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Abstract: A variety of neurological and psychiatric disorders have recently been shown to be highly
associated with the abnormal development and function of oligodendrocytes (OLs) and interneurons.
OLs are the myelin-forming cells in the central nervous system (CNS), while interneurons are
important neural types gating the function of excitatory neurons. These two types of cells are
of great significance for the establishment and function of neural circuits, and they share similar
developmental origins and transcriptional architectures, and interact with each other in multiple
ways during development. In this review, we compare the similarities and differences in these
two cell types, providing an important reference and further revealing the pathogenesis of related
brain disorders.
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1. Introduction

Oligodendrocytes (OLs) are the myelin-forming cells in the central nervous system
(CNS). The myelin sheath is important for the rapid saltatory conduction of nerve im-
pulses along axons and maintaining normal communications between neurons. Defects
in the myelin sheaths of OLs caused by developmental and pathological injuries lead
to various neurological and psychotic disorders, including cognitive disorders, anxiety,
and depression [1]. On the other hand, GABAergic inhibitory interneurons are important
neural types regulating the output of excitatory neurons, and are key to maintaining an
excitation/inhibition balance in neural microcircuits. These cells are thought to be one
of the key causes of numerous psychotic disorders [2]. To comprehend the interaction
between these two cells in the development of the brain and related disorders, we compare
and review the developmental origins, transcriptional regulation and interactive modes of
these two neural cell types. This review will provide a comprehensive understanding for
researchers working on developmental brain diseases and neuron–glia interactions.

2. The Origins of Oligodendrocytes

In the development of the rodent forebrain, OLs are differentiated from oligodendro-
cyte precursor cells (OPCs) in the ganglionic eminence (GE) and the cortex ventricular zone
at different stages [3], and there are three continuous OPC-generation waves (Figure 1).
The first wave starts around embryonic day 12.5 (E12.5) in the mice, from precursor cells
expressing the transcription factor NKX2.1 in the medial ganglionic eminence (MGE) and
embryonic preoptic area (ePOA); the second wave starts at E14.5, from the precursor cells
expressing the homeobox gene Gsx2 in the lateral ganglionic eminence (LGE) and the
MGE; and the third wave starts after birth from precursor cells expressing the homeobox
gene Emx1 in the dorsal pallium [3]. The Cre-loxP-lineage-tracing study indicates that the
fate-specification of three OPC-generation waves are as follows: 10 days after birth in the
cortex, the first-wave OPCs from the MGE and ePOA are eliminated and replaced by the
second- and third-wave OPCs. Although the first-wave OPCs still survive in other brain
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regions, their deletion in the neocortex suggests this cluster may have little effect on cortical
circuit formation and axonal myelination [4]. Moreover, removing the first-wave OPCs
through gene knockout confirms that the replacement of this cell cluster does not cause
significant changes in the myelin sheath, suggesting the functional redundancy of these
cells compared with other OPCs [4].
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Figure 1. Schematic diagram shows the generation and transcriptional regulation of OPCs and
interneurons from the embryonic telencephalon. OPCs originate from three regions: the ganglionic
eminence, the preoptic area (POA) and the dorsal pallium. The regions generating cortical and hip-
pocampal interneurons are the medial ganglionic eminence (MGE), the caudal ganglionic eminence
(CGE) and the POA. A distinct combination of transcription factors is required for the specification of
these two cell types, as indicated.

In the outer subventricular zone (oSVZ) of primate brains, there exists a special radial
glia subtype, the outer radial glia (oRG), which is believed to be beneficial for the expansion
of gray matter [5]. The single-cell sequencing analysis of the human brain demonstrates that
there exist pre-OPCs, originating from the local intermediate progenitor cells [5]. Pre-OPCs
express oRG-specific genes, such as PTPRZ1, TNC, MOXD1, HOPX and FAM107A [5].
This indicates that these cells may be produced from oRGs. Furthermore, in the early
developmental phase of human glial cells (GW20–24), there are numerous epidermal
growth-factor receptor/OL transcription-factor 2 double-positive (EGFR+OLIG2+) cells in
the oSVZ of the cortex germinal zone. These progenitor cells are present in low abundance
during GW16–18, but then increase dramatically during GW20–24, consistent with the
generation time of OPCs. Different from the oRG with long radial process, cells in the
oSVZ expressing EGFR distribute randomly in the germinal zone; this distribution could be
vertical, horizontal or oblique to the surface [5]. Most EGFR+OLIG2+ cells do not express
pS6, an oRG marker and a canonical readout of activated mTOR signaling [6]. In contrast,
most TNC+SOX2+ oRGs in oSVZ do not express EGFRs [7]. These findings support that
EGFR labels a population of progenitor cells in oSVZ distinct from oRGs. Moreover,
EGFR+OLIG2+ cells are EOMES− and PPP1R17−, suggesting a lineage separation between
OLs and neurons. Together, these findings demonstrate that EGFR expression marks
pre-OPCs in the human oSVZ. These progenitor cells can produce OPCs locally in the
second and third trimesters. The quantity of OPCs increases greatly through long-term
proliferation and symmetric division in the subsequent developmental process, laying a
foundation for the later generation of OLs [5].
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3. The Origins of Interneurons

Like the origins of OLs, cortical interneurons are mainly generated from the MGE
and the caudal ganglionic eminence (CGE). In the mouse brain, the MGE is believed to
be the origin zone of 50–60% of cortical interneurons, which appear before the generation
of the first wave of OPCs, at around E10.5 [8]. Meanwhile, the CGE produces 30–40% of
cortical interneurons, which arise between E12.5 and E16.5 [8]. In mammals, GABAergic
interneurons first begin tangential migration at E12.5, which is the time point of first-wave
OPC generation [9]. After arriving in the cortex, early interneurons migrate horizontally in
cortical plates and then more interneurons are produced, migrating through the intermedi-
ate zone. At a later time of cortical formation (E14–15), three migratory routes (also known
as tangential migration flows) can be observed in the cortex, from the marginal area, basal
area and lower middle and subventricular area [10].

Progenitor cells in the MGE can produce both GABAergic interneurons and OPCs,
indicating the same progenitor for these two cell types. At present, it is known that in-
terneurons generated from the MGE and CGE are complementary subtypes that have
strong corresponding relationships with their source-specific progenitor cells. For example,
the MGE mainly generates parvalbumin (PV) interneurons (including basket cells and chan-
delier cells) and somatostatin (SST) interneurons, among which the largest subset is formed
by Martinotti cells [11]. Meanwhile, the CGE produces relatively rare subtypes, including
bipolar and vasoactive intestinal peptide (VIP)-expressing multipolar interneurons [12].
Although hippocampal genetic lineage analysis has emphasized that specific fetal brain
structures produce specific interneuron subtypes [12], there is not a simple corresponding
relationship between the germinal zones and interneuron subtypes. For instance, in differ-
ent cerebrum zones, several interneuron types (such as fast-spiking basket cells) display
apparent similarity in histologic origins, but other types do not seem to. Additionally, a
special type of interneurons called orientation lacunar molecular cells have at least two
origins and produce different subclasses, e.g., ionic serotonin receptor 5HT3aR-positive
and -negative cells. More interestingly, the main source of interneurons in the basal ganglia
is the MGE [12].

4. Transcriptional Regulation for the Development of Oligodendrocytes and
Interneurons

Neural stem cells (NSCs) are the cell source of the CNS. They express basic helix–loop–
helix (bHLH) and NK homeobox factors when differentiating into OPCs. These transcription
factors play an important role in the specification of OPCs, including ASCl1/MASH1, OLIG1
(OL transcription factor 1) and OLIG2, as well as NKX2.2, NKX6.1 and NKX6.2 [13–15]
(Figure 1). For instance, OLIG2 inhibits the generation of astrocytes from NSCs by repressing
nuclear factor IA (NFIA) [16]. SRY-box (SOX) family members also take part in different
stages of OPC formation, differentiation and maturation. In the early stage, SOX1, SOX2
and SOX3 keep OPCs in the undifferentiated state [17]; SOX11 and ETS relative gene 1 are
regulated by histone deacetylases (HDACs) and inhibit the expression of myelin genes. SOX10
is another important factor controlling OPC differentiation, and SOX10 expression may be
regulated by OLIG2 via a distant evolutionarily conserved enhancer of the SOX10 gene and
a promoter-dependent mechanism [18]. A recent study shows that the phosphorylation of
FOXO1 via AKT, a serine/threonine (Ser/Thr) kinase, is important for SOX10 expression and
OL differentiation in vitro [19]. Analyses of various animal models have revealed an essential
role of SOX10 in the terminal differentiation of OLs in coordination with OLIG1, MYRF (myelin
regulatory factor) and TCF4 (transcription factor 4) [20]. MYRF is identified as a decisive factor
that helps SOX10 to switch between its target genes during the OL-differentiation process [21].
Moreover, Ying Yang 1 (YY1) acts as a lineage-specific repressor of transcription inhibitors of
myelin gene expression (TCF4 and ID4) by recruiting HDAC1 to their promoters during OL
differentiation [22].

Several transcription factors, such as LHX6, SOX6, NKX2.1 and the DLX homeobox
gene, play important roles in regulating the generation of PV and SST interneurons from
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the MGE [23,24]. For instance, the expression of NKX2.1 is limited in the MGE, and the
straight or conditional knockout of Nkx2.1 leads to decreased pools of both PV and SST
interneurons. LHX6 is one of the targets of NKX2.1, and its expression is also limited to the
MGE [25]. In Lhx6 deficiency, neural progenitors generated from the MGE can still migrate
to the cortex correctly; most of these neurons do not express PV or SST, but their expression
of neuropeptide Y increases. However, in the Lhx mutant, PV and SST interneurons are not
eliminated completely, which indicates that the MGE is not the only origin of these two
interneuron types [23] and suggests there are transcription factors other than NKX2.1 and
LHX6 regulating the differentiation of PV and SST interneurons [25]. DLX1 and DLX2 show
redundant effects in the formation of interneurons. Mice with a single mutation of Dlx1 or
Dlx2 exhibit minor defects in the formation of GABAergic neurons; however, double knock-
outs of Dlx1 and Dlx2 lead to a global defect in the development of GABAergic neurons,
including the achievement of GABAergic characteristics, the initiation and termination of
tangential migration and the functional maturation of certain subclasses [26]. Meanwhile,
transcription factors like ELMO1, DLX5/6, ARX and SIP1 have all proven necessary for the
migration and specification of certain interneuron subtypes [23,27]. A mutation in these
genes may lead to abnormal neural circuits and produce psychosis in mice [12]. In addition,
GSX1 and GSX2 homeobox proteins are involved in the differentiation of interneurons
generated from the CGE. Mutants in Mash1, a downstream target gene of GSX1/2, show
a significant decrease in cortical interneurons in early development [28]. Interneurons
generated from the POA, expressing DLX1/2, ASCL1 and NKX2.1, contribute only 10% of
the total population in the adult mice cortex but include a large diversity of subtypes, such
as SST+, PV+ and RLN+ [29].

OLs and interneurons share similar transcriptional architectures during early brain
development since they are both generated from the GE. For instance, DLX homeobox
proteins inhibit the formation of OPCs by acting on their common progenitor cells [27]. In
newborn wild-type mice, transplanted progenitor cells from the ventral telencephalon of
the Dlx1/2 mutant can differentiate into OLs and survive to form a myelin sheath in the
adult. These studies confirm the essential role of DLX in the regulations of interneuron and
OL specifications, especially in the ventral forebrain of the embryonic stage [27].

Recent studies revealed that DLX1/2 can negatively regulate the formation of OPCs by
interacting with numerous partners. For example, MASH1 is relevant to the regulation of
neurons in the telencephalon and the formation of OLs, whose function is necessary for the
development of olfactory bulb neurons and perinatal OLs, and it can promote the formation
of OPCs by limiting the number of DLX+ progenitor cells [30]. For one, MASH1 could
combine with DNA regulatory components between DLX1 and DLX2. Furthermore, the
expression of MASH1 increases in the cortical ventricular zone and subventricular zone of
the mutants of Dlx1 and Dlx2 [30]. Some findings confirm that in the germinal area of MGE
and AEP, the combined expressions of transcription factors DLX1/2, OLIG2 and MASH1
inhibit the formation of OPCs in the ventral forebrain by regulating the balance between the
formation of forebrain neurons and OPCs; namely, DLX1/2 inhibits the formation of OPCs
in the ventral forebrain by negatively regulating the expression of OLIG2. The presented
studies suggest that before birth, once it is decided that neural progenitor cells will become
OL-lineage cells, they continue to express OLIG2 and inhibit the interneuron transcription
factor DLX2.

In addition, transcription-factor patterns, including GSX2 and DLX1/2, are required
to specify interneurons and repress oligodendroglial fate. After birth, the niche of GSX2+

neural stem cells is derived from its GE counterpart, regulated by a similar transcription
factor hierarchy, which persists in the subventricular zone (SVZ) of the murine brain [31].

Interestingly, there exists a fate switch between the two cell types. An overexpression
of DLX2 alone in postnatal mouse OPCs switches their lineage fate to GABAergic neurons
within two days by downregulating OLIG2 and upregulating a network of inhibitory neu-
ron transcripts [32]. Functionally, inhibitory neurons generated from the trans-differentiated
OPCs can create an action potential and form GABAergic synapses. This study suggests
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that the molecular regulatory network shared by the two types of cells plays an important
role in promoting the fatal switch from OPCs to interneurons in specific situations during
the developmental process, such as developmental abnormalities and disease.

5. The Interaction between Interneurons and Oligodendrocytes

From the above introduction, we can identify several common characteristics between
GABAergic interneurons and OLs in the developing cortex: 1© these two kinds of cells are
generated from the same germinal area, and their precursor cells use the same group of
transcription factors; 2© they both migrate to the cortex along similar tangential routes [33];
and 3© they are both over-produced early after birth and their numbers then significantly
decrease [33]. Moreover, there exist plenty of interaction modes between the two cells dur-
ing brain development. For instance, migrating interneurons can release paracrine factors
and promote the differentiation of OPCs [34]; OPCs in the cortex could accept temporary
and primary synapse inputs from PV interneurons before the peak of differentiation; and
most PV interneurons in the cortex are myelinated [33]. Research in recent years has dis-
covered that non-synaptic modes of interneuron-to-oligodendroglia communication, such
as extrasynaptic transmission or mechanical interaction, will influence oligodendroglia
function and myelination. We will elucidate their interactions in the following sections
(Figure 2).
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5.1. The Synaptic Contact between Interneurons and Oligodendrocytes

At present, OPCs are the only glial cells that are known to receive direct inputs from
both the GLU+ excitatory neurons and GABA+ inhibitory neurons [35]. The synapses
between OPCs and glutamatergic neurons can be found in numerous brain areas, including
the hippocampus, cerebellum, cortex, brain stem and white-matter bundles, hinting that
receiving a synaptic signal is an important and common characteristic of OPCs [36]. In
2004, LIN et al. first detected interneuron–OPC synapses in acute hippocampus slices [37].
Interneurons in the CA1 area directly release GABA, which acts on the postsynaptic GABAA
receptors in OPCs and is the prime inhibitory neurotransmitter in the CNS. More evidence
further proves the existence of these inhibitory neuron–OPC synaptic connections [35,38].
In the cortex, the inhibitory synapses account for around 90% of all synapses received by
OPCs [38]. Such synaptic transmissions through GABAA receptors peak at two weeks after
birth, with an immediate increase in the number of OLs. Until four weeks after birth, their
communication mode changes into a non-synaptic mode, when the GABAergic electric
currents in OPCs are mainly generated by GABA overflowing. It is worth noting that
OPCs in the cortex have basically finished differentiation at this age. These results further
indicate that the early postnatal establishment of OPC–interneuron synapses in the cortex
is necessary for OPC differentiation and interneuron myelination [39].

Furthermore, the first wave of OPCs in the cortex generate functional clusters with
their lineage-relative interneurons. Due to their common developmental origins, these two



Int. J. Mol. Sci. 2024, 25, 3620 6 of 13

clusters form synaptic connections in priority, which are maintained until the formation of
mature oligodendrocytes. In the sensory cortex of mice, the number of OPC–interneuron
synaptic connections peaks at ten days after birth and then decreases, reflecting an accurate
and transient time window. Interestingly, this happens during the extensive programmed
death of both interneurons and OPCs in the developing cortex. Actually, in the first two
weeks after birth, the first wave of generated OPCs and 40% of interneurons are eliminated.
This cell death and the highly regulated transient synaptic connections together indicate
that the two kinds of cells are highly dynamic during development [4].

Although neurons can both receive and emit signals in the neural circuit, OPCs seem
to only receive inputs as postsynaptic components [40]. The synapses between gluta-
matergic axons and OPCs are built early during the development and become stronger
with age (greater currents and more inputs), which is in parallel with the normal develop-
ment of peripheral neuron synapses and different from the GABAergic signal in OPCs as
mentioned above.

5.2. Effects of GABA Signal in Differentiation and Myelination of OPCs

GABA can bind to both GABAA or GABAB receptors, exerting fast or slow inhibition.
In brain slices containing the corpus callosum and hippocampus, the GABAA receptor
has been found to induce the depolarization of OPCs, which is probably relative to cell
differentiation [39]. The expression of GABAA receptors decreases during the differentiation
from proliferative OPCs to myelinating OLs. Recently, transcriptome studies and single-cell
real-time quantitative PCR assays indicate that all GABAA-receptor subunits (α1–5, β1–3
and γ1–3) decrease during the development process of OLs [41–43]. The γ2 subunit is
expressed in OPCs but not in OLs [41–43]. However, a deficiency of the γ2 subunit does
not seem to impact the proliferation and differentiation of OPCs. It is interesting that while
the number of OPCs expressing the α2, α5, β1 and γ2 subunits decrease 2–4 weeks after
birth, those expressing the α3 and α4 subunits increase; this is consistent with the time
window of transforming synaptic transmission to non-synaptic communication. The γ2
subunit is specially detected on the postsynaptic membranes of PV interneuron–OPCs,
whose expression levels are comparable to that in neurons [38]. Thus, the γ2 subunit is
necessary for the postsynaptic clustering of the GABAA-receptor subunit in OPCs.

It is known that the GABA signal plays a key role in the origins of OPCs, as well as in
axon identification and myelination [35,44]. The systemic administration of the GABAA-
receptor antagonist bicuculline can significantly induce the proliferation of OPCs, while
increasing the level of GABA induces the opposite effect in cerebellar white matter [35].
In mice brain-slice cultures, endogenous GABA produces an equal number of OPCs and
mature OLs, which can be reversed by the GABAA-receptor antagonist gabazine [45], indi-
cating that the GABAA-receptor signal pathway inhibits the self-renewal and myelination
of OPCs.

Furthermore, the GABA signal also takes part in regulating OL functions in brain
diseases involving demyelination. Studies on brain stroke have discovered that the release
of GABA increases rapidly in the ischemic penumbra [46]. However, GABAA-receptor-
mediated inputs on OPCs decrease [35], alongside more proliferating OPCs and a delayed
maturation of OLs. With the stimulation of GABA, OPCs in the human cortex produce
neurotrophins such as BDNF, which increase after brain stroke [47]. BDNF can also promote
the proliferation of OPCs in both physiological and pathological situations [48]. It is still
unclear whether these newly generated OPCs take part in the regeneration process.

Both postsynaptic and presynaptic GABAergic transduction decrease in the brains
of patients diagnosed with progressive demyelinated multiple sclerosis (MS) [49]. The
GABA level in the sensory motor cortex increases, while that in the hippocampus decreases.
In experimental autoimmune encephalomyelitis (EAE) mice, an animal model for MS,
a single-cell RNA-seq study revealed that the level of the GABAB1 subunit decreases in
mature oligodendrocytes, and the levels of the GABAB2 and GABAA receptors remain un-
changed [50]. This indicates that the GABAB receptor may be involved in the remyelination
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process after damage, the same as under normal physiological conditions. Interestingly,
the expression of GABA transporter GAT3, responsible for exporting GABA out of cells,
decreases in OPCs, and the level of GAT1 rises in these EAE mice [50]. It is difficult to
judge whether the change in GAT expression is the result of or reason for demyelination.
And it remains to be clarified how the GABAergic signal in oligodendrocyte-lineage cells
participates in demyelination and remyelination.

5.3. Density and Myelination of GABA+ Interneurons

Oligodendrocytes have been regarded as an indispensable regulator of fast-spiking
PV+ interneuron density and myelination [51]. At the first two postnatal weeks, OPCs
sense interneuron activity through the expression of GABAB receptors (GABABR) and
concomitantly adjust the interneuron density by releasing a TNF-like weak inducer of
apoptosis (TWEAK) [52]. The conditional knockout (cKO) of Gababr in OPCs interrupts
interneuron–OPC signaling through an attenuated release of TWEAK and results in increas-
ing the population of PV+ interneurons. However, these interneurons appear hypoactive,
with fewer contacts with OPCs during development, and exhibit deteriorated myelin struc-
tures in adulthood. Patch-clamp recordings reveal reduced interneuron activity, and EEG
recordings also detect impaired cortical network activity in mutant mice [52]; both suggest
an imbalance of excitation and inhibition (E/I) in the mutant mPFC.

According to the morphological analysis of the murine cortex, half of the myelin
sheaths from layers 2 and 3 and 25% of the myelin sheaths from layer 4 are all wrapped on
inhibitory neurons, especially on PV+ basket cells [53]. Axons of PV interneurons make
contact with neuronal cell bodies (especially pyramidal neurons) and their proximal den-
drites. Other types of interneurons in the cortex (such as VIP+ and SST+ interneurons) have
a much lower extent of myelination. Recent studies confirm that the lack of the γ2 subunit
of the GABAA receptor in OPCs may interrupt the interaction between PV interneurons
and OPCs, leading to a lower level of myelination in PV interneurons from the barrel
cortex [54]. Although PV interneurons form synaptic connections with OPCs in priority,
the connections do not seem to be necessary to initiate the myelination process on PV
interneurons. The possible reasons for this are as follows: There also exist synaptic connec-
tions between unmyelinated PV interneurons and OPCs, and PV interneurons preserve the
myelin structure when synapses between PV interneurons and OPCs are deactivated. In
the functional cell clusters consisting of survived OPCs and lineage-relative interneurons
during development, the first-wave OPCs that start to differentiate to myelinating OLs are
irrelative to the neuronal characteristics, and axons of both glutamatergic and GABAergic
interneurons are myelinated. Promoting the survival of interneurons and OPCs derived
from the first wave will lead to a significant expansion in other OPC populations, so the
whole myelination level would be elevated [4].

It is worth noting that GABA signaling may participate in the regulation of myelin
formation. In fact, the increase in synaptic connections between interneurons and OPCs is
beneficial for the myelination of deep-layer neurons in the sensory cortex [4]. Moreover,
the myelination process mediated by GABA signaling may be different from the glutamic-
acid-directed process: compared to non-GABAergic neuronal axons, the distances between
the nodes of Ranvier are shorter and the protein level of the myelin basic protein is higher
in GABAergic neurons [53].

6. Neuropsychiatric Disorders with Interneuron and Oligodendrocyte Involvement
6.1. Schizophrenia

Schizophrenia (SCZ) is a serious mental disorder in which people interpret reality
abnormally. Impaired cognitive ability is considered a core feature of this disorder. Dys-
myelination and interneuron defects during adolescent prefrontal cortex (PFC) develop-
ment have been hypothesized to be the causes of SCZ [55–58], and these may contribute to
the observed cognitive disturbances in individuals affected by this disorder [56,59,60]. In
our previous observation, we identified the essential role of DNA hydroxymethylation in
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OPC differentiation and myelination, and further revealed two core endophenotypes of
SCZ, impaired working memory and sensorimotor gating ability, in dioxygenase deficient
mice [61]. Moreover, it seems that only specific cortical interneuron classes are affected
in schizophrenia: PV+ interneurons in the dorsolateral PFC of adult patients with SCZ
demonstrate a decreased expression of GAD67 [62], hinting that these cells are less able
to inhibit pyramidal neurons. Since PV+ interneurons include basket and chandelier cells,
their defects may reflect a perturbation of pyramidal neurons in both perisomatic and axo-
axonic inhibition. Furthermore, electroencephalogram synchronization in the gamma range
is impaired in the PFC of patients with schizophrenia when performing working-memory
tasks [59] which mainly originates from these fast-spiking PV interneurons.

Three possible mechanisms have been suggested for how PV+ interneurons contribute
to SCZ [60]. First, there may be a defective inhibitory transmission from interneurons onto
cortical pyramidal cells in individuals with SCZ [63]. Second, the defects in potent excitatory
drives from pyramidal cells cause failure in recruiting PV+ interneurons, thus impairing
the inhibitory function of PV+ interneurons. Finally, numerous research works show that
interneurons’ impaired excitation is present in both mouse models of schizophrenia and in
patients with the disease [64]. Therefore, a decreased excitatory drive to PV+ interneurons
consistently leads to a reduced expression of GAD67 mRNA [65], which is believed to
cause a decreased activity of these interneurons in turn.

The impaired bidirectional OPC–interneuron signaling induces defective social cog-
nitive behaviors in the Gababr cKO mice mentioned above [52], indicating that their inter-
actions might be a good candidate for potential therapeutic interventions for SCZ. The
evidence that supports the involvement of OL and interneuron dysfunctions in SCZ is
summarized in Table 1.

Table 1. Representative evidence of interneuron and oligodendrocyte involvement in schizophrenia
and depression.

Neuropsychiatric Disorders Evidence of Interneuron or Oligodendrocyte Involvement Reference

Schizophrenia

Dysmyelination during adolescent PFC development in mice model [55,57,58,61]

Decreased expression of GAD67 in PV+ interneurons of SCZ patients [62]

Conditional knockout of Gababr in OPCs interrupting the impaired bidirectional
OPC–interneuron signaling and induing defective social cognitive behavior in the mice [52]

Impaired electroencephalogram synchronization in the gamma range, originated mainly from
PV+ interneurons, in SCZ patients [59]

Fewer inhibitory synapses from interneurons onto cortical pyramidal cells in SCZ individuals [63]

Defects in potent excitatory drives from pyramidal cells, causing the failure in recruiting PV+

interneurons in mice models [65]

Impaired excitation of interneurons in both mouse models and SCZ patients [65]

Decreased excitatory drive to PV+ interneurons, leading to a reduced expression of GAD67
mRNA [66]

Depression

Decreased myelin gene expression and impaired myelin formation in protracted social-isolation
mice [66]

Myelin genes are the most significantly downregulated in stress-induced depressive mice [67]

Cuprizone-induced demyelinating mice develop depression-like behaviors [68]

Calcium homeostasis in OLs is essential for myelination and causes anxiety/depressive like
behaviors once interrupted in OLs [69]

Animal models of chronic unpredictable mild stress show a decreased expression of
OL-associated genes [70]

Myelin gene mutation might be a causative of catatonia-depression syndrome in patients [71]

Interneurons exhibit abnormal morphology and function in sMDD patients [72]

Targeting the 5-HT2C receptor can restore neuronal activity deficits in sMDD GABAergic
interneurons [72]
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6.2. Depression

Depression is another common mental disorder, affecting more than 300 million
people worldwide. Both OLs and interneurons have a shown strong association with
the pathology of depression. Oligodendrogenesis and myelination in the PFC are highly
sensitive to stressful experiences, including physiological and pathological conditions. Liu
et al. reported that protracted social isolation decreases myelin gene expression and nuclear
heterochromatin formation, thus inducing transcriptional and ultrastructural changes in
OLs of the PFC, which ultimately leads to impaired adult myelin formation [66]. Indeed,
in stress-induced depressive states in mice, 69% of the most significantly downregulated
genes were myelin-related, such as myelin oligodendrocyte glycoprotein and ermin [67].
Moreover, the anti-depressant venlafaxine, a serotonin- and norepinephrine-reuptake
inhibitor, successfully improved cognitive impairment and depression-like behaviors in a
cuprizone-induced demyelinated mouse model [68]. In our recent research, we revealed
novel insights for calcium homeostasis in manipulating developmental transition from
OPCs to pre-OLs [69]. We also showed that the loss of the endoplasmic reticulum calcium
channel ITPR2 in OLs induces anxiety-/depressive-like behaviors in the mice.

In the cortex, hippocampus and amygdala of major-depressive-disorder suicide vic-
tims, a microarray revealed significant reductions in quaking gene transcripts (QKI), which
is a highly conserved RNA-binding protein and is important for myelination in the post-
natal CNS [73]. Since the QKI-6 isoform interacts with argonaute 2 and MBP mRNA in
cytoplasmic granules of OLs during cellular stress [74], QKI may play a specific role in
myelination-related deficits in the etiology of psychiatric disorders [75]. Moreover, the
microarray analysis of postmortem tissue from depressive individuals demonstrates that
myelination or OL-lineage-related gene transcripts are remarkably downregulated with
worsened symptoms [76,77]. In agreement with these observations, an animal model of
chronic unpredictable mild stress showed a decreased expression of OL-associated genes,
such as MBP, MOB and CNP [70]. Further phenotype-based genetic-association studies
suggested that the CNP SNP rs2070106 AA genotype influences myelin/axon integrity in
the frontal corpus callosum fibers from SCZ patients and that CNP rs2070106 might be
causative of a catatonic depression syndrome with age [71].

In addition, GABAergic interneurons generated from pluripotent stem cells (iPSCs)
from major-depressive-disorder patients with suicidal behaviors (sMDD) exhibit increased
neurite arborization, increased neural firing and decreased calcium-signaling propaga-
tion [72], which could be the early pathology of sMDD. Similarly, increased neural mor-
phology is discovered in MDD serotonergic interneurons. According to a transcriptomic se-
quencing study, the reduced expression of serotoninergic receptor 2C (5-HT2C) in GABAer-
gic interneurons may lead to defective neuronal activity in patients with sMDD, which
may temporally delay the release of intracellular calcium [78]. Targeting the 5-HT2C recep-
tor through agonist or genetic approaches can restore neuronal activity deficits in sMDD
GABAergic interneurons [72]. Together, these observations suggest the strong implication
of oligodendrocytes and interneurons in depression.

7. Conclusions

Recent studies based on single-cell sequencing indicate that both OLs and interneurons
are highly heterogeneous, consisting of varieties of subtypes with specific gene-expression
profiles and functions [79]. However, how these complicated cell subtypes interact in a
coordinated manner to regulate neural microcircuits has not yet been well defined. Brain
mesoscopic atlas imaging, neural modulating technologies, multi-omics sequencing and
conjoint analysis will provide strong support to reveal the cellular and molecular phe-
notypes of neurological and psychiatric disorders, involving the deficiency of OLs and
interneurons. In addition, researchers should pay attention to the species-level differences
in origin and lineage specialization between the two kinds of cells in rodents and humans,
which may help in the design of reliable strategies for brain-disease treatment. In conclu-
sion, further studies elucidating novel interactions between these two cell types under
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physiological and pathological conditions may provide important instructions for exploring
new therapeutic targets and strategies for related diseases.
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