [17]. It is also noteworthy
that MMP12 participates in different cardiovascular, skin, and respiratory inflammatory
diseases and has emerged as an interesting putative therapeutic target for those condi-
tions. Similarly, MMP12 expression was increased in the colonic mucosa and serum of IBD
patients [18–21], and stool MMP12 protein levels showed high capacity for monitoring
disease progression and predicting disease remission in pediatric patients with IBD [22],
which suggested that MMP12, as observed for other inflammatory disorders, might play
an active role in the development of intestinal inflammation. In fact, Mmp12−/− mice
displayed attenuated colitis severity in both acute and chronic DSS-induced colitis, and
this was caused by a decrease in the epithelial permeability and, more importantly, by a
reduction in the transmigration of macrophages through the intestinal epithelium [20].

The above data suggest that the modulation of MMP12 activity in macrophages could
be a relevant therapeutic target for IBD and other inflammatory diseases. However, despite
the current information, there are no data from an exhaustive analysis of colonic MMP12
levels in different cohorts of IBD patients. It is not known whether the master regulators of
cell metabolism, AMP-activated protein kinase (AMPK) and mechanistic target of rapamycin
(mTOR), can regulate MMP12 expression in macrophages. Therefore, in the current study, we
explored several publicly available microarray and RNAseq datasets and used mouse RAW264.7
macrophages as an in vitro model to clarify those knowledge gaps. We found that MMP12 is
heavily associated with IBD disease activity and treatment response. Also, our results showed
that MMP12 expression in macrophages depends on the AMPK–mTOR axis, and the inhibition
of that metalloproteinase downregulates the expression of the crucial pro-inflammatory mediator
Interleukin-6 (Il6). Collectively, our results contribute to a better characterization of the association
of MMP12 with IBD and its mechanistic regulation in macrophages.

2. Results
2.1. MMP12 Is Strongly Associated with IBD and the Biological Therapeutic Response

First, we wanted to corroborate previous observations showing increased MMP12 levels
in the colonic mucosa of patients with IBD. For this purpose, we focused on publicly available
transcriptomic data, which confirmed the upregulation of colonic MMP12 expression in two
independent cohorts of patients with UC and one cohort of CD patients versus healthy controls
(Figure 1A–C). Interestingly, we also found that MMP12 expression was associated with clinical
status, with MMP12 transcripts being significantly increased in UC patients with active disease
compared to those in inactive UC patients, in non-IBD controls (Figure 1D,E), and in unaffected
tissue of active UC patients (Figure 1E). Similarly, MMP12 mRNA expression was strongly
decreased in infliximab (IFX) and vedolizumab (VDZ) responder UC patients relative to that
in refractory patients of these two biological therapies (Figure 1F–H). In the case of anti-TNF
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therapy, this decrease remained significant in stable responders after thirty weeks of treatment,
unlike that observed in non-stable responders or primary non-responders (Figure 1I).

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 3 of 17 
 

 

expression was associated with clinical status, with MMP12 transcripts being significantly 
increased in UC patients with active disease compared to those in inactive UC patients, in 
non-IBD controls (Figure 1D,E), and in unaffected tissue of active UC patients (Figure 1E). 
Similarly, MMP12 mRNA expression was strongly decreased in infliximab (IFX) and ve-
dolizumab (VDZ) responder UC patients relative to that in refractory patients of these two 
biological therapies (Figure 1F–H). In the case of anti-TNF therapy, this decrease remained 
significant in stable responders after thirty weeks of treatment, unlike that observed in 
non-stable responders or primary non-responders (Figure 1I). 

 

Figure 1. Matrix metalloproteinase- 12 (MMP12) expression is associated with inflammatory bowel
disease (IBD) disease activity and the response to biological therapies. Volcano plots showing the
differentially expressed genes (DEGs) in human colon biopsies of the GEO microarray datasets
(A) GSE73661 (control; n = 12; ulcerative colitis (UC); n = 44) and (B,C) GSE16879 (control; n = 12;
UC; n = 24; Crohn´s disease (CD); n = 37) in the indicated groups. The upregulated and downregulated
transcripts are represented by red and blue dots, respectively. Relative MMP12 expression in colon
biopsies from non-IBD (n = 11), UC-inactive (n = 23), and UC-active (n = 74) patients from the GEO
microarray dataset (D) GSE59071 and non-IBD (n = 13), UC-inactive (n = 8), affected UC-active (n = 15),
and unaffected UC-active patients (n = 7) from the GEO microarray dataset (E) GSE38713. Volcano plots
showing the DEGs in human colon biopsies of the GEO microarray datasets (F) GSE16879 (infliximab
(IFX) R; n = 8; IFX NR; n = 16) and (G,H) GSE73661 (IFX R n = 8; IFX NR n = 15; vedolizumab (VDZ) R
n = 8; VDZ NR n = 30) in the indicated groups. The upregulated and downregulated transcripts are
represented by red and blue dots, respectively. (I) Relative MMP12 expression in colon biopsies from the
indicated groups of patients from the GEO microarray dataset GSE23597. B = log-odds; logFC = Fold
Change. *, p ≤ 0.05; ***, p ≤ 0.001 relative to control, unless indicated differently.
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2.2. MMP12 Correlates with an AMPK/mTOR Transcriptional Signature in UC Patients

To gain mechanistic insights into the signaling pathways involved in the regulation
of MMP12 expression, we performed a correlation analysis in two different microarray
datasets of patients with UC treated with conventional therapy and showing different
disease severities. We focused on the following particular transcripts: IL-6 (interleukin-
6), PIK3CD (phosphoinositide 3-kinase), PIK3R1 (phosphoinositide-3-kinase regulatory
subunit 1), FBP2 (fructose-1,6-bisphosphatase), MLYCD (malonyl-CoA decarboxylase),
PFKFB3 (6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3), and CAB39 (calcium
binding protein 39), which are related to the AMPK and mTOR signaling pathways and
were retrieved from the KEGG database. As shown in Figure 2A, MMP12 expression was
significantly correlated with all aforementioned mTOR-/AMPK-related transcripts in the
inactive and active UC patients. This observation was corroborated in an additional cohort
of patients with similar characteristics (Figure 2B).
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[non-IBD (n = 13), UC-inactive (n = 8), affected UC-active (n = 15), and unaffected UC-active (n = 7)]
and (B) GSE59071 [non-IBD (n = 11), UC-inactive (n = 23), and UC-active (n = 74)]. r = Spearman
correlation coefficient; P = p-value.

2.3. MMP12 Expression Is Regulated by AMPK and mTOR in RAW 264.7 Macrophages

We confirmed that macrophages were the primary MMP12-expressing cells in the context
of intestinal inflammation. We analyzed the data from a single-cell RNAseq study reported
in the PREDICT 2021 paper; CD was retrieved from the Single Cell Portal (Broad Institute).
Indeed, among the wide variety of cells in the colon mucosa, macrophages were the main
MMP12-producing cells (Figure 3A). This observation led us to investigate the former associa-
tion between AMPK/mTOR pathways and this metalloproteinase in the mouse macrophage
cell line RAW 264.7. The selection of this cell line was based on its stability and reproducibility
compared to those of human cell lines and the lack of possible ethical issues derived from
drawing blood from healthy subjects. Also, RAW 264.7 cells maintain a robust and well-known
inflammatory response, especially when challenged with LPS.
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a summary of the plotted cells retrieved from the Broad Institute’s scRNAseq dataset Single-Cell
RNAseq PREDICT 2021 paper: CD. (B–G) Relative mRNA expression of MMP12 under the indicated
treatments. The data shown in panels (B–G) represent the mean ± SEM. *, p ≤ 0.05; **, p ≤ 0.01;
***, p ≤ 0.001 relative to the control, unless indicated differently. n = at least 3 independent experi-
ments, with 2 biological replicates per sample.

The addition of the mTORC1 inhibitor rapamycin clearly caused a synergistic upregu-
lation of Mmp12 expression when combined with a classic macrophage activator such as
LPS, whereas the dual mTORC1/mTORC2 inhibitor Torin1 slightly increased the mRNA
levels of that metalloproteinase under the same conditions (Figure 3B). This initial finding
suggested that, although mTORC1 blocked the induction of Mmp12, other signaling routes
should be considered equally relevant. In fact, the addition of the PI3K/AKT inhibitor wort-
mannin abolished part of rapamycin’s effect on Mmp12 expression (Figure 3C). Similarly,
an AMPK blockade using compound C exerted a drastic inhibition of the synergistic effect
of LPS plus rapamycin (Figure 3D), demonstrating that mTORC1 requires the participation
of AKT and AMPK. This was further corroborated by stimulating RAW 264.7 macrophages
with the AMPK agonist AICAR, which, as opposed to compound C, significantly potenti-
ated the effect of rapamycin plus LPS on Mmp12 expression (Figure 3E). For completeness,
we also wanted to test whether the inhibition of both mTOR complexes or PI3K/AKT
affected the transcriptional regulation of Mmp12 under these conditions of AMPK hyperac-
tivation. As shown in Figure 3F,G, Torin1 or wortmannin treatment significantly decreased
the synergistic effects triggered by AICAR.

2.4. Glycolysis Regulates MMP12 Expression in RAW 264.7 Cells

AMPK and mTOR function as metabolic sensors, and it has been established that
activated macrophages undergo a metabolic switch from oxidative phosphorylation to
glycolysis to meet the specific requirements in highly energy-demanding conditions, which
is not observed in resting monocytes. Therefore, we explored whether this mTOR–AMPK–
glycolysis axis could be involved in the regulation of Mmp12 expression under the promo-
tion of an active and highly glycolytic state by LPS. As a first approach, we analyzed the
expression of relevant genes in the glycolysis pathway. We observed that rapamycin only
partly blocked the effects of LPS on the expression of Pdk2 (Figure 4B). However, AICAR
was able to increase the expression of Hk3, Pdk2, and Pfkp when added alone or in combina-
tion with LPS plus rapamycin (Figure 4A–C), which matched the above-described highest
Mmp12 induction exerted by this AMPK agonist. To confirm the participation of glycolysis
in the mechanisms regulating Mmp12 expression, we cultured RAW 264.7 macrophages in
the absence of glucose. As shown in Figure 4D, cells incubated without glucose presented
a clear decrease in Mmp12 transcripts, especially those treated with AICAR (alone or in
combination with LPS or LPS plus rapamycin) and the combination of LPS plus rapamycin.
In line with these experiments, the addition of the synthetic D-glucose analog 2-deoxy-
D-glucose (2-DG, which acts as a competitive inhibitor of glucose metabolism, inhibiting
glycolysis via its actions on hexokinase) also abolished the synergism produced by AICAR
when combined with LPS and rapamycin (Figure 4E).

2.5. MMP12 Inhibition Reduces IL6 Expression in RAW 264.7 Macrophages

Finally, we determined the functional implications of blocking MMP12 in RAW
264.7 mouse macrophages. We analyzed the expression of the essential macrophage ac-
tivation marker and pro-inflammatory mediator Il6. We found an Il6 expression pattern
that was similar to that observed for Mmp12, with a synergistic induction of Il6 in cells
treated with LPS plus rapamycin compared with that in cells stimulated with LPS alone
(Figure 4F). Interestingly, the addition of the MMP12 inhibitor MMP408 resulted in a signif-
icant decrease in Il6 expression induced by LPS or the combination of LPS and rapamycin
(Figure 4F), corroborating the main role of MMP12 in macrophage biology.
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3. Discussion

In this study, we corroborated and expanded the data demonstrating the association
between MMP12 and IBD. Due to the restricted MMP12 expression in macrophages, we
investigated its regulation in those phagocytes. Mechanistically, we described the essential
role played by the metabolic mTOR–AMPK–glycolysis axis in the control of MMP12
expression for the first time. Particularly, mTORC1 inhibition, together with exacerbated
AMPK activation and functional glycolysis, drives Mmp12 overexpression.

Although fecal calprotectin is widely used in clinical practice to diagnose and monitor
disease activity [23,24], more biomarkers are still needed to cover calprotectin´s limitations.
Its sensitivity and specificity decrease in children and in patients with no inflammatory
affectation of the large intestine [25,26]. Therefore, isolating additional stool markers that
are complementary to calprotectin is currently an objective for many researchers. In one
scenario, stool MMP12 significantly discriminated pediatric UC and CD patients from healthy
individuals [22]. Similarly, our results, along with previous observations [18,19,27], also
confirmed the elevated expression of MMP12 in the intestinal mucosa of adult patients
with UC and CD. Likewise, we demonstrated that the colonic expression of this metal-
loproteinase was strongly associated with the activity of the disease and the response to
biological therapies. Therefore, MMP12 merits further research to corroborate its utility
in IBD monitoring, especially when other members of this family of proteins, such as
MMP9, show high accuracy in detecting active UC [28]. It is also worth noting that, to
our knowledge, the data presented in previous sections confirm and expand the strong
association between the colonic expression of MMP12 and the responsiveness to biological
treatments [29]. This is interesting because it has been demonstrated that MMP12 is able to
cleave different anti-TNF antibodies [30], which might explain the increased MMP12 levels
in anti-TNF non-responder patients. However, the fact that vedolizumab-treated patients
presented a similar expression pattern makes us think that, most likely, MMP12 expression
is a surrogate of the inflammatory status rather than a marker of therapeutic response.
Future analysis of colon biopsies from patients treated with additional biologicals or small
molecules will be necessary for further discussion.

Metalloproteinases are no longer considered mere ECM regulators, and their partic-
ipation in many other processes leading to disease has been widely demonstrated [3,31].
For instance, it was recently shown that some of these proteins were key genes involved in
colitis and cancer-associated colitis development [32]. Accordingly, the understanding of
MMPs´ adequate control is of the utmost importance. However, little is known about the
molecular routes activating MMP12 transcription in macrophages. Our first approach was
intended to correlate the transcript levels of MMP12 with the central metabolic pathways,
such as those of AMPK, mTOR, and glycolysis. The positive correlation between MMP12
and PFKFB3 is not surprising, since this factor is also positively associated with AMPK and
glycolysis [33]. On the other hand, the PI3K subunit p85 encoded by the gene PIK3R1 antag-
onizes the actions of the p110 subunit (encoded by PIK3CD) [34], which might explain the
observed indirect and direct correlations, respectively. The negative correlation of MMP12
with FBP2 could be explained by the opposite effect of this factor with the glycolytic enzyme
phosphofructokinase in the promotion of glycolytic flux [35]. Similarly, CAB39 is function-
ally associated with the activation of oxidative phosphorylation [36]. Anyway, as far as we
know, our functional experiments clearly demonstrated for the first time that combining an
mTORC1 blockade with AMPK signaling stimulation in activated macrophages resulted in
a dramatic increase in the mRNA expression of MMP12. mTOR is vital for macrophage
function and activation [37]. Indeed, the overactivation of this serine/threonine kinase
increases the production of several pro-inflammatory cytokines [38] and heightens the
inflammatory response in bone-marrow-derived macrophages (BMDMs) [39]. Also, intesti-
nal lamina propria macrophages lacking the expression of Il10 showed increased mTORC1
activity, mitochondrial reactive oxygen species (ROS) production, and inflammasome ac-
tivation, and this might have contributed to the development of colitis in Il10-deficient
mice [40]. It is, therefore, not surprising that the modulation of mTOR functions affects
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MMP levels. Nevertheless, opposite to that which was commonly observed for cytokines
and chemokines [41–43], the inhibition of mTOR signaling tended to upregulate the expres-
sion of MMPs. In fact, it was recently described that the attenuation of mTOR in THP-1
macrophages by rapamycin or silica dust induced the expression of relevant metallopro-
teinases, such as MMP1 and MMP9 [44,45]. Consistently with this, the exacerbation in the
induction of a well-defined detrimental factor such as MMP12 by the activation of AMPK
is rather unexpected, since the upregulation of this pathway typically counteracts excessive
inflammatory responses in macrophages by mediating the effects of anti-inflammatory
cytokines or inhibiting the production of pro-inflammatory mediators such as TNF-α and
IL6 [46–48]. Similarly, specific knockout of the AMPK subunit β1 in macrophages exac-
erbated experimental colitis symptoms [49]. However, contradictory results regarding
AMPK’s modulation of MMP expression have been published. AMPKα1 knockout exacer-
bated the expression of MMP14 in mouse BMDMs treated with LPS [50]. By contrast, the
AMPK inhibitor compound C inhibited the induction of MM9 and MMP13 elicited by PMA
in THP-1 macrophages [51], suggesting that AMPK can either stimulate or block MMP
production depending on the initial trigger and the downstream cellular routes involved.
In fact, our results showed a strong dependency of Mmp12 expression on functional glycol-
ysis, especially when RAW264.7 cells were treated with AICAR. In agreement with this,
the addition of the glycolytic inhibitor 2-DG to chondrocytes repressed the expression of
MMP13 [52] and B-cell adapter for PI3K (BCAP) knockout BMDMs, which showed im-
paired glycolysis and expressed less MMP9 after LPS treatment [53], thereby highlighting
the influence of this metabolic route on the transcription of specific MMPs.

Finally, given the observed transcriptional correlation between MMP12 and the classic
proinflammatory cytokine IL6 in the colon mucosa of IBD patients (Figure 2), we wanted to
test whether macrophages could contribute to that association. Indeed, the inhibition of
mTOR signaling also synergized with LPS in the induction of Il6 transcripts. Consistently
with knocking down the expression of Mmp12 [54], adding MMP408 decreased the mRNA
expression of Il6 elicited by LPS in RAW 267.4 macrophages. Interestingly, we noted that
all of the synergism caused by the supplementation with rapamycin was abolished by the
inhibition of MMP12, demonstrating that this metalloproteinase is crucial for the transcrip-
tional regulation of Il6, especially when mTORC1 signaling is impaired. It is noteworthy
that Il6 was able to increase the expression of Mmp12 in mouse macrophages [55], which
might support the existence of a feedback loop between these two factors in macrophages.

In summary, our study demonstrated a strong association between MMP12 and the
pathology of IBD. Moreover, the opposing AMPK and mTOR pathways [56], together
with functional glycolysis, play a significant role in the induction of this metalloproteinase
in macrophages. Our data also showed how Mmp12 engages with the transcription of
the proinflammatory cytokine Il6, suggesting the participation of Mmp12 in functions
beyond ECM remodeling, such as the activation of these phagocytes. Future studies will
unveil the relevance of the mTOR/AMPK–glycolysis–MMP12 axis in the development
and progression of immune-mediated diseases such as IBD (Figure 5). There is an obvious
limitation of this study, which is the lack of corroboration of our results in terms of protein
expression. Our initial hypothesis was indeed focused on transcriptomic data, and we
followed that rationale. However, we also consider that putative differences between
mRNA and protein expression should be taken into account.

A schematic representation of the putative interactions among all factors analyzed in
the current study is provided. It should be noted that all genes in brown boxes are located
in a diagram based on the current literature, and these results were not demonstrated in
this work (created with BioRender.com).
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4. Materials and Methods
4.1. Bioinformatics of Human Transcriptomic Datasets

Statistical analyses and text processing were carried out using the R (version 3.3.1)
and Perl software version 5.38.2, respectively. For the microarray analysis, signal intensity
values were obtained from CEL files after a robust multichip average [57,58]. Differentially
expressed genes were identified using linear models for microarray data [59]. Adjusted
p-values for multiple comparisons were calculated by applying the Benjamini–Hochberg
correction method [60]. Volcano plots were generated with Glimma (https://doi.org/10
.1093/nargab/lqab116, accessed on 10 August 2022) by plotting the log2 fold changes
and corresponding −log10 p-values obtained from the differential expression analyses
performed with limma (linear models for microarray data) [59]. All microarray expression
datasets were obtained from the Gene Expression Omnibus (GEO) database (http://www.
ncbi.nlm.nih.gov/geo/, accessed on 21 February 2023). The accession codes for the datasets
used in this work were the following: (i) GSE38713 [61] (diagnosis of UC at least 6 months
before inclusion, “active” was defined with an endoscopic Mayo subscore of >2, “inactive”
defined as Mayo subscore = 0, “uninvolved” was defined as a colonic segment with a
completely normal appearance and histology and no previous signs of active disease) and
GSE59071 [62] (activity was endoscopically assessed) for colon biopsies from UC patients
after treatment with immunosuppressants and/or corticosteroids; (ii) GSE16879 [63] for
colon biopsies from UC, CD, and non-IBD controls, as well as UC patients treated with
anti-TNF therapy (response was defined based on endoscopic and histologic findings at
4–6 weeks); (iii) GSE73661 [64] for colon biopsies from UC and non-IBD controls, as well
as UC patients treated with anti-TNF and vedolizumab therapy (response was defined
as endoscopic mucosal healing with a Mayo endoscopic subscore of 0 or 1 at weeks 4–6
for anti-TNF and 6–12–52 for VDZ); (iv) GSE23597 [65] for colon biopsies from moderate
to severe UC patients at baseline, 8 weeks, and 30 weeks after anti-TNF therapy. Also,
scRNAseq data from the Broad Institute dataset in the Single Cell RNAseq PREDICT 2021
paper (CD) were used (https://singlecell.broadinstitute.org/single_cell, accessed on 11
April 2023).

https://doi.org/10.1093/nargab/lqab116
https://doi.org/10.1093/nargab/lqab116
http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
https://singlecell.broadinstitute.org/single_cell
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4.2. Cell Culture and Treatments

RAW 264.7 murine macrophage cells (essentially programmed to M1 macrophages)
obtained from the American Type Culture Collection (ATCC, Manassas, VA, USA; Cat. no.
TIB-71) were cultured in Dulbecco´s modified Eagle’s medium (DMEM) with high glucose
(Lonza, Basel, Switzerland; Cat. no. BE-12-614F) or with no glucose (Gibco, Billings, MT,
USA; Cat. no. 12307263) supplemented with 10% fetal bovine serum (Corning Inc., Corning,
NY, USA; Cat. no. 35-079-CV), L-glutamine (2 mM) (Lonza, Basel, Switzerland; Cat. no.
BE17-605E), and penicillin (50 units/mL)/streptomycin (50 µg/mL) (Corning Inc., Corning,
New York, NY, USA; Cat. no. 5530-002-CI) and incubated at 37 ◦C with 5% CO2. For the
experiments, cells were seeded in six-well plates at a density of 1 × 105 cells/well. Cells
were treated with LPS O26:B6 (100 ng/mL) (Sigma-Aldrich, St. Louis, MO, USA; Cat. no.
L2654) or the AMPK agonist AICAR (1 mM) (Sigma-Aldrich, St. Louis, MO, USA; Cat. no.
A9978). The specific pharmacological inhibitors rapamycin (10 ng/mL) (Sigma-Aldrich, St.
Louis, MO, USA; Cat. no. 553211) (mTORC1), Torin1 (10 ng/mL) (Sigma-Aldrich, St. Louis,
MO, USA; Cat. no. 475991) (mTORC1/mTORC2), wortmannin (10 ng/mL) (Sigma-Aldrich,
St. Louis, MO, USA; Cat. no. W1628) (PI3K/Akt), Compound C (5 ng/mL) (Sigma-Aldrich,
St. Louis, MO, USA; Cat. no.171260) (AMPK), 2-DG (0.5 mM) (Sigma-Aldrich, St. Louis,
MO, USA; Cat. no. D8375) (glycolysis), and MMP408 (100 ng/mL) (Sigma-Aldrich, St.
Louis, MO, USA; Cat. no. 444291) (MMP12) were added 1 h before stimulation with LPS.
Cells remained in culture for 24 h before isolation (Figure 6).
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4.3. RNA Isolation and Real-Time Reverse Transcription–Polymerase Chain Reaction (RT-qPCR)

The total RNA from RAW 264.7 cells was extracted with NZYol (NZYTech, Lisboa,
Portugal; Cat.no. MB18501) and the E.Z.N.A Total RNA Kit (Omega Bio-tek, Norcross, GA,
USA; Cat. no. R6834-02) according to the manufacturer’s instructions. The quantity and
quality of the total RNA were assessed using the NanoDrop ND-1000 spectrophotometer
(NanoDrop Technologies, Wilmington, DE, USA). Reverse transcription–quantitative real-
time polymerase chain reaction (RT-qPCR) was performed using a Power SYBR™ Green
RNA-to-CT™ 1-Step Kit (Applied Biosystems, Waltham, MA, USA; Cat. No. 4389986) by
using 10 ng of total RNA per sample. The data were calculated using the comparative
(2−∆∆Ct) method and Quantstudio Design and Analysis Software v.1.5.3 (Applied Biosys-
tems, Waltham, MA, USA). Control cells were used as a reference and were assigned an
arbitrary number of 1; we established that the higher Ct range was at 35. The specific PCR
primers used are included in Table 1 (Thermo Fisher Scientific, Waltham, MA, USA), and
Il-6 (NM_031168.2) (Sigma-Aldrich, St. Louis, MO, USA; Cat. no. KSPQ12012) was also
used. Note that the gene expression levels were normalized to that of β-actin. Melting
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curves were generated to ensure a single gene-specific peak, and no-template controls were
included for each run and each set of primers to control for unspecific amplifications.

Table 1. List of primers used for RT-qPCR.

Gene Forward Reverse

Mmp12 TTAAGGGAACTTGCAGTCGG TCTTGACAAGTACCATTCAGCA

Hk3 TTTCGGTTAAGTGGCTACAGAGG TTGCTGCAAGCATTCCAGTT

Pdk2 GCGCTGTTGAAGAATGCGT CCTGCCGGAGGAAAGTGAAT

Pfkp GGGCAGACACAGCTCTGAAC CACTCCTTTGCCCTCCTCTG

β-actin CAGCTTCTTTGCAGCTCCTTC ACCCATTCCCACCATCACAC

4.4. Statistical Analysis

Statistical analysis was performed by using the GraphPad Prism 8.0.1 software (Graph-
Pad Software, Boston, MA, USA). Quantitative data are presented as the mean ± standard
error of the mean (SEM) of at least three independent experiments and are represented
as the fold-change versus controls. Two-group comparisons were performed using a two-
tailed Student t-test. Multigroup comparisons were performed using one-way ANOVA
followed by the Bonferroni multiple-comparison test after the application of the appropriate
normality test. A p-value of <0.05 was considered statistically significant. A Spearman
correlation test of the investigated genes (shown in Figure 2) was performed using the
GraphPad Prism 8.0.1 software (GraphPad Software, Boston, MA, USA) and the normalized
data of the microarray datasets indicated in the appropriate figure.

A schematic representation of the protocol used for in vitro experiments with RAW
264.7 cells is shown in the figure.
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