4-(Azolyl)-Benzamidines as a Novel Chemotype for ASIC1a Inhibitors
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. ASIC1 Model
4.2. MD Simulation
4.3. Molecular Docking and a High-Throughput Virtual Screening
4.4. HEK 293 Cell Culture
4.5. Animals
4.6. Acute Isolated Rat Hippocampal and Cortical Neurons
4.7. Primary Culture of Rat DRG Neurons
4.8. Electrophysiological Recordings
4.9. Data Analysis
4.10. Drugs and Chemicals
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hill, A.S.; Ben-Shahar, Y. The synaptic action of Degenerin/Epithelial sodium channels. Channels 2018, 12, 262–275. [Google Scholar] [CrossRef] [PubMed]
- Wemmie, J.A.; Chen, J.; Askwith, C.C.; Hruska-Hageman, A.M.; Price, M.P.; Nolan, B.C.; Yoder, P.G.; Lamani, E.; Hoshi, T.; Freeman, J.H., Jr.; et al. The acid-activated ion channel ASIC contributes to synaptic plasticity, learning, and memory. Neuron 2002, 34, 463–477. [Google Scholar] [CrossRef] [PubMed]
- Krishtal, O.A.; Pidoplichko, V.I. A receptor for protons in the nerve cell membrane. Neuroscience 1980, 5, 2325–2327. [Google Scholar] [CrossRef] [PubMed]
- Waldmann, R.; Champigny, G.; Bassilana, F.; Heurteaux, C.; Lazdunski, M. A proton-gated cation channel involved in acid-sensing. Nature 1997, 386, 173–177. [Google Scholar] [CrossRef]
- Gründer, S.; Geissler, H.S.; Bässler, E.L.; Ruppersberg, J.P. A new member of acid-sensing ion channels from pituitary gland. Neuroreport 2000, 11, 1607–1611. [Google Scholar] [CrossRef]
- Lingueglia, E.; de Weille, J.R.; Bassilana, F.; Heurteaux, C.; Sakai, H.; Waldmann, R.; Lazdunski, M. A modulatory subunit of acid sensing ion channels in brain and dorsal root ganglion cells. J. Biol. Chem. 1997, 272, 29778–29783. [Google Scholar] [CrossRef]
- Price, M.P.; Snyder, P.M.; Welsh, M.J. Cloning and expression of a novel human brain Na+ channel. J. Biol. Chem. 1996, 271, 7879–7882. [Google Scholar] [CrossRef] [PubMed]
- García-Añoveros, J.; Derfler, B.; Neville-Golden, J.; Hyman, B.T.; Corey, D.P. BNaC1 and BNaC2 constitute a new family of human neuronal sodium channels related to degenerins and epithelial sodium channels. Proc. Natl. Acad. Sci. USA 1997, 94, 1459–1464. [Google Scholar] [CrossRef]
- Delaunay, A.; Gasull, X.; Salinas, M.; Noel, J.; Friend, V.; Lingueglia, E.; Deval, E. Human ASIC3 channel dynamically adapts its activity to sense the extracellular pH in both acidic and alkaline directions. Proc. Natl. Acad. Sci. USA 2012, 109, 13124–13129. [Google Scholar] [CrossRef] [PubMed]
- Jasti, J.; Furukawa, H.; Gonzales, E.B.; Gouaux, E. Structure of acid-sensing ion channel 1 at 1.9 A resolution and low pH. Nature 2007, 449, 316–323. [Google Scholar] [CrossRef]
- Frey, E.N.; Pavlovicz, R.E.; Wegman, C.J.; Li, C.; Askwith, C.C. Conformational changes in the lower palm domain of ASIC1a contribute to desensitization and RFamide modulation. PLoS ONE 2013, 8, e71733. [Google Scholar] [CrossRef]
- Foster, V.S.; Rash, L.D.; King, G.F.; Rank, M.M. Acid-Sensing Ion Channels: Expression and Function in Resident and Infiltrating Immune Cells in the Central Nervous System. Front. Cell Neurosci. 2021, 15, 738043. [Google Scholar] [CrossRef]
- Akopian, A.N.; Chen, C.C.; Ding, Y.; Cesare, P.; Wood, J.N. A new member of the acid-sensing ion channel family. Neuroreport 2000, 11, 2217–2222. [Google Scholar] [CrossRef] [PubMed]
- Kellenberger, S.; Rash, L. Acid-sensing (proton-gated) ion channels (ASICs) (version 2020.5) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide Pharmacol. 2020, 2020, 5. [Google Scholar] [CrossRef]
- Waldmann, R.; Champigny, G.; Voilley, N.; Lauritzen, I.; Lazdunski, M. The mammalian degenerin MDEG, an amiloride-sensitive cation channel activated by mutations causing neurodegeneration in Caenorhabditis elegans. J. Biol. Chem. 1996, 271, 10433–10436. [Google Scholar] [CrossRef] [PubMed]
- Price, M.P.; Lewin, G.R.; McIlwrath, S.L.; Cheng, C.; Xie, J.; Heppenstall, P.A.; Stucky, C.L.; Mannsfeldt, A.G.; Brennan, T.J.; Drummond, H.A.; et al. The mammalian sodium channel BNC1 is required for normal touch sensation. Nature 2000, 407, 1007–1011. [Google Scholar] [CrossRef]
- Alvarez de la Rosa, D.; Zhang, P.; Shao, D.; White, F.; Canessa, C.M. Functional implications of the localization and activity of acid-sensitive channels in rat peripheral nervous system. Proc. Natl. Acad. Sci. USA 2002, 99, 2326–2331. [Google Scholar] [CrossRef] [PubMed]
- Lingueglia, E. Acid-sensing ion channels in sensory perception. J. Biol. Chem. 2007, 282, 17325–17329. [Google Scholar] [CrossRef]
- Li, W.G.; Xu, T.L. ASIC3 channels in multimodal sensory perception. ACS Chem. Neurosci. 2011, 2, 26–37. [Google Scholar] [CrossRef] [PubMed]
- Price, M.P.; Gong, H.; Parsons, M.G.; Kundert, J.R.; Reznikov, L.R.; Bernardinelli, L.; Chaloner, K.; Buchanan, G.F.; Wemmie, J.A.; Richerson, G.B.; et al. Localization and behaviors in null mice suggest that ASIC1 and ASIC2 modulate responses to aversive stimuli. Genes Brain Behav. 2014, 13, 179–194. [Google Scholar] [CrossRef]
- Carattino, M.D.; Montalbetti, N. Acid-sensing ion channels in sensory signaling. Am. J. Physiol. Ren. Physiol. 2020, 318, F531–F543. [Google Scholar] [CrossRef]
- Storozhuk, M.; Cherninskyi, A.; Maximyuk, O.; Isaev, D.; Krishtal, O. Acid-Sensing Ion Channels: Focus on Physiological and Some Pathological Roles in the Brain. Curr. Neuropharmacol. 2021, 19, 1570–1589. [Google Scholar] [CrossRef]
- Wemmie, J.A.; Askwith, C.C.; Lamani, E.; Cassell, M.D.; Freeman, J.H., Jr.; Welsh, M.J. Acid-sensing ion channel 1 is localized in brain regions with high synaptic density and contributes to fear conditioning. J. Neurosci. 2003, 23, 5496–5502. [Google Scholar] [CrossRef]
- Cherninskyi, A.; Storozhuk, M.; Maximyuk, O.; Kulyk, V.; Krishtal, O. Triggering of Major Brain Disorders by Protons and ATP: The Role of ASICs and P2X Receptors. Neurosci. Bull. 2023, 39, 845–862. [Google Scholar] [CrossRef]
- Xiong, Z.G.; Zhu, X.M.; Chu, X.P.; Minami, M.; Hey, J.; Wei, W.L.; MacDonald, J.F.; Wemmie, J.A.; Price, M.P.; Welsh, M.J.; et al. Neuroprotection in ischemia: Blocking calcium-permeable acid-sensing ion channels. Cell 2004, 118, 687–698. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.Z.; Wang, J.J.; Huang, Y.; Liu, F.; Zeng, W.Z.; Li, Y.; Xiong, Z.G.; Zhu, M.X.; Xu, T.L. Tissue acidosis induces neuronal necroptosis via ASIC1a channel independent of its ionic conduction. Elife 2015, 4, e05682. [Google Scholar] [CrossRef] [PubMed]
- Sluka, K.A.; Winter, O.C.; Wemmie, J.A. Acid-sensing ion channels: A new target for pain and CNS diseases. Curr. Opin. Drug Discov. Dev. 2009, 12, 693–704. [Google Scholar]
- Mazzuca, M.; Heurteaux, C.; Alloui, A.; Diochot, S.; Baron, A.; Voilley, N.; Blondeau, N.; Escoubas, P.; Gélot, A.; Cupo, A.; et al. A tarantula peptide against pain via ASIC1a channels and opioid mechanisms. Nat. Neurosci. 2007, 10, 943–945. [Google Scholar] [CrossRef] [PubMed]
- Vullo, S.; Kellenberger, S. A molecular view of the function and pharmacology of acid-sensing ion channels. Pharmacol. Res. 2020, 154, 104166. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Zhang, W.; Li, Y.; Jiang, T.; Mamat, B.; Zhang, Y.; Wang, F.; Meng, H. The Role of ASIC1a in Epilepsy: A Potential Therapeutic Target. Curr. Neuropharmacol. 2021, 19, 1855–1864. [Google Scholar] [CrossRef]
- Ievglevskyi, O.; Isaev, D.; Netsyk, O.; Romanov, A.; Fedoriuk, M.; Maximyuk, O.; Isaeva, E.; Akaike, N.; Krishtal, O. Acid-sensing ion channels regulate spontaneous inhibitory activity in the hippocampus: Possible implications for epilepsy. Philos. Trans. R. Soc. London Ser. B Biol. Sci. 2016, 371, 20150431. [Google Scholar] [CrossRef]
- Khachaturian, A.S.; Zandi, P.P.; Lyketsos, C.G.; Hayden, K.M.; Skoog, I.; Norton, M.C.; Tschanz, J.T.; Mayer, L.S.; Welsh-Bohmer, K.A.; Breitner, J.C. Antihypertensive medication use and incident Alzheimer disease: The Cache County Study. Arch. Neurol. 2006, 63, 686–692. [Google Scholar] [CrossRef]
- Vergo, S.; Craner, M.J.; Etzensperger, R.; Attfield, K.; Friese, M.A.; Newcombe, J.; Esiri, M.; Fugger, L. Acid-sensing ion channel 1 is involved in both axonal injury and demyelination in multiple sclerosis and its animal model. Brain 2011, 134, 571–584. [Google Scholar] [CrossRef]
- Friese, M.A.; Craner, M.J.; Etzensperger, R.; Vergo, S.; Wemmie, J.A.; Welsh, M.J.; Vincent, A.; Fugger, L. Acid-sensing ion channel-1 contributes to axonal degeneration in autoimmune inflammation of the central nervous system. Nat. Med. 2007, 13, 1483–1489. [Google Scholar] [CrossRef]
- Arias, R.L.; Sung, M.L.; Vasylyev, D.; Zhang, M.Y.; Albinson, K.; Kubek, K.; Kagan, N.; Beyer, C.; Lin, Q.; Dwyer, J.M.; et al. Amiloride is neuroprotective in an MPTP model of Parkinson’s disease. Neurobiol. Dis. 2008, 31, 334–341. [Google Scholar] [CrossRef] [PubMed]
- Lai, K.; Song, X.L.; Shi, H.S.; Qi, X.; Li, C.Y.; Fang, J.; Wang, F.; Maximyuk, O.; Krishtal, O.; Xu, T.L. Bilirubin enhances the activity of ASIC channels to exacerbate neurotoxicity in neonatal hyperbilirubinemia in mice. Sci. Transl. Med. 2020, 12, eaax1337. [Google Scholar] [CrossRef] [PubMed]
- Korkushko, A.O.; Kryshtal, O.A. Blocking of proton-activated sodium permeability of the membranes of trigeminal ganglion neurons in the rat by organic cations. Neurophysiology 1984, 16, 557–561. [Google Scholar]
- Escoubas, P.; De Weille, J.R.; Lecoq, A.; Diochot, S.; Waldmann, R.; Champigny, G.; Moinier, D.; Ménez, A.; Lazdunski, M. Isolation of a tarantula toxin specific for a class of proton-gated Na+ channels. J. Biol. Chem. 2000, 275, 25116–25121. [Google Scholar] [CrossRef] [PubMed]
- Diochot, S.; Baron, A.; Salinas, M.; Douguet, D.; Scarzello, S.; Dabert-Gay, A.S.; Debayle, D.; Friend, V.; Alloui, A.; Lazdunski, M.; et al. Black mamba venom peptides target acid-sensing ion channels to abolish pain. Nature 2012, 490, 552–555. [Google Scholar] [CrossRef] [PubMed]
- Dawson, R.J.P.; Benz, J.; Stohler, P.; Tetaz, T.; Joseph, C.; Huber, S.; Schmid, G.; Hügin, D.; Pflimlin, P.; Trube, G.; et al. Structure of the Acid-sensing ion channel 1 in complex with the gating modifier Psalmotoxin 1. Nat. Commun. 2012, 3, 936. [Google Scholar] [CrossRef] [PubMed]
- Buta, A.; Maximyuk, O.; Kovalskyy, D.; Sukach, V.; Vovk, M.; Ievglevskyi, O.; Isaeva, E.; Isaev, D.; Savotchenko, A.; Krishtal, O. Novel Potent Orthosteric Antagonist of ASIC1a Prevents NMDAR-Dependent LTP Induction. J. Med. Chem. 2015, 58, 4449–4461. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Ma, J.; DesJarlais, R.L.; Hagan, R.; Rech, J.; Lin, D.; Liu, C.; Miller, R.; Schoellerman, J.; Luo, J.; et al. Molecular mechanism and structural basis of small-molecule modulation of the gating of acid-sensing ion channel 1. Commun. Biol. 2021, 4, 174. [Google Scholar] [CrossRef] [PubMed]
- Diochot, S.; Baron, A.; Rash, L.D.; Deval, E.; Escoubas, P.; Scarzello, S.; Salinas, M.; Lazdunski, M. A new sea anemone peptide, APETx2, inhibits ASIC3, a major acid-sensitive channel in sensory neurons. Embo J. 2004, 23, 1516–1525. [Google Scholar] [CrossRef] [PubMed]
- Ugawa, S.; Ishida, Y.; Ueda, T.; Inoue, K.; Nagao, M.; Shimada, S. Nafamostat mesilate reversibly blocks acid-sensing ion channel currents. BioChem. Biophys. Res. Commun. 2007, 363, 203–208. [Google Scholar] [CrossRef] [PubMed]
- Dubé, G.R.; Lehto, S.G.; Breese, N.M.; Baker, S.J.; Wang, X.; Matulenko, M.A.; Honoré, P.; Stewart, A.O.; Moreland, R.B.; Brioni, J.D. Electrophysiological and in vivo characterization of A-317567, a novel blocker of acid sensing ion channels. Pain 2005, 117, 88–96. [Google Scholar] [CrossRef]
- Lee, J.Y.P.; Saez, N.J.; Cristofori-Armstrong, B.; Anangi, R.; King, G.F.; Smith, M.T.; Rash, L.D. Inhibition of acid-sensing ion channels by diminazene and APETx2 evoke partial and highly variable antihyperalgesia in a rat model of inflammatory pain. Br. J. Pharmacol. 2018, 175, 2204–2218. [Google Scholar] [CrossRef]
- Krauson, A.J.; Rooney, J.G.; Carattino, M.D. Molecular basis of inhibition of acid sensing ion channel 1A by diminazene. PLoS ONE 2018, 13, e0196894. [Google Scholar] [CrossRef]
- Schmidt, A.; Rossetti, G.; Joussen, S.; Gründer, S. Diminazene Is a Slow Pore Blocker of Acid-Sensing Ion Channel 1a (ASIC1a). Mol. Pharmacol. 2017, 92, 665–675. [Google Scholar] [CrossRef]
- Chen, X.; Qiu, L.; Li, M.; Dürrnagel, S.; Orser, B.A.; Xiong, Z.-G.; MacDonald, J.F. Diarylamidines: High potency inhibitors of acid-sensing ion channels. Neuropharmacology 2010, 58, 1045–1053. [Google Scholar] [CrossRef] [PubMed]
- Wolkenberg, S.E.; Zhao, Z.; Mulhearn, J.J.; Harrison, S.T.; Sanders, J.M.; Cato, M.J.; Jovanovska, A.; Panigel, J.; Cook, S.P.; Henze, D.A.; et al. High concentration electrophysiology-based fragment screen: Discovery of novel acid-sensing ion channel 3 (ASIC3) inhibitors. Bioorganic Med. Chem. Lett. 2011, 21, 2646–2649. [Google Scholar] [CrossRef]
- Kuduk, S.D.; Di Marco, C.N.; Chang, R.K.; DiPardo, R.M.; Cook, S.P.; Cato, M.J.; Jovanovska, A.; Urban, M.O.; Leitl, M.; Spencer, R.H.; et al. Amiloride derived inhibitors of acid-sensing ion channel-3 (ASIC3). Bioorganic Med. Chem. Lett. 2009, 19, 2514–2518. [Google Scholar] [CrossRef]
- Baron, A.; Lingueglia, E. Pharmacology of acid-sensing ion channels—Physiological and therapeutical perspectives. Neuropharmacology 2015, 94, 19–35. [Google Scholar] [CrossRef]
- Duan, B.; Wang, Y.Z.; Yang, T.; Chu, X.P.; Yu, Y.; Huang, Y.; Cao, H.; Hansen, J.; Simon, R.P.; Zhu, M.X.; et al. Extracellular spermine exacerbates ischemic neuronal injury through sensitization of ASIC1a channels to extracellular acidosis. J. Neurosci. 2011, 31, 2101–2112. [Google Scholar] [CrossRef] [PubMed]
- Gobetto, M.N.; González-Inchauspe, C.; Uchitel, O.D. Histamine and Corticosterone Modulate Acid Sensing Ion Channels (ASICs) Dependent Long-term Potentiation at the Mouse Anterior Cingulate Cortex. Neuroscience 2021, 460, 145–160. [Google Scholar] [CrossRef] [PubMed]
- Sherwood, T.W.; Askwith, C.C. Endogenous arginine-phenylalanine-amide-related peptides alter steady-state desensitization of ASIC1a. J. Biol. Chem. 2008, 283, 1818–1830. [Google Scholar] [CrossRef]
- Deval, E.; Gasull, X.; Noël, J.; Salinas, M.; Baron, A.; Diochot, S.; Lingueglia, E. Acid-sensing ion channels (ASICs): Pharmacology and implication in pain. Pharmacol. Ther. 2010, 128, 549–558. [Google Scholar] [CrossRef]
- Chen, X.; Kalbacher, H.; Gründer, S. The tarantula toxin psalmotoxin 1 inhibits acid-sensing ion channel (ASIC) 1a by increasing its apparent H+ affinity. J. Gen. Physiol. 2005, 126, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Baconguis, I.; Bohlen, C.J.; Goehring, A.; Julius, D.; Gouaux, E. X-ray structure of acid-sensing ion channel 1-snake toxin complex reveals open state of a Na(+)-selective channel. Cell 2014, 156, 717–729. [Google Scholar] [CrossRef] [PubMed]
- Baconguis, I.; Gouaux, E. Structural plasticity and dynamic selectivity of acid-sensing ion channel-spider toxin complexes. Nature 2012, 489, 400–405. [Google Scholar] [CrossRef]
- Qadri, Y.J.; Song, Y.; Fuller, C.M.; Benos, D.J. Amiloride docking to acid-sensing ion channel-1. J. Biol. Chem. 2010, 285, 9627–9635. [Google Scholar] [CrossRef]
- Matasic, D.S.; Holland, N.; Gautam, M.; Gibbons, D.D.; Kusama, N.; Harding, A.M.S.; Shah, V.S.; Snyder, P.M.; Benson, C.J. Paradoxical Potentiation of Acid-Sensing Ion Channel 3 (ASIC3) by Amiloride via Multiple Mechanisms and Sites Within the Channel. Front. Physiol. 2021, 12, 750696. [Google Scholar] [CrossRef] [PubMed]
- Soltoff, S.P.; Mandel, L.J. Amiloride directly inhibits the Na,K-ATPase activity of rabbit kidney proximal tubules. Science 1983, 220, 957–958. [Google Scholar] [CrossRef] [PubMed]
- Jankun, J.; Skrzypczak-Jankun, E. Binding site of amiloride to urokinase plasminogen activator depends on species. Int. J. Mol. Med. 2001, 8, 365–371. [Google Scholar] [CrossRef]
- Sivils, A.; Yang, F.; Wang, J.Q.; Chu, X.P. Acid-Sensing Ion Channel 2: Function and Modulation. Membranes 2022, 12, 133. [Google Scholar] [CrossRef]
- de Alba, E.; Jiménez, M.A.; Rico, M. Turn Residue Sequence Determines β-Hairpin Conformation in Designed Peptides. J. Am. Chem. Soc. 1997, 119, 175–183. [Google Scholar] [CrossRef]
- Russell, S.J.; Blandl, T.; Skelton, N.J.; Cochran, A.G. Stability of cyclic beta-hairpins: Asymmetric contributions from side chains of a hydrogen-bonded cross-strand residue pair. J. Am. Chem. Soc. 2003, 125, 388–395. [Google Scholar] [CrossRef]
- Rayevsky, A.; Samofalova, D.O.; Maximyuk, O.; Platonov, M.; Hurmach, V.; Ryabukhin, S.; Volochnyuk, D. Modelling of an autonomous Nav1.5 channel system as a part of in silico pharmacology study. J. Mol. Model 2021, 27, 182. [Google Scholar] [CrossRef] [PubMed]
- Gunthorpe, M.J.; Smith, G.D.; Davis, J.B.; Randall, A.D. Characterisation of a human acid-sensing ion channel (hASIC1a) endogenously expressed in HEK293 cells. Pflug. Arch. Eur. J. Physiol. 2001, 442, 668–674. [Google Scholar] [CrossRef]
- Schuhmacher, L.N.; Smith, E.S. Expression of acid-sensing ion channels and selection of reference genes in mouse and naked mole rat. Mol. Brain 2016, 9, 97. [Google Scholar] [CrossRef]
- Palmer, L.G. Voltage-dependent block by amiloride and other monovalent cations of apical Na channels in the toad urinary bladder. J. Membr. Biol. 1984, 80, 153–165. [Google Scholar] [CrossRef]
- Armstrong, C.M. Interaction of tetraethylammonium ion derivatives with the potassium channels of giant axons. J. Gen. Physiol. 1971, 58, 413–437. [Google Scholar] [CrossRef]
- St Laurent, D.R.; Balasubramanian, N.; Han, W.T.; Trehan, A.; Federici, M.E.; Meanwell, N.A.; Wright, J.J.; Seiler, S.M. Active site-directed thrombin inhibitors-II. Studies related to arginine/guanidine bioisosteres. Bioorganic Med. Chem. 1995, 3, 1145–1156. [Google Scholar] [CrossRef] [PubMed]
- Kuduk, S.D.; Chang, R.K.; Di Marco, C.N.; Dipardo, R.M.; Cook, S.P.; Cato, M.J.; Jovanovska, A.; Urban, M.O.; Leitl, M.; Spencer, R.H.; et al. Identification of non-amidine inhibitors of acid-sensing ion channel-3 (ASIC3). Bioorganic Med. Chem. Lett. 2011, 21, 4255–4258. [Google Scholar] [CrossRef] [PubMed]
- Finol-Urdaneta, R.K.; McArthur, J.R.; Aboelela, A.; Bujaroski, R.S.; Majed, H.; Rangel, A.; Adams, D.J.; Ranson, M.; Kelso, M.J.; Buckley, B.J. Automated patch clamp screening of amiloride and 5-N,N-hexamethyleneamiloride (HMA) analogs identifies 6-iodoamiloride as a potent acid-sensing ion channel inhibitor. bioRxiv 2022. bioRxiv:2022.2003.2012.484055. [Google Scholar]
- Larkin, M.A.; Blackshields, G.; Brown, N.P.; Chenna, R.; McGettigan, P.A.; McWilliam, H.; Valentin, F.; Wallace, I.M.; Wilm, A.; Lopez, R.; et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007, 23, 2947–2948. [Google Scholar] [CrossRef]
- Bignucolo, O.; Vullo, S.; Ambrosio, N.; Gautschi, I.; Kellenberger, S. Structural and Functional Analysis of Gly212 Mutants Reveals the Importance of Intersubunit Interactions in ASIC1a Channel Function. Front. Mol. Biosci. 2020, 7, 58. [Google Scholar] [CrossRef]
- Lee, J.; Patel, D.S.; Ståhle, J.; Park, S.J.; Kern, N.R.; Kim, S.; Lee, J.; Cheng, X.; Valvano, M.A.; Holst, O.; et al. CHARMM-GUI Membrane Builder for Complex Biological Membrane Simulations with Glycolipids and Lipoglycans. J. Chem. Theory Comput. 2019, 15, 775–786. [Google Scholar] [CrossRef]
- Jorgensen, W.L.; Chandrasekhar, J.; Madura, J.D.; Impey, R.W.; Klein, M.L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983, 79, 926–935. [Google Scholar] [CrossRef]
- Best, R.B.; Zhu, X.; Shim, J.; Lopes, P.E.; Mittal, J.; Feig, M.; Mackerell, A.D., Jr. Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone φ, ψ and side-chain χ(1) and χ(2) dihedral angles. J. Chem. Theory Comput. 2012, 8, 3257–3273. [Google Scholar] [CrossRef] [PubMed]
- Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindahl, E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015, 1–2, 19–25. [Google Scholar] [CrossRef]
- Hess, B. P-LINCS: A Parallel Linear Constraint Solver for Molecular Simulation. J. Chem. Theory Comput. 2008, 4, 116–122. [Google Scholar] [CrossRef]
- Parrinello, M.; Rahman, A. Polymorphic transitions in single crystals: A new molecular dynamics method. J. Appl. Phys. 1981, 52, 7182–7190. [Google Scholar] [CrossRef]
- Bussi, G.; Donadio, D.; Parrinello, M. Canonical sampling through velocity rescaling. J. Chem. Phys. 2007, 126, 014101. [Google Scholar] [CrossRef]
- Jung, J.; Mori, T.; Kobayashi, C.; Matsunaga, Y.; Yoda, T.; Feig, M.; Sugita, Y. GENESIS: A hybrid-parallel and multi-scale molecular dynamics simulator with enhanced sampling algorithms for biomolecular and cellular simulations. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2015, 5, 310–323. [Google Scholar] [CrossRef]
- Brezovsky, J.; Kozlikova, B.; Damborsky, J. Computational Analysis of Protein Tunnels and Channels. Methods Mol. Biol. 2018, 1685, 25–42. [Google Scholar] [CrossRef]
- Jurcik, A.; Bednar, D.; Byska, J.; Marques, S.M.; Furmanova, K.; Daniel, L.; Kokkonen, P.; Brezovsky, J.; Strnad, O.; Stourac, J.; et al. CAVER Analyst 2.0: Analysis and visualization of channels and tunnels in protein structures and molecular dynamics trajectories. Bioinformatics 2018, 34, 3586–3588. [Google Scholar] [CrossRef] [PubMed]
- Rayevsky, A.; Sirokha, D.; Samofalova, D.; Lozhko, D.; Gorodna, O.; Prokopenko, I.; Livshits, L. Functional Effects In Silico Prediction for Androgen Receptor Ligand-Binding Domain Novel I836S Mutation. Life 2021, 11, 659. [Google Scholar] [CrossRef] [PubMed]
- Gu, J.; Liu, T.; Guo, R.; Zhang, L.; Yang, M. The coupling mechanism of mammalian mitochondrial complex I. Nat. Struct. Mol. Biol. 2022, 29, 172–182. [Google Scholar] [CrossRef]
- Swigonska, S.; Molcan, T.; Nynca, A.; Ciereszko, R.E. The involvement of CYP1A2 in biodegradation of dioxins in pigs. PLoS ONE 2022, 17, e0267162. [Google Scholar] [CrossRef] [PubMed]
- Bottegoni, G.; Rocchia, W.; Rueda, M.; Abagyan, R.; Cavalli, A. Systematic exploitation of multiple receptor conformations for virtual ligand screening. PLoS ONE 2011, 6, e18845. [Google Scholar] [CrossRef] [PubMed]
- Rayevsky, A.; Platonov, M.; Maximyuk, O.; Iegorova, O.; Hurmach, V.; Holota, Y.; Elijah, B.; Cherninskyi, A.; Pavel, K.; Ryabukhin, S.; et al. Integrated workflow for the identification of new GABA positive allosteric modulators based on the in silico screening with further in vitro validation. Case study using Enamine’s stock chemical space. Mol. Inform. 2023, 43, e202300156. [Google Scholar] [CrossRef]
- Maximyuk, O.; Khmyz, V.; Lindskog, C.J.; Vukojević, V.; Ivanova, T.; Bazov, I.; Hauser, K.F.; Bakalkin, G.; Krishtal, O. Plasma membrane poration by opioid neuropeptides: A possible mechanism of pathological signal transduction. Cell Death Dis. 2015, 6, e1683. [Google Scholar] [CrossRef] [PubMed]
- Savotchenko, A.; Romanov, A.; Isaev, D.; Maximyuk, O.; Sydorenko, V.; Holmes, G.L.; Isaeva, E. Neuraminidase inhibition primes short-term depression and suppresses long-term potentiation of synaptic transmission in the rat hippocampus. Neural Plast. 2015, 2015, 908190. [Google Scholar] [CrossRef]
- Egorova, O.V.; Fisyunov, O.I.; Maksymyuk, O.P.; Kryshtal, O.A. Mechanisms Underlying Positive Modulation of a Current through P-Type Calcium Channels in Purkinje Neurons by an Agonist of Opioid Receptors. Neurophysiology 2016, 48, 230–237. [Google Scholar] [CrossRef]
- Lunko, O.; Isaev, D.; Maximyuk, O.; Ivanchick, G.; Sydorenko, V.; Krishtal, O.; Isaeva, E. Persistent sodium current properties in hippocampal CA1 pyramidal neurons of young and adult rats. Neurosci. Lett. 2014, 559, 30–33. [Google Scholar] [CrossRef] [PubMed]
- Khmyz, V.; Maximyuk, O.; Teslenko, V.; Verkhratsky, A.; Krishtal, O. P2X3 receptor gating near normal body temperature. Pflugers Arch. 2008, 456, 339–347. [Google Scholar] [CrossRef]
- Lishko, P.V.; Maximyuk, O.P.; Chatterjee, S.S.; Nöldner, M.; Krishtal, O.A. The putative cognitive enhancer KA-672.HCl is an uncompetitive voltage-dependent NMDA receptor antagonist. Neuroreport 1998, 9, 4193–4197. [Google Scholar] [CrossRef]
- Aynetdinova, D.; Callens, M.C.; Hicks, H.B.; Poh, C.Y.X.; Shennan, B.D.A.; Boyd, A.M.; Lim, Z.H.; Leitch, J.A.; Dixon, D.J. Installing the “magic methyl”-C-H methylation in synthesis. Chem. Soc. Rev. 2021, 50, 5517–5563. [Google Scholar] [CrossRef]
Substance | Structure | Score | I/Io (Mean ± SD), % | Recovery (Mean ± SD), % |
---|---|---|---|---|
EN300-257412 | −19.46 | 37 ± 8 | 101 ± 7 | |
EN300-257539 | −17.05 | 11 ± 9 | 101 ± 2 | |
EN300-256317 | −19.53 | 7 ± 2 | 55 ± 2 | |
EN300-262584 | −17.18 | 19 ± 8 | 92 ± 4 | |
EN300-264105 | −21.45 | 8 ± 2 | 97 ± 8 | |
EN300-256318 | −18.59 | 76 ± 7 | 82 ± 5 | |
EN300-2324118 | −19.46 | 65 ± 3 | 83 ± 15 | |
EN300-268551 | −17.58 | 21 ± 4 | 102 ± 11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Platonov, M.; Maximyuk, O.; Rayevsky, A.; Hurmach, V.; Iegorova, O.; Naumchyk, V.; Bulgakov, E.; Cherninskyi, A.; Ozheredov, D.; Ryabukhin, S.V.; et al. 4-(Azolyl)-Benzamidines as a Novel Chemotype for ASIC1a Inhibitors. Int. J. Mol. Sci. 2024, 25, 3584. https://doi.org/10.3390/ijms25073584
Platonov M, Maximyuk O, Rayevsky A, Hurmach V, Iegorova O, Naumchyk V, Bulgakov E, Cherninskyi A, Ozheredov D, Ryabukhin SV, et al. 4-(Azolyl)-Benzamidines as a Novel Chemotype for ASIC1a Inhibitors. International Journal of Molecular Sciences. 2024; 25(7):3584. https://doi.org/10.3390/ijms25073584
Chicago/Turabian StylePlatonov, Maksym, Oleksandr Maximyuk, Alexey Rayevsky, Vasyl Hurmach, Olena Iegorova, Vasyl Naumchyk, Elijah Bulgakov, Andrii Cherninskyi, Danil Ozheredov, Serhiy V. Ryabukhin, and et al. 2024. "4-(Azolyl)-Benzamidines as a Novel Chemotype for ASIC1a Inhibitors" International Journal of Molecular Sciences 25, no. 7: 3584. https://doi.org/10.3390/ijms25073584
APA StylePlatonov, M., Maximyuk, O., Rayevsky, A., Hurmach, V., Iegorova, O., Naumchyk, V., Bulgakov, E., Cherninskyi, A., Ozheredov, D., Ryabukhin, S. V., Krishtal, O., & Volochnyuk, D. M. (2024). 4-(Azolyl)-Benzamidines as a Novel Chemotype for ASIC1a Inhibitors. International Journal of Molecular Sciences, 25(7), 3584. https://doi.org/10.3390/ijms25073584